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Healthcare

Event 
Prediction 

Model

Demographics

Age
Gender
Race

Laboratory

Hemoglobin
Blood count
Glucose

Procedures

Hemodialysis
Contrast dye
Catheterization

Event of Interest : Rehospitalization; Disease recurrence; Cancer survival
Outcome: Likelihood of hospitalization within t days of discharge

Medications

ACE inhibitor
Dopamine
Milrinone

Comorbodities

Hypertension
Diabetes
CKD

IMPACT
Lower healthcare costs
Improve quality of life
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Mining Events in Longitudinal Data

1   2    3   4   5    6   7   8    9   10   11   12

1    2    3     4    5    6     7    8    9    10  

Su
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Time

- Death

- Dropout/Censored

- Other Events

Classification Problem:
3 +ve and 7 -ve
Cannot predict the time of event
Need to re-train for each time

Regression Problem:
Can predict the time of event
Only 3 samples (not 10) 

– loss of data

Ping Wang, Yan Li, Chandan, K. Reddy, “Machine Learning for Survival 
Analysis: A Survey”. ACM Computing Surveys (under revision), 2017.
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Goal of survival analysis: To estimate the time to the event of 
interest ܶ for a new instance ݆	with feature predictors denoted by ܺ. 

Problem Statement
For a given instance ݅, represented by a triplet ሺ ܺ, ,ݕ .ሻߜ

ܺ is the feature vector; 
ߜ is the binary event indicator, i.e.,	ߜ	ൌ 1 for an uncensored instance 
and ߜ ൌ 0	 for a censored instance; 
ݕ denotes the observed time and is equal to the survival time for an 
uncensored instance and for a censored instance, i.e.,

ݕ ൌ ቊ ܶ ߜ ൌ 1
ܥ ߜ ൌ 0

Note for ܶ:
The value of ܶ will be both non-negative and continuous.

ܶ is latent for censored instances.
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Education
Financial

Event 
Prediction 

Model

Demographics

Age
Gender
Race/Ethnicity

Cash amount
Income
Scholarships

Enrollment
Transfer credits
College
Major

Event of Interest : Student dropout
Outcome: Likelihood of a student being dropout within t days

Semester
Semester GPA
% passed
% dropped

Pre-enrollment

High school GPA
ACT scores
Graduation age

IMPACT
Educated Society

Better Future

S. Ameri, M. J. Fard, R. B. Chinnam and C. K. Reddy, "Survival Analysis based Framework for Early Prediction of 
Student Dropouts", CIKM 2016.
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Crowdfunding
Projects
Duration
Goal amount
Category

Temporal
# Backers
Funding
# retweets

Event of Interest: Project Success
Outcome: Likelihood of a project being successful within t days

Event 
Prediction 

Model

Creators
Past success
Location
# projects

Twitter
# Promotions
Backings
Communities

IMPACT
Improve local economy
Successful businesses

Y. Li, V. Rakesh, and C. K. Reddy, "Project Success Prediction in Crowdfunding Environments", WSDM 2016.
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Other Applications

How long ?

Event of interest
History information 

Reliability: Device Failure Modeling in Engineering
Goal: Estimate when a device will fail 
Features: Product and manufacturer details, user reviews

Duration Modeling: Unemployment Duration in Economics
Goal: Estimate the time people spend without a job (for getting a new job)
Features: User demographics and experience, Job details and economics

Click Through Rate: Computational Advertising on the Web
Goal: Estimate when a web user will click the link of the ad.
Features: User and Ad information, website statistics

Customer Lifetime Value: Targeted Marketing
Goal: Estimate the frequent purchase pattern for customers.
Features: Customer and store/product information.
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Survival Analysis 
Methods

Non-Parametric

Kaplan-Meier

Nelson-Aalen

Life-Table

Semi-Parametric

Basic Cox-PH

Penalized Cox

Time-Dependent 
Cox

Cox Boost

Lasso-Cox

Ridge-Cox

EN-Cox

OSCAR-Cox
Cox Regression

Parametric

Linear Regression

Accelerated 
Failure Time

Tobit

Buckley James

Panelized 
Regression

Weighted 
Regression

Structured 
Regularization

Machine 
Learning

Survival Trees

Ensemble

Advanced Machine 
Learning

Bayesian 
Network

Naïve Bayes
Bayesian 
Methods

Support Vector 
Machine

Random Survival 
Forests

Bagging Survival 
Trees

Active Learning

Transfer 
Learning

Multi-Task 
Learning

Early Prediction

Data 
Transformation

Complex Events

Calibration

Uncensoring

Related Topics

Taxonomy of Survival Analysis Methods
Statistical Methods

Neural Network

Competing 
Risks

Recurrent 
Events
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Basics of Survival Analysis
Main focuses is on time to event data. Typically, survival data
are not fully observed, but rather are censored.
Several important functions:

Survival function, indicating the probability that the stance
instance can survive for longer than a certain time t.

ܵ ݐ ൌ Pr ܶ  ݐ

Cumulative density function, representing the probability
that the event of interest occurs earlier than t.

ܨ ݐ ൌ 1 െ ܵ ݐ

Death density function:
݂ ݐ ൌ ሻݐሺܨ݀ ݐ݀ ൌ െ݀ܵሺݐሻ ⁄⁄ݐ݀

Hazard function: representing the probability the “event” of
interest occurs in the next instant, given survival to time t.

݄ ݐ ൌ
݂ ݐ
ܵ ݐ ൌ െ

݀ሾln ܵሺݐሻሿ
ݐ݀

Death

Cumulative hazard function 
ܪ ݐ ൌ  ݄ ݑ ௧ݑ݀



Survival function
ܵ ݐ ൌ exp	ሺെܪሺݐሻሻ

Chandan K. Reddy and Yan Li, "A Review of Clinical Prediction Models", in Healthcare Data Analytics, 
Chandan K. Reddy and Charu C. Aggarwal (eds.), Chapman and Hall/CRC Press, 2015. 
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Evaluation Metrics
Due to the presence of the censoring in survival data, 
the standard evaluation metrics for regression such as 
root of mean squared error and ܴଶ are not suitable for 
measuring the performance in survival analysis. 
Three specialized evaluation metrics for survival 
analysis:

Concordance index (C-index)
Brier score
Mean absolute error
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Concordance Index (C‐Index)
It is a rank order statistic for predictions against true outcomes
and is defined as the ratio of the concordant pairs to the total
comparable pairs.
Given the comparable instance pair ݅, ݆ with ݐ and ݐ are the
actual observed times and S(ݐ ) and S(ݐ ) are the predicted
survival times,

The pair ሺ݅, ݆ሻ is concordant if ݐ ݐ < and S(ݐ) > S(ݐ).

The pair ሺ݅, ݆ሻ is discordant if  ݐ ݐ < and  S(ݐ) < S(ݐ).

Then, the concordance probability ܿ ൌ Pr ܶ ൏ ܶ ܶ ൏ ܶ 	
measures the concordance between the rankings of  actual 
values and predicted values.
For a binary outcome, C-index is identical to the area under the 
ROC curve (AUC).

U. Hajime, et al. "On the C‐statistics for evaluating overall adequacy of risk prediction procedures with censored survival 
data." Statistics in medicine, 2011.
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Comparable Pairs
The survival times of two instances can be compared if:

Both of them are uncensored; 
The observed event time of the uncensored instance is 
smaller than the censoring time of the censored instance. 

Without Censoring                        With Censoring 
A total of 5C2 comparable pairs Comparable only with events and 

with those censored after the events

H. Steck, B. Krishnapuram, C. Dehing-oberije, P. Lambin, and V. C. Raykar, “On ranking in survival analysis: Bounds on the 
concordance index”, NIPS 2008.
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C‐index
When the output of the model is the prediction of survival time:

ܿ̂ ൌ 	
1

݉ݑ݊   ሾܵܫ ොหݕ ܺ  ܵ |ොݕ ܺ ሿ
:	௬ழ௬ೕ:ఋୀଵ

Where ܵ |ොݕ ܺ is the predicted survival probabilities, ݉ݑ݊
denotes the total number of comparable pairs.

When the output of the model is the hazard ratio (Cox model):

ܿ̂ ൌ 	
1

݉ݑ݊   ሾܫ ܺߚመ  ܺߚመሿ
:	௬ழ௬ೕ:ఋୀଵ

Where ܫሾ·ሿ is the indicator function and ߚመ is the estimated 
parameters from the Cox based models. (The patient who has 
a longer survival time should have a smaller hazard ratio).
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C‐index during a Time Period
Area under the ROC curves (AUC) is

ܥܷܣ ൌ ݎܲ ොݕ ൏ ොݕ ݕ ൌ 0, ݕ ൌ 1 ൌ
1

݉ݑ݊   ො൏ݕሺܫ ොሻݕ
௬ೕୀଵ௬ୀ

In a possible survival time ݐ ∈ ௦ܶ, ௦ܶ is the set of all possible 
survival times, the time-specific AUC is defined as 	

ሻݐሺܥܷܣ ൌ ݎܲ ොݕ ൏ ොݕ ݕ ൏ ,ݐ ݕ  ݐ ൌ
1

ሻݐሺ݉ݑ݊   ො൏ݕሺܫ ොሻݕ
:	௬ೕவ௧:	௬ழ௧

ሻݐሺ݉ݑ݊ denotes the number of comparable pairs at time ݐ.
Then the C-index during a time period 0, ∗ݐ can be calculated as: 

∗࢚ࢉ ൌ 	


࢛
∑ ∑ ࢀழࢀࡵ ሺ࢟ෝ൏ ሻ:ఋୀଵෝ࢟

ൌ 
∑ ࢙ࢀ∋࢚ሻ࢚ሺ࢛

∑ ∑ ∑ ൏ෝ࢟ሺࡵ ࢙ࢀ∋࢚࢚ழ࢚࢟வ࢟ሻෝ࢟ ൌ ∑ ࢁ ࢚ · ሻ࢚ሺ࢛
࢙ࢀ∋࢚࢛

C-index is a weighted average of the area under time-specific ROC 
curves (Time-dependent AUC).
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Brier Score
Brier score is used to evaluate the prediction models where the 
outcome to be predicted is either binary or categorical in nature.
The individual contributions to the empirical Brier score are 
reweighted based on the censoring information:

ܵܤ ݐ ൌ
1
ܰ ݓ ݐ ොݕ ݐ െ ݕ ݐ ଶ

ே

ୀଵ

ݓ ݐ denotes the weight for the ݅௧ instance. 

The weights can be estimated by considering the Kaplan-Meier
estimator of the censoring distribution ܩ on the dataset. 

ݓ ݐ ൌ ቊߜ/ܩሺݕሻ ݕ	݂݅  ݐ
ሻݕሺܩ/1 ݕ	݂݅  ݐ

The weights for the instances that are censored before ݐ will be 0. 
The weights for the instances that are uncensored at ݐ are greater than 1.

E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher, “Assessment and comparison of prognostic classification schemes 
for survival data”, Statistics in medicine, 1999.
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Mean Absolute Error
For survival analysis problems, the mean absolute error (MAE) 
can be defined as an average of the differences between the 
predicted time values and the actual observation time values.

ܧܣܯ ൌ
1
݊ ሺߜ|ݕ െ ො|ሻݕ

ே

ୀଵ

where
ݕ -- the actual observation times.
ොݕ -- the predicted times. 

Only the samples for which the event occurs are being 
considered in this metric.  
Condition: MAE can only be used for the evaluation of survival 
models which can provide the event time as the predicted 
target value.
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Summary of Statistical methods

Type Advantages Disadvantages Specific methods

Non-
parametric

More efficient when no
suitable theoretical 
distributions known.

Difficult to interpret;
yields inaccurate 
estimates.

Kaplan-Meier
Nelson-Aalen

Life-Table

Semi-
parametric

The knowledge of the 
underlying distribution of 
survival times is not
required.

The distribution of the 
outcome is unknown; 
not easy to interpret.

Cox model
Regularized Cox

CoxBoost
Time-Dependent Cox

Parametric

Easy to interpret, more 
efficient and accurate 
when the survival times 
follow a particular 
distribution.

When the distribution 
assumption is violated, it 
may be inconsistent and 
can give sub-optimal 
results.

Tobit
Buckley-James

Penalized regression
Accelerated Failure Time
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Kaplan‐Meier Analysis 
Kaplan-Meier (KM) analysis is a nonparametric approach
to survival outcomes. The survival function is:

መܵ ݐ ൌෑ ሺ1 െ ݀

ݎ
ሻ

:	்ೕழ௧

E. Bradley. "Logistic regression, survival analysis, and the Kaplan-Meier curve." JASA 1988.

where
• ܶ … ܶ -- a set of distinct event times 

observed in the sample.
• ݀ -- number of events at ܶ.
• ܿ -- number of censored observations 

between ܶ and ܶାଵ.
• ݎ -- number of individuals “at risk” right 

before the ݆௧ death.
ݎ ൌ ିଵݎ െ ݀ିଵ െ ܿିଵ
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Survival Outcomes
Patient Days Status

1 21 1

2 39 1

3 77 1

4 133 1

5 141 2

6 152 1

7 153 1

8 161 1

9 179 1

10 184 1

11 197 1

12 199 1

13 214 1

14 228 1

Patient Days Status

15 256 2

16 260 1

17 261 1

18 266 1

19 269 1

20 287 3

21 295 1

22 308 1

23 311 1

24 321 2

25 326 1

26 355 1

27 361 1

28 374 1

Patient Days Status

29 398 1

30 414 1

31 420 1

32 468 2

33 483 1

34 489 1

35 505 1

36 539 1

37 565 3

38 618 1

39 793 1

40 794 1

Status
1: Death
2: Lost to follow up
3: Withdrawn Alive
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Kaplan‐Meier Analysis
Kaplan-Meier Analysis
 Time Status ࢊ ࢉ ࢘ ሻ࢚ሺࡿ
1 21 1 1 0 40 0.975
2 39 1 1 0 39 0.95
3 77 1 1 0 38 0.925
4 133 1 1 0 37 0.9
5 141 2 0 1 36 .
6 152 1 1 0 35 0.874
7 153 1 1 0 34 0.849

መܵ ݐ ൌෑ ሺ1 െ ݀

ݎ
ሻ

:	்ೕழ௧

KM Estimator:
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Kaplan‐Meier Analysis
KM Estimator:

 Time Status
ሻ࢚ሺࡿ

ࢊ∑ ࢘  Time Status
ሻ࢚ሺࡿ

ࢊ∑ Estimate࢘ Sdv Error Estimate Sdv Error
1 21 1 0.975 0.025 1 40 21 287 3 . . 18 20

2 39 1 0.95 0.034 2 39 22 295 1 0.508 0.081 19 19

3 77 1 0.925 0.042 3 38 23 308 1 0.479 0.081 20 18

4 133 1 0.9 0.047 4 37 24 311 1 0.451 0.081 21 17

5 141 2 . . 4 36 25 321 2 . . 21 16

6 152 1 0.874 0.053 5 35 26 326 1 0.421 0.081 22 15

7 153 1 0.849 0.057 6 34 27 355 1 0.391 0.081 23 14

8 161 1 0.823 0.061 7 33 28 361 1 0.361 0.08 24 13

9 179 1 0.797 0.064 8 32 29 374 1 0.331 0.079 25 12

10 184 1 0.771 0.067 9 31 30 398 1 0.301 0.077 26 11

11 193 1 0.746 0.07 10 30 31 414 1 0.271 0.075 27 10

12 197 1 0.72 0.072 11 29 32 420 1 0.241 0.072 28 9

13 199 1 0.694 0.074 12 28 33 468 2 . . 28 8

14 214 1 0.669 0.075 13 27 34 483 1 0.206 0.07 29 7

15 228 1 0.643 0.077 14 26 35 489 1 0.172 0.066 30 6

16 256 2 . . 14 25 36 505 1 0.137 0.061 31 5

17 260 1 0.616 0.078 15 24 37 539 1 0.103 0.055 32 4

18 261 1 0.589 0.079 16 23 38 565 3 . . 32 3

19 266 1 0.563 0.08 17 22 39 618 1 0.052 0.046 33 2

20 269 1 0.536 0.08 18 21 40 794 1 0 0 34 1
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Nelson‐Aalen Estimator
Nelson-Aalen estimator  is a non-parametric estimator of the 
cumulative hazard function (CHF) for censored data.  
Instead of estimating the survival probability as done in KM 
estimator, NA estimator directly estimates the hazard probability.
The Nelson-Aalen estimator of the cumulative hazard function:

ܪ ݐ ൌ  ݀

௧ೕஸ௧ݎ

݀ -- the number of deaths at time ݐ
ݎ -- the number of individuals at risk at ݐ

The cumulative hazard rate function can be used to estimate the 
survival function and its variance.

መܵ ݐ ൌ ݁ିு ௧ ൌ exp െ ݀

݆
௧ೕஸ௧

The NA and KM estimators are asymptotically equivalent.
W. Nelson. “Theory and applications of hazard plotting for censored failure data.” Technometrics, 1972.
O. Aalen. “Nonparametric inference for a family of counting processes.” The Annals of Statistics, 1978.
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Clinical Life Tables
Clinical life tables applies to grouped survival data from
studies in patients with specific diseases, it focuses more
on the conditional probability of dying within the interval.

The ࢎ࢚ time interval is ሾି࢚, ሻ࢚ VS. 
ࢀ ࡹࢀ… is a set of distinct death timesThe survival function is:

መܵ ݐ ൌෑ ሺ1 െ
݀ఐ
ఐᇱݎ
ሻ

ఐழ

KM analysis suits small data set with a more accurate analysis,
Clinical life table suit for large data set with a relatively approximate result.

Nonparametric

Assumption:
• at the beginning of each interval:	ݎᇱൌ ݎ െ ܿ
• at the end of each interval:	ݎᇱൌ ݎ
• on average halfway through the interval: ݎᇱ ൌ ݎ െ ܿ/2

Cox, David R. "Regression models and life-tables", Journal of the Royal Statistical Society. Series B (Methodological), 1972.
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Clinical Life Tables
Clinical Life Table

Interval
Interval 

Start Time
Interval 

End Time ࢘ ࢉ ᇱ࢘ ࢊ ሻ࢚ሺࡿ
Std. Error 

of ሻ࢚ሺࡿ
1 0 182 40 1 39.5 8 0.797 0.06
2 183 365 31 3 29.5 15 0.392 0.08
3 366 548 13 1 12.5 8 0.141 0.06
4 549 731 4 1 3.5 1 0.101 0.05
5 732 915 2 0 2 2 0 0

መܵ ݐ ൌෑ ሺ1 െ
݀ఐ
ఐᇱݎ
ሻ

ఐழ

Clinical Life Table：

NOTE：
The length of interval
is half year(183 days)

On average halfway through 
the interval: ݎᇱ ൌ ݎ െ ܿ/2
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Statistical methods
Type Advantages Disadvantages Specific methods

Non-
parametric

More efficient when no
suitable theoretical 
distributions known.

Difficult to interpret;
yields inaccurate 
estimates.

Kaplan-Meier
Nelson-Aalen

Life-Table

Semi-
parametric

The knowledge of the 
underlying distribution of 
survival times is not
required.

The distribution of the 
outcome is unknown; 
not easy to interpret.

Cox model
Regularized Cox

CoxBoost
Time-Dependent Cox

Parametric

Easy to interpret, more 
efficient and accurate 
when the survival times 
follow a particular 
distribution.

When the distribution 
assumption is violated, it 
may be inconsistent and 
can give sub-optimal 
results.

Tobit
Buckley-James

Penalized regression
Accelerated Failure Time
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Survival Analysis 
Methods

Non-Parametric

Kaplan-Meier

Nelson-Aalen

Life-Table

Semi-Parametric

Basic Cox-PH

Penalized Cox

Time-Dependent 
Cox

Cox Boost

Lasso-Cox

Ridge-Cox

EN-Cox

OSCAR-Cox
Cox Regression

Parametric

Linear Regression

Accelerated 
Failure Time

Tobit

Buckley James

Panelized 
Regression

Weighted 
Regression

Structured 
Regularization

Machine 
Learning

Survival Trees

Ensemble

Advanced Machine 
Learning

Bayesian 
Network

Naïve Bayes
Bayesian 
Methods

Support Vector 
Machine

Random Survival 
Forests

Bagging Survival 
Trees

Active Learning

Transfer 
Learning

Multi-Task 
Learning

Early Prediction

Data 
Transformation

Complex Events

Calibration

Uncensoring

Related Topics

Taxonomy of Survival Analysis Methods
Statistical Methods

Neural Network

Competing 
Risks

Recurrent 
Events
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Cox Proportional Hazards Model
The Cox proportional hazards model is the most commonly 
used model in survival analysis. 
Hazard Function ݄ሺݐሻ, sometimes called an instantaneous 
failure rate, shows the event rate at time ݐ conditional on 
survival until time ݐ or later.

݄ ,ݐ ܺ ൌ ݄ ݐ exp	ሺ ܺߚሻ ⇒ 				log  ௧,
బ ௧

ൌ ܺߚ

where 
• ܺ ൌ ,ଵݔ ,ଶݔ … , ݔ is the covariate vector.

• ݄ ݐ is the baseline hazard function, which can be an arbitrary 
non-negative function of time.  

The Cox model is a semi-parametric algorithm since the baseline 
hazard function is unspecified.

D. R. Cox, “Regression models and life tables”. Journal of the Royal Statistical Society, 1972.

A linear model for the log 
of the hazard ratio.
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Cox Proportional Hazards Model
The Proportional Hazards assumption means that the hazard ratio of two 
instances ଵܺ and ܺଶ is constant over time (independent of time).

ܴܪ ൌ
݄ሺݐ, ଵܺሻ
݄ሺݐ, ܺଶሻ

ൌ
݄ ݐ exp	ሺ ଵܺߚሻ
݄ ݐ exp	ሺܺଶߚሻ

ൌ exp	ሾ ଵܺ െ ܺଶ ሿߚ

The survival function in Cox model can be computed as follows:

ܵ ݐ ൌ exp െܪ ݐ exp ߚܺ ൌ ܵ ݐ ୣ୶୮	ሺఉሻ

ܪ ݐ is the cumulative baseline hazard function;

ܵ ݐ ൌ exp െܪ ݐ represents the baseline survival function.

The Breslow’s estimator is the most widely used method to estimate ܪ ݐ , 
which is given by:

ܪ ݐ ൌ  ݄ሺݐሻ
௧ஸ௧

݄ ݐ ൌ ଵ

∑ ೕഁೕ∈ೃ

if ݐ is an event time, otherwise ݄ ݐ ൌ 0.

ܴ represents the set of subjects who are at risk at time ݐ.
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Optimization of Cox model
Not possible to fit the model using the standard likelihood function 

Reason: the baseline hazard function is not specified.

Cox model uses partial likelihood function: 
Advantage: depends only on the parameter of interest and is free of 
the nuisance parameters (baseline hazard).

Conditional on the fact that the event occurs at ܶ, the individual 
probability corresponding to covariate ܺ can be formulated as:

݄ ܶ, ܺ ݐ݀
∑ ݄ ܶ, ܺ ∈ோೕݐ݀

ܬሺ	ܬ  ܰሻ -- the total number of events of interest that occurred during 
the observation period for ܰ instances.

ଵܶ ൏ ଶܶ ൏ ⋯ ൏ ܶ -- the distinct ordered time to event of interest. 

ܺ -- the covariate vector for the subject who has the event at ܶ .

ܴ -- the set of risk subjects at ܶ. 
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Partial Likelihood Function
The partial likelihood function of the Cox model will be:

ܮ ߚ ൌෑ
exp	ሺ ܺߚሻ

∑ exp	ሺ ܺߚሻ∈ோೕ

ఋೕே

ୀଵ

If	ߜൌ 1, the ݆௧ term in the product is the conditional probability; 

if	ߜൌ 0, the corresponding term is 1, which means that the term will not 
have any effect on the final product.

The coefficient vector is estimated by minimizing the negative 
log-partial likelihood: 

ܮܮ ߚ ൌ െߜ

ே

ୀଵ
ܺߚ െ ݈݃  exp	ሺ ܺߚሻ

∈ோೕ

The maximum partial likelihood estimator (MPLE) can be used 
along with the numerical Newton-Raphson method  to iteratively 
find an estimator	ߚመ which minimizes ܮܮሺߚሻ.

D. R. Cox, Regression models and life tables, Journal of the Royal Statistical Society, 1972.
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Regularized Cox Models
Regularized Cox regression methods:

መߚ ൌ ܮܮ	ஒ݊݅݉݃ݎܽ ߚ  ߣ ∗ ܲሺߚሻ

							ܲሺߚሻ is  a sparsity inducing norm and ߤ is the regularization parameter.

Promotes Sparsity

Handles Correlation

Sparsity + Correlation

Adaptive Variants are 
slightly more effective

Method Penalty Term Formulation

LASSO  ߚ


ୀଵ

Ridge ߚ
ଶ



ୀଵ

Elastic Net (EN) ߤ |ߚ|


ୀଵ
 ሺ1 െ ߚሻߤ

ଶ


ୀଵ

Adaptive LASSO (AL) ∑ |ߚ|ݓ

ୀଵ

Adaptive Elastic Net 
(AEN) ߤ |ߚ|ݓ



ୀଵ
 ሺ1 െ ߚሻߤ

ଶ


ୀଵ

OSCAR ଵߣ ∥ ߚ ∥ଵ ߣଶ ∥ ߚܶ ∥ଵ
Sparsity + Feature 
Correlation Graph
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Lasso‐Cox and Ridge‐Cox
Lasso performs feature selection and estimates the regression 
coefficients simultaneously using a ℓଵ-norm regularizer .
Lasso-Cox model incorporates the ℓଵ-norm into the log-partial 
likelihood and inherits the properties of Lasso.
Extensions of Lasso-Cox method:

Adaptive Lasso-Cox - adaptively weighted ℓଵ-penalties on regression 
coefficients.
Fused Lasso-Cox - coefficients and their successive differences are 
penalized.
Graphical Lasso-Cox - ℓଵ-penalty on the inverse covariance matrix is 
applied to estimate the sparse graphs .

Ridge-Cox is Cox regression model regularized by a ℓଶ-norm
Incorporates a ℓଶ-norm regularizer to select the correlated features.
Shrink their values towards each other.

N. Simon et al., “Regularization paths for Coxs proportional hazards model via coordinate descent”, JSS 2011.
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EN‐Cox and OSCAR‐Cox
EN-Cox method uses the Elastic Net penalty term (combining the ℓଵ
and squared ℓଶ penalties) into the log-partial likelihood function. 

Performs feature selection and handles correlation between the features.

Kernel Elastic Net Cox (KEN-Cox) method builds a kernel similarity 
matrix for the feature space to incorporate the pairwise feature 
similarity into the Cox model.
OSCAR-Cox uses Octagonal Shrinkage and Clustering Algorithm for 
Regression regularizer within the Cox framework.

ܲ β ൌ ଵߣ ∥ ߚ ∥ଵ ߣଶ ∥ ߚܶ ∥ଵ

ܶ is the sparse symmetric edge set matrix from a graph constructed by 
features.
Performs the variable selection for highly correlated features in regression.
Obtain equal coefficients for the features which relate to the outcome in 
similar ways. 

B. Vinzamuri and C. K. Reddy, "Cox Regression with Correlation based Regularization for Electronic Health Records", ICDM 2013.
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CoxBoost
CoxBoost method can be applied to fit the sparse survival 
models on the high-dimensional data by considers some 
mandatory covariates explicitly in the model. 

Similar goal: estimate the coefficients in Cox model.
Differences: 

RGBA: updates in component-wise boosting or fits 
the gradient by using all covariates in each step.
CoxBoost: considers a flexible set of candidate 
variables for updating in each boosting step. 

H. Binder and M. Schumacher, “Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival 
models”, BMC bioinformatics, 2008.

CoxBoost VS. Regular gradient boosting approach (RGBA)
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CoxBoost
How to update in each iteration of CoxBoost?

Assume that መିଵߚ ൌ ⋯,መሺିଵሻଵߚ , መሺିଵሻߚ
்being the actual

estimate of the overall parameter vector ߚ after step ݇	 െ
	1	of the algorithm and ݍ predefined candidate sets of
features in step ݇ with ܫ ⊂ 1,⋯ , ܲ , ݈ ൌ 1,⋯ , .ݍ

Component-wise CoxBoost: ܫ ൌ 1 ,⋯ , ሼܲሽ in each step ݇. 

ଵ

ଶ

ೖ

Update all parameters 
in each set 

simultaneously (MLE)

Determine Best ݈∗
which improves the 
overall fitting most

መߚ ൌ ቐ
መߚ	݁ݐܽ݀ݑ ݂݅		݆ ∈ ∗ܫ
መߚ ିଵ  ݂݅	݆ ∉ ∗ܫ

Update ߚመ

Special case: 
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TD‐Cox Model
Cox regression model is also effectively adapted to time-
dependent Cox model to handle time-dependent covariates.
Given a survival analysis problem which involves both time-
dependent and time-independent features, the variables at 
time ݐ can be denoted as: 

ܺሺݐሻ ൌ ሺ ⋅ܺ	ଵሺݐሻ, ⋅ܺ	ଶሺݐሻ, … , ⋅ܺ	భሺݐሻ, ⋅ܺ	ଵ, ⋅ܺଶ, … , ⋅ܺ	మሻ	

The TD-Cox model can be formulated as:

݄ ,ݐ ܺ ݐ ൌ ݄ ݐ exp	  ߙ ·ܺ ݐ 
భ

ୀଵ
 ߚ ·ܺ

మ

ୀଵ

Time-dependent Time-independent

Time-dependent Time-independent
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TD‐Cox Model
For the two sets of predictors at time ݐ:

ଵܺሺݐሻ ൌ ሺ ଵܺଵሺݐሻ, 	 ଵܺଶ ሺݐሻ, … , ଵܺభሺݐሻ, ଵܺଵ, ଵܺଶ, … , ଵܺమሻ

ܺଶሺݐሻ 		ൌ ሺܺଶଵሺݐሻ, 	ܺଶଶሺݐሻ, … , ܺଶభሺݐሻ, ⋅ܺ		ଵ
∗ , ⋅ܺ		ଶ

∗ , … , ܺଶమሻ	

The hazard ratio for TD-Cox model can be computed as 
follows:

ܴܪ ݐ ൌ
݄ሺݐ, ܺଶሺݐሻሻ
݄ሺݐ, ଵܺሺݐሻሻ

ൌ ݔ݁  ߙ ܺଶ ݐ െ ଵܺ ݐ  ߚ ܺଶ െ ଵܺ
మ

ୀଵ

భ

ୀଵ

Since the first component in the exponent is time-dependent, we can 
consider the hazard ratio in the TD-Cox model as a function of time ݐ.
This means that it does not satisfy the PH assumption mentioned in 
the standard Cox model.
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Counting Process Example

ID
Gende

r
(0/1)

Weight
(lb)

Smoke
(0/1)

Start Time 
(days)

Stop Time
(days) Status

ଵܵ 1 (F) 125 0 0 20 1

ܵଶ 0 (M) 171 1 0 20 0

ܵଶ 0 180 0 20 30 1

ܵଷ 0 165 1 0 20 0

ܵଷ 0 160 0 20 30 0

ܵଷ 0 168 0 30 50 0

ܵସ 1 130 0 0 20 0

ܵସ 1 125 1 20 30 0

ܵସ 1 120 1 30 80 1
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Survival Analysis 
Methods

Non-Parametric

Kaplan-Meier

Nelson-Aalen

Life-Table

Semi-Parametric

Basic Cox-PH

Penalized Cox

Time-Dependent 
Cox

Cox Boost

Lasso-Cox

Ridge-Cox

EN-Cox

OSCAR-Cox
Cox Regression

Parametric

Linear Regression

Accelerated 
Failure Time

Tobit

Buckley James

Panelized 
Regression

Weighted 
Regression

Structured 
Regularization

Machine 
Learning

Survival Trees

Ensemble

Advanced Machine 
Learning

Bayesian 
Network

Naïve Bayes
Bayesian 
Methods

Support Vector 
Machine

Random Survival 
Forests

Bagging Survival 
Trees

Active Learning

Transfer 
Learning

Multi-Task 
Learning

Early Prediction

Data 
Transformation

Complex Events

Calibration

Uncensoring

Related Topics

Taxonomy of Survival Analysis Methods
Statistical Methods

Neural Network

Competing 
Risks

Recurrent 
Events
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Statistical Methods
Type Advantages Disadvantages Specific methods

Non-
parametric

More efficient when no
suitable theoretical 
distributions known.

Difficult to interpret;
yields inaccurate 
estimates.

Kaplan-Meier
Nelson-Aalen

Life-Table

Semi-
parametric

The knowledge of the 
underlying distribution of 
survival times is not
required.

The distribution of the 
outcome is unknown; 
not easy to interpret.

Cox model
Regularized Cox

CoxBoost
Time-Dependent Cox

Parametric

Easy to interpret, more 
efficient and accurate 
when the survival times 
follow a particular 
distribution.

When the distribution 
assumption is violated, it 
may be inconsistent and 
can give sub-optimal 
results.

Tobit
Buckley-James

Penalized regression
Accelerated Failure Time
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Parametric Censored Regression

Survival function ܵ ݐ ൌ Pr ܶ  ݐ : the probability that the event did 
not happen up to time ݐ

— ∏ ܵሺݕ, ሻఋୀߠ : The joint probability of censored instances.

 Likelihood function

ܮ ߠ ൌ ෑ݂ሺݕ, ሻߠ
ఋୀଵ

ෑ ܵሺݕ, ሻߠ
ఋୀ

0.2

0.4

0.6

0.8

0
1 2 3yi

f(t)

yi

S(t)

Event density function ݂ ݐ : rate of events per unit time

— ∏ ݂ሺݕ, ሻఋୀଵߠ : The joint probability of uncensored instances.
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Parametric Censored Regression
Generalized Linear Model

ݖ ൌ ܺߚ  ݂~ߝ														ߝߪ

Where ݖ ൌ ቊ ܶ																													 																		ሺݎܽ݁݊݅ܮ	݈݁݀ܯሻ
log	ሺ ܶሻ ሺ݀݁ݐܽݎ݈݁݁ܿܿܣ	݁ݎݑ݈݅ܽܨ	݁݉݅ܶ	݈݁݀ܯሻ

ܮ ൌ ෑ݂ሺߝ/ߪሻ
ఋୀଵ

ෑ 1െ ሻߝሺܨ
ఋୀ

Negative log-likelihood

m݅݊
ఉ,ఙ

െ
2
݊  log ݂ ߝ െ log ߪ

ఋୀଵ

  log 1 െ ܨ ߝ
ఋୀ

Uncensored  
Instances 

censored  
Instances 
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Optimization
Use second order second-order Taylor expansion to formulate the 
log-likelihood as a reweighted least squares

where ߟ ൌ ,෨ߚܺ ܼ ߟ ൌ ߟ െ ᇲᇲ ఎ
ᇲ ఎ

. The first-order derivative ݈ᇱ ߟ , second-
order derivative ݈ᇱᇱሺߟሻ, and other components in optimization share the 
same formulation with respect to ݂ · , ݂ᇱ · , ݂ᇱᇱሺ·ሻ,	and		Fሺ·ሻ. 

In addition, we can add some regularization term to encode some 
prior assumption. 

Y. Li, K. S. Xu, C. K. Reddy, “Regularized Parametric Regression for High-dimensional Survival Analysis“, 2016. SDM 
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Pros and Cons
Advantages:

Easy to interpret.
Rather than Cox model, it can directly predict the 
survival(event) time. 
More efficient and accurate when the time to event of 
interest is follow a particular distribution.

Disadvantages:
The model performance strongly relies on the choosing of 
distribution, and in practice it is very difficult to choose a 
suitable distribution for a given problem.

Li, Yan, Vineeth Rakesh, and Chandan K. Reddy. "Project success prediction in crowdfunding environments." 
Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. ACM, 2016.
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Commonly Used Distributions
Distributions PDF ݂ሺݐሻ Survival ܵሺݐሻ Hazard ݄ሺݐሻ

Exponential ሻݐߣሺെ	expߣ exp	ሺെݐߣሻ ߣ

Weibull ሻݐߣሺെ	ିଵexpݐ݇ߣ exp	ሺെݐߣሻ ିଵݐ݇ߣ

Logistic ݁ିሺ௧ିఓሻ/ఙ

ߪ 1  ݁ିሺ௧ିఓሻ/ఙ ଶ
݁ିሺ௧ିఓሻ/ఙ

1  ݁ିሺ௧ିఓሻ/ఙ
1

ሺ1ߪ  ݁ିሺ௧ିఓሻ/ఙሻ

Log-logistic ିଵݐ݇ߣ

1  ݐߣ ଶ
1

1  ݐߣ
ିଵݐ݇ߣ

1  ݐߣ

Normal 1
ߪߨ2

exp	ሺെ
ݐ െ ߤ ଶ

ଶߪ2 ሻ 1 െ Φሺ
ݐ െ ߤ
ߪ ሻ

1

ሺ1ߪߨ2 െ Φሺݐ െ ߤ
ߪ ሻ ሻ

exp	ሺെ
ݐ െ ߤ ଶ

ଶߪ2

Log-normal 1
ݐߪߨ2

exp	ሺെ
log	ሺݐሻ െ ߤ ଶ

ଶߪ2 ሻ 1 െ Φሺ
log	ሺݐሻ െ ߤ

ߪ ሻ
1
ݐߪߨ2

exp	ሺെ log	ሺݐሻ െ ߤ ଶ

ଶߪ2 ሻ

1 െ Φሺlog	ሺݐሻ െ ߤ
ߪ ሻ 
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Tobit Model
Tobit model is one of the earliest attempts to extend linear regression
with the Gaussian distribution for data analysis with censored 
observations.
In Tobit model, a latent variable ݕ∗ is introduced and it is assumed to 
linearly depend on ܺ as: 

y∗ ൌ 	ߚܺ  ߳, ߳ ∼ 	ܰሺ0, ଶሻߪ

where ߳	is a normally distributed error term. 

For the ݅௧ instance, the observable variable ݕ will be ݕ∗ if ݕ∗  0, 
otherwise it will be 0. This means that if the latent variable is above 
zero, the observed variable equals to the latent variable and zero 
otherwise. 
The parameters in the model can be estimated with maximum 
likelihood estimation (MLE) method.

J. Tobin, Estimation of relationships for limited dependent variables. Econometrica: Journal of the Econometric Society, 1958.
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Buckley‐James Regression Method
The Buckley-James (BJ) regression is a AFT model.

log	ሺ ܶሻ ൌ ܺߚ  ߝ
The estimated target value 

log ∗ݕ ൌ ቊ log ݕ 																																																	 ߜ ൌ 1
ܧ log ܶ | log ܶ  log ݕ , ܺ ߜ ൌ 0

J. Buckley and I. James, Linear regression with censored data. Biometrika, 1979.

ݕ ൌ ቊ ܶ ߜ ൌ 1
ܥ ߜ ൌ 0

The key point is to calculate ܧ log ܶ | log ܶ  log ݕ , ܺ :

ܧ log ܶ | log ܶ  log ݕ , ܺ ൌ ܺߚ  ܧ ߝ ߝ  log ݕ െ ܺߚ

ൌ ܺߚ  න ݐ ·
݂ሺݐሻ

1 െ ሺlogܨ ݕ െ ܺߚሻ

ஶ

୪୭ ௬ ିఉ

Rather than a selected closed formed theoretical distribution, the Kaplan-Meier 
(KM) estimation method are used to approximate the F(·).
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The Elastic-Net regularizer also has been used to penalize the BJ-
regression (EN-BJ) to handle the high-dimensional survival data.

To estimate of ߚ of BJ and EN-BJ models, we just need to calculate 
log ∗ݕ based on the ߚ of pervious iteration and then minimize the lest 
square or penalized lest square via standard algorithms. 

Buckley‐James Regression Method
The Least squares is used as the empirical loss function

min
ఉ

1
2 log ∗ݕ െ ܺߚ ଶ



ୀଵ
Where log ∗ݕ ߜ= log ݕ 

1 െ ߜ ܺߚሺିଵሻ  න ݐ ·
݂ሺݐሻ

1 െ ሺlogܨ ݕ െ ܺߚሺିଵሻሻ

ஶ

୪୭ ௬ ିఉሺషభሻ

min
ఉ

1
2 log ∗ݕ െ ܺߚ ଶ



ୀଵ

 	ߣ ߙ ߚ 1 	
1 െ ߙ
2 	 ߚ

2
2

Wang, Sijian, et al. “Doubly Penalized Buckley–James Method for Survival Data with High‐Dimensional Covariates.” Biometrics, 2008
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Regularized Weighted Linear Regression

Induce more penalize to case 1 and less penalize to case 2

×

✓

Y. Li, B. Vinzamuri, and C. K. Reddy, “Regularized Weighted Linear Regression for High-dimensional Censored Data“, SDM 2016.
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Weighted Residual Sum‐of‐Squares
More weight to the censored instances whose estimated
survival time is lesser than censored time
Less weight to the censored instances whose estimated
survival time is greater than censored time.

where weight ݓ is defined as follows:

＝൞ݓ
݅ߜ		݂݅			1 ൌ 1																												
݅ߜ		݂݅			߬		 ൌ ݕ			݀݊ܽ		0  ܺߚ
݅ߜ		݂݅			0		 ൌ ݕ			݀݊ܽ		0 ൏ ܺߚ

A demonstration of linear 
regression model for dataset with 
right censored observations.

Weighted residual sum-of-squares

ܹܴܵܵ ൌ
1
2ሺݕ 	െ ܺߚሻଶ

ே

ୀଵ

ݓ
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Self‐Training Framework

Training 
a base 
model

Estimate 
survival 

time 

Approximate 
the survival 

time of 
censored 
instances

Update 
training 

set

If the estimated survival
time is larger than censored
time

Stop when the 
training dataset won’t 

change

Self-training: training the model by using its own prediction
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Bayesian Survival Analysis

Bayesian Paradigm
Based on observed data ܦ, one can build a likelihood function ܮሺܦ|ߠሻ. 
(likelihood estimator)
Suppose ߠ is random and has a prior distribution denote by ߨሺߠሻ.
Inference concerning ߠ is based on the posterior distribution

݉ሺܦሻ usually does not have an analytic closed form, requires methods 
like MCMC to sample from ߨሺܦ|ߠሻ and methods to estimate ݉ ܦ .
Posterior predictive distribution of a future observation vector ݔ given D

where ݂ሺߠ|ݔሻ denotes the sampling density function of ݔ

Penalized regression encode assumption via regularization term, 
while Bayesian approach encode assumption via prior distribution. 

Ibrahim, Joseph G., Ming‐Hui Chen, and Debajyoti Sinha. Bayesian survival analysis. John Wiley & Sons, 2005. 
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Bayesian Survival Analysis
Under the Bayesian framework the lasso estimate can be viewed as a 
Bayesian posterior mode estimate under independent Laplace priors for 
the regression parameters. 

Komarek, Arnost. Accelerated failure time models for multivariate interval-censored data with 
flexible distributional assumptions. Diss. PhD thesis, PhD thesis, Katholieke Universiteit
Leuven, Faculteit Wetenschappen, 2006.

Lee, Kyu Ha, Sounak Chakraborty, and Jianguo Sun. "Bayesian variable selection in 
semiparametric proportional hazards model for high dimensional survival data." The 
International Journal of Biostatistics 7.1 (2011): 1-32.

Similarly based on the mixture representation of Laplace distribution, the 
Fused lasso prior and group lasso prior can be also encode based on a 
similar scheme.

Lee, Kyu Ha, Sounak Chakraborty, and Jianguo Sun. "Survival prediction and variable 
selection with simultaneous shrinkage and grouping priors." Statistical Analysis and Data 
Mining: The ASA Data Science Journal 8.2 (2015): 114-127.

A similar approach can also be applied in the parametric AFT model.
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Deep Survival Analysis
Deep Survival Analysis is a hierarchical generative approach to
survival analysis in the context of the EHR
Deep survival analysis models covariates and survival time in a
Bayesian framework.
It can easily handle both missing covariates and model survival time.
Deep exponential families (DEF) are a class of multi-layer probability
models built from exponential families. Therefore, they are capable
to model the complex relationship and latent structure to build a joint
model for both the covariates and the survival times.

R. Ranganath, A. Perotte, N. Elhadad, and D. Blei. "Deep survival analysis." Machine Learning for Healthcare, 2016.

ݖ is the output of DEF network, which can be used to generate the 
observed covariates and the time to failure. 
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Deep Survival Analysis

ݔ is the feature vector, which is supposed can be generated from a prior
distribution.
The Weibull distribution is used to model the survival time.
a and b are drawn from normal distribution, they are parameter related to
survival time.
Given a feature vector x, the model makes predictions via the posterior
predictive distribution:
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Tutorial Outline
Basic Concepts

Statistical Methods

Machine Learning Methods 

Related Topics
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Machine Learning Methods
Basic ML Models

Survival Trees
Bagging Survival Trees
Random Survival Forest

Support Vector Regression
Deep Learning
Rank based Methods

Advanced ML Models
Active Learning
Multi-task Learning
Transfer Learning
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Survival Tree
Survival trees is similar to decision tree which is built by recursive
splitting of tree nodes. A node of a survival tree is considered
“pure” if all the patients in the node survive for an identical span of
time.

The logrank test is most commonly used dissimilarity measure that
estimates the survival difference between two groups. For each
node, examine every possible split on each feature, and then
select the best split, which maximizes the survival difference
between two children nodes.

LeBlanc, M. and Crowley, J. (1993). Survival Trees by Goodness of Split. Journal of the American Statistical 
Association 88, 457–467.
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Logrank Test

ࢇ࢘ࢍࢄ ൌ
∑ ࢊ െ ࢘ ൈ ࡷ࢘/ࢊ
ୀ



∑
࢘ሺࢊ࢘࢘ െ ሻࢊ

࢘ሺ࢘ െ ሻ
ࡷ
ୀ

 the numerator is the squared sum of deviations between the observed
and expected values. The denominator is the variance of the ݀
(Patnaik ,1948).

 The test statistic, ܺ
ଶ , gets bigger as the differences between the

observed and expected values get larger, or as the variance gets smaller.
 It follows a ࣲଶ distribution asymptotically under the null hypothesis.

The logrank test is obtained by constructing a (2 X 2) table at each distinct
death time, and comparing the death rates between the two groups,
conditional on the number at risk in the groups. Let ,ଵݐ … , represent	ݐ the ܭ
ordered, distinct death times. At the ݆-th death time, we have the following:

Segal, Mark Robert. "Regression trees for censored data." Biometrics (1988): 35-47.
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Bagging Survival Trees

- Draw B bootstrap samples from the original data.
- Grow a survival tree for each bootstrap sample based on all features.

Recursively spitting the node using the feature that maximizes survival
difference between daughter nodes.

- Compute the bootstrap aggregated survival function for a new observation
ܺ௪.

Bagging Survival 
Tree

Bagging
Survival 

Trees

Hothorn, Torsten, et al. "Bagging survival trees." Statistics in medicine 23.1 (2004): 77-91.

Bagging 
Survival 

Trees

The samples in the selected 
leaf node of 1-st Tree

The samples in the selected 
leaf node of B-th Tree

…

Build K-M curve
An aggregated 

estimator of ܵሺ |ܺ௪)

࢝ࢋࢄ
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Random Survival Forests

1. Draw B bootstrap samples from the original data (63% in the bag data,
37% Out of bag data(OOB)).

2. Grow a survival tree for each bootstrap sample based on randomly
select  candidate features, and splits the node using feature from the
selected candidate features that maximizes survival difference between
daughter nodes.

3. Grow the tree to full size, each terminal node should have no less than
݀  0 unique deaths.

4. Calculate a Cumulative Hazard Function (CHF) for each tree. Average
to obtain the bootstrap ensemble CHF.

5. Using OOB data, calculate prediction error for the OOB ensemble CHF.

Random 
Forests

Survival 
Tree RSF

H. Ishwaran, U. B. Kogalur, E. H. Blackstone and M. S. Lauer, “Random Survival Forests”. Annals of 
Applied Statistics, 2008
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Random Survival Forests
The cumulative hazard function (CHF) in random survival forests is 
estimated via Nelson-Aalen estimator:

ܪ ݐ ൌ 
݀,
,௧,ழ௧ݎ

where ݐ, is the ݈-th distinct event time of the samples in leaf ݄, ݀, is the      
number events at ݐ,, and ݎ, is the number of individuals at risk at ݐ,.

OOB ensemble CHF ∗∗ܪ) ݐ ݔ ) and bootstrap ensemble CHF (ܪ∗ ݐ ݔ )

∗∗ܪ ݐ ݔ ൌ
∑ ሻݔ|ݐ∗ሺܪ,ܫ
ୀଵ
∑ ,ܫ
ୀଵ

, 											 ∗ܪ ݐ ݔ ൌ
1
ሻݔ|ݐ∗ሺܪܤ



ୀଵ

where ܪ∗ሺݔ|ݐሻ is the CHF of the node in b-th bootstrap which ݔ belongs to. 
,ܫ ൌ 1 if i is an OOB case for b; otherwise, set ܫ, ൌ 0. Therefore OOB 
ensemble CHF is the average over bootstrap samples which i is OOB, and 
bootstrap ensemble CHF is the average of all B bootstrap.

O. O. Aalen, “Nonparametric inference for a family of counting processes”, Annals of Statistics 1978.
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Support Vector Regression (SVR)
Once a model has been learned, it can be applied to a new instance 
ܺ through

is a kernel, and the SVR algorithm can abstractly be 
considered as a linear algorithm

margin of error :ߝ	
C: regularization parameter

: slack variables
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Support Vector Approach for Censored Data

)( ixfiI iU

),),(( iii UIxfc

Graphical representation of Loss functions

)( ixfiI iU

),),(( iii UIxfc

SVR loss         SVRC loss in general            SVRC loss for right
censored

ݑ ൌ ∞

Interval Targets: These are samples for which we have both an upper and a 
lower bound on the target. The tuple (ݔ,݈, ݕ ) withݑ െ ߝ ൌ ݈< ݑ ൌ ݕ    .ߝ
As long as the output ݂ሺݔሻ is between ݈ and ݑ, there is no empirical error. 
Right censored sample is written as (ݔ, ݈ ∞) whose survival time is 
greater than ݈ ∈ Թ, but the upper bound is unknown. 

P. K. Shivaswamy, W. Chu, and M. Jansche. "A support vector approach to censored targets”, ICDM 2007.



68

Support Vector Regression for Censored Data 
A graphical representation of the SVRc parameters for events.

Graphical representation of the SVRc parameters for censored data. 

Greater acceptable margin when the predicted 
value is greater than the censored time

Less penalty rate when the predicted value is 
greater than the censored time

The possible survival time of censored instances 
should be grater than or equal to the corresponding 
censored time.

Lesser acceptable margin when the predicted 
value is grater than the event time
Greater penalty rate when the predicted value is 
greater than the censored time

Predicting a high risky patient will survive longer is 
more gangrenous than predicting a low risky patient 
will survive shorter

F. M. Khan and V. B. Zubek. "Support vector regression for censored data (SVRc): a novel tool for survival 
analysis." ICDM 2008
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Neural Network Model

Hidden layer takes softmax ݃ሺݔ, ሻݓ as active function.

D. Faraggi and R. Simon. "A neural network model for survival data." Statistics in medicine, 1995.

Softmax
function

ଵݔ

ଶݔ

ݔ

1

. . .

ܾ

Input layer Hidden layer Output layer

Cox Proportional
Hazards Model

࢝ ൌ െ  ݃ ,࢞ ࢝  ࢍ
ୀࡰ:

 ࢞ࢋ ݃ ,࢞ ࢝
࢚ஹ࢚:

No longer to be a linear function
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Deep Survival: A Deep Cox Proportional Hazards Network

Takes some modern deep learning techniques such as Rectified 
Linear Units (ReLU) active function, Batch Normalization, dropout.

Katzman, Jared, et al. "Deep Survival: A Deep Cox Proportional Hazards Network." arXiv , 2016.

ଵݔ

ଶݔ

ݔ

1

. . .

ܾଵ
Input layer Hidden layers

Output layer

Cox Proportional
Hazards Model

. . .

ܾ

. . .

 ࢝ ൌ െ  ࢚࢙ࢇࢎ ,࢞ ࢝  ࢍ
ୀࡰ:

 ࢞ࢋ ࢚࢙ࢇࢎ ,࢞ ࢝
࢚ஹ࢚:

No longer to be a linear function



71

Deep Convolutional Neural Network

:ݔ image patch from ݅-th patient
:ݓ the deep model

X. Zhu, J. Yao, and J. Huang. "Deep convolutional neural network for survival analysis with pathological images“, BIBM 2016.

Pos: Directly built deep model for survival analysis from images input

 ࢝ ൌ െ  ࢚࢙ࢇࢎ ,࢞ ࢝  ࢍ
ୀࡰ:

 ࢞ࢋ ࢚࢙ࢇࢎ ,࢞ ࢝
࢚ஹ࢚:

No longer to be a liner 
function
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Ranking based Models
C-index is a pairwise ranking based evaluation metric. Boosting 
concordance index (BoostCI) is an approach which aims at directly optimize 
the C-index.

is the kaplan-Meier estimator, and as the existence of ܫ · the above 
definition is non-smooth and nonconvex, which is hart to optimize. 

In BoostCI, a sigmoid function is used to provide a smooth approximation 
for indicator function. 

Therefore, we have the smoothed version 

weights

A. Mayr and M. Schmid, “Boosting the concordance index for survival data–a unified framework to derive and evaluate 
biomarker combinations”, PloS one, 2014.
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BoostCI Algorithm
The component-wise gradient boosting algorithm is used to 
optimize the smoothed C-index. 

Learning Step:

1. Initialize the estimate of the marker combination ݕො with offset values, 
and set maximum number (݉௫) of iteration, and set ݉ ൌ 1.

2. Compute the negative gradient vector of smoothed C-index.
3. Fit the negative gradient vector separately to each of the components of 

ܺ via the base-learners ܾሺܺሺ:,ሻሻ.

4. Select the component that best fits the negative gradient vector, and the 
selected index of base-learn is denote as ݈∗

5. Update the marker combination ݕො for this component

6. Stop if ݉ ൌ ݉௫. Else increase ݉ by one and go back to step 2

ොሾሿݕ ← ොሾାଵሿݕ  ߙ ܾ∗ሺܺሺ:,∗ሻሻ.



74

Machine Learning Methods
Basic ML Models

Survival Trees
Bagging Survival Trees
Random Survival Forest

Support Vector Machine
Deep Learning
Rank based Methods

Advanced ML Models
Active Learning
Multi-Task Learning
Transfer Learning
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Active Learning for Survival Data
Objective: Identify the representative samples in the data

Active learning based framework for the survival regression using a novel 
model discriminative gradient based sampling procedure.

Helps clinicians to understand more about the most representative patients.

B. Vinzamuri, Y. Li, C. Reddy, "Active Learning Based Survival Regression for Censored Data", CIKM 2014. 










K
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Outcome: Allow the Model to select instances 
to be included. It can minimize the training 
cost and complexity of the model and obtain a 
good generalization performance for Censored 
data.

Our sampling method chooses that particular 
instance which maximizes the following 
criterion.
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EHR 
features(X)

Censored 
Status(δ)

Time to 
Event(T)

Column 
wise kernel 
matrix(Ke)

Partial log 
likelihood L(β)

Compute 
Gradient 
δL(β)/ δβ

Output 
Survival AUC 
and RMSE

Unlabelled
Pool (Pool)

Domain Expert 
(Oracle)Train Cox Model

Elastic Net 
Regularization

Gradient Based 
Discriminative 

Sampling

End of active 
learning 
rounds

Labelling 
request for 

instance

Update 
Training 

data

Active Learning with Censored Data
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Multi‐task Learning Formulation

Y 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 0 0 0
2 1 1 1 1 1 ? ? ? ? ? ? ?
3 1 1 1 1 1 1 1 1 1 1 ? ?
4 1 1 1 0 0 0 0 0 0 0 0 0

0 6 12
Month

1

4

3

2

 Similar tasks: All the binary classifiers aim at predicting the life status 
of each patient.

 Temporal smoothness:  For each patient, the life statuses of adjacent 
time intervals are mostly same.

 Not reversible: Once a patient is dead, he is impossible to be alive 
again. 

1: Alive 0: Death                 ?: Unknown

Advantage: The model is general, no assumption on either survival 
time or survival function. 

pa
tie

nt



78

Multi‐task Learning Formulation
Y 1 2 3 4 5 6 7 8 9 10 11 12

D1 1 1 1 1 1 1 1 1 1 0 0 0
D2 1 1 1 1 1 ? ? ? ? ? ? ?
D3 1 1 1 1 1 1 1 1 1 1 ? ?
D4 1 1 1 0 0 0 0 0 0 0 0 0

How to deal with the “?” in Y

W 1 2 3 4 5 6 7 8 9 10 11 12
D1 1 1 1 1 1 1 1 1 1 1 1 1
D2 1 1 1 1 1 0 0 0 0 0 0 0
D3 1 1 1 1 1 1 1 1 1 1 0 0
D4 1 1 1 1 1 1 1 1 1 1 1 1

The Proposed objective function:

min
∈

1
2 Πௐሺܻ െ ሻܤܺ ி

ଶ 
ଵߣ
2 ܤ ி

ଶ  ଶߣ ܤ ଶ,ଵ

Where 

ሺΠௐሺܷሻሻൌ ൝ ܷ ݂݅ ܹ ൌ 1
0 ݂݅ ܹ ൌ 0

Yan Li, Jie Wang, Jieping Ye and Chandan K. Reddy “A Multi-Task Learning Formulation for Survival Analysis". KDD 2016

Y and ܻ should follow a non-negative non-increasing list structure
ܲ ൌ ሼܻ  0, ܻ  ܻ|݆  ݈, ∀݆ ൌ 1,… , ݇, ∀݈ ൌ 1,… , ݇ሽ

Similar tasks: select some common features across all the task via ݈ଶ,ଵ-norm.

Handling 
Censored

Temporal smoothness & Irreversible:
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௧ାଵܯ ൌ min
ெ∈

ଵ
ଶ
Πௐሺܻ െ ሻܯ ி

ଶ  ఘ
ଶ
ܯ െ ௧ܤܺ  ௧ݑ ி

ଶ

௧ାଵܤ ൌ min
∈Թൈೖ

ଵߣ
2 ܤ ி

ଶ  ଶߣ ܤ ଶ,ଵ 
ߩ
2 ௧ାଵܯ െ ܤܺ  ௧ݑ ி

ଶ

௧ାଵݑ ൌ ௧ݑ  ௧ାଵܯ െ ௧ାଵܤܺ

Multi‐task Learning Formulation
min
ெ∈

1
2 Πௐሺܻ െܯሻ ி

ଶ 
ଵߣ
2 ܤ ி

ଶ  ଶߣ ܤ ଶ,ଵ

Subject to: ܯ ൌ ܤܺ

ADMM:

min
∈Թൈೖ

1
2 Πௐሺܻ െ ሻܤܺ ி

ଶ 
ଵߣ
2 ܤ ி

ଶ  ଶߣ ܤ ଶ,ଵ

Solving the ,‐norm by using FISTA algorithm

Solving the non‐negative non‐increasing list structure by max‐heap projection

An adaptive variant model
Too many time intervals, non-negative non-increasing list will be so 
strong that will overfit the model. Relaxation of the above model: 
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Multi‐Task Logistic Regression
Model survival distribution via a sequence of dependent regressions.
Consider a simpler classification task of predicting whether an individual 
will survive for more than ݐ months. 

C. Yu et al. "Learning patient-specific cancer survival distributions as a sequence of dependent regressors." NIPS 2011.

Consider a serious of time points (ݐଵ, ,ଶݐ ,ଷݐ … ,  ), we can get a series ofݐ
logistic regression models

The model should enforce the dependency of the outputs by predicting the 
survival status of a patient at each of the time snapshots, let 
,ଵݕ) ,ଶݕ ,ଷݕ … , ݕ ) whereݕ ൌ 0 (no death event yet ), and ݕ ൌ 1 (death) 
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Multi‐Task Logistic Regression

A very similar idea as cox model:

exp ∑ ߚݔ :,  ܾ
ୀାଵ ൌ exp ∑ ݕ ߚݔ :,  ܾ

ୀାଵ with ݕ ൌ 1	∀	݈ ൌ
݅  1,… , ݇.  

is the score of sequence with the event occurring in the interval 
ሾݐ,  ାଵሻ. But different from cox model the coefficient is different inݐ
different time interval. So no proportional hazard assumption.

For censored instances: 

The numerator is the score of the death will happen after ݐ

In the model add ∑ ߚ :,ାଵ െ ߚ :,
ଶିଵ

ୀ regularization term to 
achieve temporary smoothness.
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Knowledge Transfer 
Transfer learning models aim at using auxiliary data to 
augment learning when there are insufficient number of training 
samples in target dataset.

Traditional Machine 
Learning

Transfer Learning

training items

Learning System Learning System

Learning System

Learning SystemKnowledge

× Similar but
not the 
same
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Transfer Learning for Survival Analysis

Source data   

Target data

X B

… Source Task

Target Task
• Both source and target tasks are survival analysis problem.
• There exist some features which are important among all correlated disease. 
Yan Li, Lu Wang, Jie Wang, Jieping Ye and Chandan K. Reddy "Transfer Learning for Survival Analysis via Efficient L2,1-norm 
Regularized Cox Regression". ICDM 2016.

Labeling the time-to-event data is very time consuming!

How long ? Event of interestHistory information 

TCGA
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Transfer‐Cox Model
The Proposed objective function:

min
ఉೄ,ఉ

1
ௌܰ
݈ௌ ௌߚ 

ݓ
்ܰ

்݈ ்ߚ 
ߤ
2 ܤ ி

ଶ  ߣ ܤ ଶ,ଵ

Where ߚௌ, ݈ௌ ௌߚ ்݈ and ,்ߚ , ்ߚ denote the coefficient 
vector and negative partial log-likelihood,

݈ ߚ ൌ ݊ିଵെ


ୀଵ
ܺ
ߚ்  log 	݁ݔ ܺ

்β 	
ఢோᵢ

,

of source take and target take, respectively. And ܤ ൌ
,ௌߚ ்ߚ .

• L2,1 norm can encourage group sparsity; therefore, it 
selects some common features across all the task.

• We propose a FISTA based algorithm to solve the 
problem with a linear scalability.
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Using Strong Rule in Learning Process
Theorem: Given a sequence of 
parameter values ߣ௫ ൌ ߣ 
ଵߣ  ⋯  ߣ and suppose the 
optimal solution ܤሺ݇ െ 1ሻ at ߣିଵ is 
known. Then for any ݇ ൌ 1, 2, … ,m
the ݆௧ feature will be discarded if

݃ᇱሺܤሺ݇ െ 1ሻሻ ଶ
൏ ߣ2 െ ିଵߣ

and the corresponding coefficient 
ሺ݇ሻܤ will be set to 0

Let B=0, Calculate ߣ௫=  ߣ

Let K=k+1, Calculate ߣ

Discard inactive features 
based on Theorem

Using FISTA algorithm 
update result

Check KKT condition Update selected 
active features

All selected 
feature 

obey KKT

Record optimal 
solution ܤሺ݇ሻ
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Summary of Machine Learning Methods

Basic ML Models
Survival Trees

Bagging Survival Trees
Random Survival Forest

Support Vector Regression
Deep Learning
Rank based Methods

Advanced ML Models
Active Learning
Multi-Task Learning
Transfer Learning
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Tutorial Outline
Basic Concepts

Statistical Methods

Machine Learning Methods 

Related Topics
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Survival Analysis 
Methods

Non-Parametric

Kaplan-Meier

Nelson-Aalen

Life-Table

Semi-Parametric

Basic Cox-PH

Penalized Cox

Time-Dependent 
Cox

Cox Boost

Lasso-Cox

Ridge-Cox

EN-Cox

OSCAR-Cox
Cox Regression

Parametric

Linear Regression

Accelerated 
Failure Time

Tobit

Buckley James

Panelized 
Regression

Weighted 
Regression

Structured 
Regularization

Machine 
Learning

Survival Trees

Ensemble

Advanced Machine 
Learning

Bayesian 
Network

Naïve Bayes
Bayesian 
Methods

Support Vector 
Machine

Random Survival 
Forests

Bagging Survival 
Trees

Active Learning

Transfer 
Learning

Multi-Task 
Learning

Early Prediction

Data 
Transformation

Complex Events

Calibration

Uncensoring

Related Topics

Taxonomy of Survival Analysis Methods
Statistical Methods

Neural Network

Competing 
Risks

Recurrent 
Events
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Related Topics
Early Prediction

Data Transformation

Uncensoring

Calibration

Complex Events

Competing Risks

Recurrent Events
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Early Stage Event Prediction
Su

bj
ec

ts

S1

S5

S4

S3

S2

S6

tc tfTime

M. J Fard, P. Wang, S. Chawla, and C. K. Reddy, “A Bayesian perspective on early stage event prediction in longitudinal data”, 
TKDE 2016. 

Any existing survival model can predict only until tc
Develop a Bayesian approach for early stage prediction.

Collecting data for survival analysis is very “time” consuming.
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Bayesian Approach

Naïve Bayes (NB) Tree-Augmented 
Naïve Bayes (TAN)

Bayesian Networks 
(BN)
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Percentage of  available event occurrence information 
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Early Stage Prediction
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Data Transformation
Two data transformation techniques that will be useful 
for data pre-processing in survival analysis. 

Uncensoring approach
Calibration

Transform the data to a more conducive form so that 
other survival-based (or sometimes even the standard 
algorithms) can be applied effectively.
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Uncensoring Approach
The censored instances actually have partial informative 
labeling information which provides the possible range of 
the corresponding true response (survival time). 
Such censored data have to be handled with special 
care within any machine learning method in order to 
make good predictions. 
Two naive ways of handling such censored data:

Delete the censored instances.
Treating censoring as event-free.
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Uncensoring Approach I
For each censored instance, estimate the probability of event and probability 
of being censored (considering censoring as a new event) using Kaplan-
Meier estimator. Give a new class label based on these probability values. 

M. J Fard, P. Wang, S. Chawla, and C. K. Reddy, “A bayesian perspective on early stage event prediction in longitudinal data”, 
TKDE 2016. 

Probability of un-censoringProbability of survival

Probability of event Probability of censoring

ܨ  ܨ Event-freeEvent

መܵ ݐ ൌ ෑ ሺ1 െ
݀
݊
ሻ

:௧  ழ௧	
ܩ ݐ ൌ ෑ 1െ

݀∗

݊:௧ሺሻழ௧

ܨ ݐ ൌ 1 െ መܵ ݐ ܨ ݐ ൌ 1 െ ܩ ݐ

Yes No
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Uncensoring Approach II
Group the instances in the given data into three categorizes: 

(i) Instances which experience the event of interest during the 
observation will be labeled as event. 
(ii) Instances whose censored time is later than a predefined time 
point are labeled as event-free.
(iii) Instances whose censored time is earlier than a predefined 
time point, 

A copy of these instances will be labeled as event.
Another copy of the same instances will be labeled as event-free.
These instances will be weighted by a marginal probability of event 
occurrence estimated by the Kaplan-Meier method.

B. Zupan, J. DemsAr, M. W. Kattan, R. J. Beck, and I. Bratko, “Machine learning for survival analysis: a case study on recurrence 
of prostate cancer”, Artificial intelligence in medicine, 2000. 
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Calibration
Motivation

Inappropriately labeled censored instances in survival data cannot 
provide much information to the survival algorithm.
The censoring depending on the covariates may lead to some bias
in standard survival estimators. 

Approach - Regularized inverse covariance based imputed censoring
Impute an appropriate label value for each censored instance, a 
new representation of the original survival data can be learned 
effectively.
It has the ability to capture correlations between censored 
instances and correlations between similar features. 
Estimates the calibrated time-to-event values by exploiting row-
wise and column-wise correlations among censored instances for 
imputing them.

B. Vinzamuri, Y. Li, and C. K Reddy, “Pre-processing censored survival data using inverse covariance matrix based 
calibration”, TKDE 2017. 
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Complex Events
Until now, the discussion has been primarily focused on 
survival problems in which each instance can experience only 
a single event of interest. 
However, in many real-world domains, each instance may 
experience different types of events and each event may 
occur more than once during the observation time period. 

Since this scenario is more complex than the survival 
problems discussed so far, we consider them to be complex 
events. 

Competing risks
Recurrent events
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Stratified Cox Model
The stratified Cox model is a modification of the regular Cox model 
which allows for control by stratification of the predictors which do 
not satisfy the PH assumption in Cox model.

Variables ܼଵ, ܼଶ, … , ܼ do not satisfy the PH assumption.
Variables ଵܺ, ܺଶ, … , ܺ satisfy the PH assumption.

Create a single new variable ܼ∗:
(1) categorize each ܼ; (2) form all the possible combinations of categories;
(3) the strata are the categories of ܼ∗.

The general stratified Cox model will be:
݄ ,ݐ ܺ ൌ ݄ሺtሻ ൈ exp	ሾβଵ ଵܺ  ଶܺଶߚ  ⋯ ܺሿߚ

where ݃ ൌ 1,2,⋯ , ݇∗, strata defined from ܼ∗.
The coefficients are estimated by maximizing the partial likelihood
function obtained by multiplying likelihood functions for each strata.

Can be different for each strata Coefficients are the same for each strata
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Competing Risks
The competing risks will only exist in survival problems with 
more than one possible event of interest, but only one event 
will occur at any given time. 

In this case, competing risks are the events that prevent an 
event of interest from occurring which is different from 
censoring. 

In the case of censoring, the event of interest still occurs at 
a later time, while the event of interest is impeded.

Cumulative Incidence Curve (CIC) and Lunn-McNeil (LM)

Alive

Kidney Failure

Heart Disease

Stroke
Death

Other Diseases
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Cumulative Incidence Curve (CIC)
The cumulative incidence curve is one of the main approaches 
for competing risks which estimates the marginal probability of 
each event ݍ. The CIC is defined as

ܥܫܥ ݐ ൌ  መܵ ିଵݐ ݄ ݐ ൌ  መܵ ିଵݐ
݊
݊:௧ೕஸ௧:௧ೕஸ௧

where 
݄ ݐ 	represents the estimated hazard at time ݐ for event ݍ.

݊	is the number of events for the event ݍ at ݐ.

݊ denotes the number of instances who are at the risk of 
experiencing events at ݐ.

መܵ ିଵݐ 	denotes the survival probability at last time point ݐିଵ.

H. Putter, M. Fiocco, and R. B. Geskus, “Tutorial in biostatistics: competing risks and multi-state models”, Statistics in 
medicine, 2007. 
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Lunn‐McNeil (LM)
Lunn-McNeil fits a single Cox PH model which considers all the events 
,ଵܧ) Eଶ, … , Eୡ) in competing risks rather than separate models for each 
event.
LM approach is implemented using an augmented data, in which a dummy 
variable is created for each event to distinguish different competing risks.

M. Lunn and D. McNeil, “Applying Cox regression to competing risks”, Biometrics, 1995.

ID Time Status ࡱ ࡱ … ࢉࡱ ࢄ … ࡼࢄ

i ݐ ଵߜ 1 0 … 0 ଵܺଵ … ଵܺ

i ݐ ଶߜ 0 1 … 0 ଵܺଵ … ଵܺ

… … … … … … … … … …
i ݐ ߜ 0 0 … 1 ଵܺଵ … ଵܺ

The augmented data for the ࢎ࢚ subject at time ࢚.

Dummy variables FeaturesOnly one of them 
equals to 1.
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Recurrent Events
In many application domains, the event of interest can occur for 
each instance more than once during the observation time 
period. 

In survival analysis, we refer to such events which occur more 
than once as recurrent events, which is different from the 
competing risks. 

If all the recurring events for each instance are of the same 
type.
 Method: counting process (CP) algorithm.
If there are different types of events or the order of the 
events is the main goal.
 Method:  methods using stratified Cox (SC) approaches, 

including stratified CP, Gap Time and Marginal approach. 
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Software Resources
Algorithm Software Language Link
Kaplan-Meier

survival R https://cran.r-project.org/web/packages/survival/index.htmlNelson-Aalen

Life-Table

Basic Cox
survival R https://cran.r-project.org/web/packages/survival/index.html

TD-Cox

Lasso-Cox

fastcox R https://cran.r-project.org/web/packages/fastcox/index.htmlRidge-Cox

EN-Cox

Oscar-Cox RegCox R https://github.com/MLSurvival/RegCox

CoxBoost CoxBoost R https://cran.rproject.org/web/packages/CoxBoost/

Tobit survival R https://cran.r-project.org/web/packages/survival/index.html

BJ bujar R https://cran.rproject.org/web/packages/bujar/index.html

AFT survival R https://cran.r-project.org/web/packages/survival/index.html



105

Software Resources
Algorithm Software Language Link

Baysian Methods BMA R https://cran.rproject.org/web/packages/BMA/index.html

RSF randomForestSRC R https://cran.rproject.org/web/packages/randomForestSRC/

BST ipred R https://cran.rproject.org/web/packages/ipred/index.html

Boosting mboost R https://cran.rproject.org/web/packages/mboost/

Active Learning RegCox R https://github.com/MLSurvival/RegCox

Transfer Learning TransferCox C++ https://github.com/MLSurvival/TransferCox

Multi-Task
Learning MTLSA Matlab https://github.com/MLSurvival/MTLSA

Early Prediction
ESP R https://github.com/MLSurvival/ESP

Uncensoring

Calibration survutils R https://github.com/MLSurvival/survutils

Competing Risks survival R https://cran.r-project.org/web/packages/survival/index.html

Recurrent Events survrec R https://cran.r-project.org/web/packages/survrec/
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Thank You
Questions and Comments

Feel free to email questions or suggestions to

reddy@cs.vt.edu

http://www.cs.vt.edu/~reddy/


