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ABSTRACT
Increasing amounts of biological data from various sources
are being made available by high-throughput genomic tech-
nologies. However, no single biological data source analysis
can fully unravel the complexities of the hierarchical gene
function prediction. Therefore, the integration of multiple
data sources is required to acquire a more precise under-
standing of the role of genes in the living organisms. In
this paper, we develop a Hierarchical Bayesian iNtegration
algorithm, HiBiN, a general framework that uses Bayesian
reasoning to integrate heterogeneous data sources for ac-
curate gene function prediction. The system uses poste-
rior probabilities to assign class memberships to samples
using multiple data sources while maintaining the hierar-
chical constraint that governs the annotation of genes. We
demonstrate that the integration of the diverse datasets sig-
nificantly improves the classification quality for hierarchi-
cal gene function prediction in terms of several measures,
compared to single-source prediction models and fused-flat
model, which are the baselines we compared against.

Categories and Subject Descriptors
J.3.1 [Computer Applications]: Life and Medical Science
- biology and genetics; I.5.2 [Design Methodology]: [Clas-
sifier design and evaluation].

General Terms
Bioinformatics, Machine Learning, Algorithms.

Keywords
Data integration, gene function prediction, hierarchical multi-
label classification.

1. INTRODUCTION
Diverse high-throughput genomic data are becoming widely

available. Since the functions of a significant number of
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genes are still unknown, such high throughput data can play
a vital role in assigning accurate functional annotations on
large-scale through computational prediction. Providing ac-
curate predictions can advance experimental studies by pro-
viding specific hypothesis for targeted experimental testing
[13]. Learning reliable classification models from a single
dataset is often hard due to several complex issues includ-
ing noise in the data, low relevance of the dataset for some
functional classes and an insufficient number of training ex-
amples for building accurate classification models [9].

Several issues have contributed to the complexity of the
gene functional classification problem. First, a gene may
have multiple class labels. The functional classes are related
to each other in a tree or a graph structure (Gene Ontol-
ogy(GO) [4] or MIPS’s FunCat taxonomy [11]). This leads
to the second challenge which is known as the hierarchy con-
straint. In other words, annotating a gene to a given class
is automatically transferred to all of its ancestors. Third, as
the specificity of the functional classes increases, less num-
ber of genes are annotated to the more specific functions,
this issue is known as the class imbalance problem. Finally,
functionally-similar genes may have huge diversity on their
measurements through various datasets. To the best of our
knowledge, there is no existing work that handles all of the
above challenges in a unified framework.

To address the above challenges and to improve hierarchi-
cal gene function prediction from diverse functional data, we
propose Hierarchical Bayesian iNtegration algorithm (Hi-
BiN ), a probabilistic framework for integrated analysis of
multiple heterogeneous biological data. The major contri-
butions of our new scheme can be summarized as follows:

1. To handle the problem of source diversity, the pro-
posed framework integrates multiple heterogeneous data
sources to characterize the genes effectively.

2. To predict multi-labels for genes, the HiBiN algorithm
allows the prediction of more than one functional class
for each gene.

3. To maintain the hierarchy constraint, the parent-child
inter-relationships are exploited during the training
and the testing phases. More specifically, HiBiN filters
out unsuitable genes from percolating to lower levels
in the hierarchy.

4. To handle the class imbalance issues, the positive and
negative examples for each classifier are chosen based
on the hierarchical taxonomy of the classes.

ACM-BCB 11 376



(a) Flat (b) Hierarchical

Figure 1: Flat classification vs hierarchical classification.

2. RELATED WORK

2.1 Single Source Gene Function Prediction
There are two approaches for gene function classifier train-

ing: a) Flat approach, where a classifier for each gene func-
tion is learned independently (Figures 1(a)) and (b)) Hi-
erarchical approach, where the relationships between gene
functions are integrated for gene function classifier training
(Figure 1(b)). The flat classification approach may lead to
hierarchically inconsistent predictions. On the other hand,
the hierarchical approach [1, 2] identifies the relevant posi-
tive and negative examples for each class according to the
hierarchy. In most of the existing work, a separate binary
classifier is learned for each class in the hierarchy.

2.2 Integration of Heterogeneous Data Sources
The value of integrating knowledge obtained from various

sources has been illustrated by several studies. Troynskaya
et al. [13] proposed MAGIC framework that considers the
outputs of several clustering methods applied on each data
source separately and incorporates the knowledge of yeast
biology experts in the prior probabilities of the Bayesian
framework. Marcotte et al. [8] predicted a number of protein
functions for Saccharomyces cerevisiae based on a heuris-
tic combination of different data types. However, since the
confidence levels of protein-protein links are defined on a
case-by-case basis, the data sources are combined in a semi-
manual and heuristic fashion. Functional linkage networks
[3], kernel fusion [7], vector space integration [10] and ensem-
ble systems are other approaches that have been proposed
to deal with the data integration problem.
Limitations of the existing methods: the above dis-

cussed approaches focus either on discovering interacting
sets of proteins only or on integrating multiple sources of
data without taking into account the hierarchical relation-
ships between the functional classes. As a consequence,
blindly applying these data integration approaches to the
hierarchical gene function prediction domain leads to seri-
ous inconsistencies due to the violation of the hierarchy con-
straint governing the functional annotations of genes in GO
and FunCat taxonomies. The proposed method overcomes
the above limitations.

3. THE PROPOSED FRAMEWORK
Let G = ℜd be the d-dimensional input space of genes and
Y = {y1, y2, ..., yL} be the set of L labels. The hierarchical
relationships are defined as follows: Given y1, y2 ∈ Y, y1 is
the ancestor of y2, denoted by (↑ y2) = y1, if and only if

y1 is a superclass of y2. We denote by (↓ y1) = y2, the
set of children classes of class y1. The set of labels L are
structured according to a hierarchical structure T (in our
case according to a FunCat tree). A gene g is represented
with a vector of d different features.

Let a training set M = {< g1,Y1 >, ..., < gN ,YN >},
where gi ∈ G is a feature vector for gene i and Yi ⊆ Y is
the set of labels associated with gi, such that yi ∈ Yi ⇒
y′i ∈ Yi, ∀(↑ y′i) = yi. A gene, g, is assigned to one or more
functional classes. The assignments are represented through
a vector fg = (y1, y2, ..., yL) ∈ {0, 1}L, where yi = 1 if the
gene g is annotated with class yi, while yi = 0 otherwise.

3.1 Boosting Classifiers
ADABOOST.MH [12] is a popular multi-class variant of

the AdaBoost algorithm. The algorithm works by transfer-
ring a multi-class problem into a binary classification prob-
lem by replicating positive instances for the given class labels
based on hamming loss [6]. ADABOOST.MH algorithm is
presented in detail in [12]. AdaBoost calls a weak learner re-
peatedly in a series of iterations. At each iteration, s, a weak
learner is called to generate a weak hypothesis ϕ̂s. In each
iteration, a distribution of weights, D, is updated so that
the new classifier focuses more on the incorrectly classified
instances. After finishing all the iterations, the final hypoth-
esis is generated by summing up all of the weak hypothesis,
ϕ̂(g, y) =

∑S
s=1 ϕ̂s(g, y) for y ∈ Y = {y1, y2, ..., ym}.

Adaboost minimizes E(e−cϕ̂(g,y)) at ϕ̂(g, y) = 1
2
log P (y=1|g)

P (y=−1|g) .

Hence,

P (g|y = 1) =
eϕ̂(g,y)

e−ϕ̂(g,y) + eϕ̂(g,y)
(1)

P (g|y = −1) = e−ϕ̂(g,y)

e−ϕ̂(g,y) + eϕ̂(g,y)
(2)

Equations 1 and 2 give a number between 0 and 1 that
is associated with the likelihood that the gene (gi) from
dataset j is annotated with label k, p(gi,Mj |yk), where
i ∈ {1, ..., N}, j ∈ {1, ..., Q} and k = 1, ...,L classes.

3.2 Hierarchical Training and Testing Schemes
The classifier at each class will only be presented with ex-

amples that are positive at the parent class of the current
class. Hence, the reached examples are positive examples to
the current class and/or to the siblings of that class. The
training for each classifier is performed by feeding as nega-
tive training examples, the positive examples at the parent
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of the current that are not positive examples at the current
class. It should be noted that the selected negative train-
ing examples are the most informative negative examples for
training. The testing phase follows the same procedure.

3.3 Bayesian Integration and Classification
For our experiments, the probabilities obtained from boost-

ing classifiers are the likelihood of observing gene i (gi) as-
sociated with dataset j given a specific class. However, the
posterior probability is the one of the primary interest:

P (yk|gi,Mj) =
P (gi,Mj |yk).P (yk)∑m
k=1 P (gi,Mj |yk).P (yk)

(3)

Thus, for each sample, a set of probabilities are obtained
which sum to one.
Bayes formula can be used to integrate and compute pos-

terior probabilities for multiple datasets. With the assump-
tion that each dataset is independent but describe the same
genes, the integrated likelihood is computed as the product
of the individual likelihoods:

P (gi,M1, ...,MQ|yk) = P (gi,M1|yk)× ...× P (gi,MQ|yk)
(4)

Given that the datasets share common genes, the datasets
can have some correlation. The probability of a particular
gene is given by

P (yk|gi,M1, ...,MQ) =

∏Q
j=1[P (gi,Mj |yk)]P (yk)∑m

k=1 [
∏Q

j=1 P (gi,Mj |yk)]P (yk)

(5)

Each non-root class, yj , has a binary classifier ϕ̂j that
is associated with it. The classifier should act as a “filter”
to prevent unsuitable examples from spreading out to the
lower levels in the hierarchy. Hence, only the test genes that
a classifier ϕ̂j decides to belong to yj are passed to all the
binary classifiers corresponding to the children classes of yj .

While the genes that classifier ϕ̂j sees not to belong to yj
are “blocked” and no further analysis is carried out.
HiBiN works by first computing the prior probabilities

for all the classes. Next, the children classes of the current
class are extracted; then ADABOOST.MH is called on these
classes. Then, Bayesian posteriors are calculated for the
children classes of the current class.
To make a decision whether a gene is annotated with a

particular class or not, we compute the posterior probability
for each gene using the following Bayesian decision rule:

Decide yk if P (yk|gi) > P (y
′
k|gi); otherwise decide y

′
k

where y
′
k = 0. The computation of P (y

′
k|gi) is similar to

the computation of P (yk|gi), except that here we compute

the probability of the negative class (y
′
k) and the likelihood

given by P (g|y
′
k = 0).

4. EXPERIMENTS

4.1 Datasets
We demonstrate the performance of HiBiN for the pre-

diction of gene functions in Saccharomyces cerevisiae. Six
different data sources of biomolecular data [14] were in-
tegrated. The datasets include (i) gene expression data
(Gene-Expr), two types of protein domain data; (ii) pro-
tien domain binary data (Pfam-Binary) and (iii) pfam pro-

tein domains with log E values computed by the HMMER
software toolkit (Pfam-LogE), predicted and experimentally
supported protein-protein interaction data from (iv) Von
Mering experiments (PPI-STRING), and from (v) BioGrid
(PPI-BioGRID) and (vi) pairwise sequence similarity data
(Seq-Sim). For the integration purpose, we considered the
genes that are common to all datasets. Moreover, for each
dataset, we selected FunCat annotated genes for the classes
with at least 20 positive examples so that the set of posi-
tive examples used for training is not too small. This yielded
1901 yeast genes annotated to 168 FunCat classes distributed
across 16 trees and 5 hierarchical levels.

4.2 Baseline Methods
We compared our approach to two baseline algorithms:

flat integration and hierarchical single source. In flat in-
tegration, the hierarchy constraint is not taken into con-
sideration when building the classifiers, and the integration
is performed using the same framework we used for HiBiN
method. While the hierarchical single source method is ap-
plied on each dataset separately.

To evaluate HiBiN, we used 3-fold cross validation with
100 boosting iterations. Moreover, we tested two strate-
gies to compute the prior probabilities. In one strategy, we
computed the prior probabilities without considering the hi-
erarchical structure of the classes. In other words, the prior
probabilities are computed by considering the set of anno-
tated genes at each functional label with respect to the to-
tal number of genes. This version of the algorithm is called
HiBiNa, where a stands for all. In the second variation,
the prior probabilities are computed while the hierarchical
scheme of the classes is taken into account. In other words,
the prior probabilities are computed by considering the set
of annotated genes at each functional label with respect to
the number of genes that are annotated with the parent
functional class of the label of interest. This version of the
algorithm is called HiBiNp, where p stands for parent.

4.3 Evaluation Metrics
In order to evaluate our algorithm, we adopted the clas-

sical and the hierarchical performance evaluation measures.
F1 measure considers the joint contribution of both precision
(P) and recall (R). F1 measure is defined as follows:

F1 =
2× P ×R
P +R

=
2TP

2TP + FP + FN
(6)

where TP stands for True Positive, TN for True Negative,
FP for False Positive and FN for False Negative. When
TP=FP=FN=0, we made F1 measure to equal to 1 as the
classifier has correctly classified all the examples as negative
examples [5]. Hierarchical measures are defined as follows:

hP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x)∩ ↑ p|
| ↑ p| (7)

hR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑ c ∩ P (x)|
| ↑ c| (8)

hF =
2× hP × hR
hP + hR

(9)

where hP, hR and hF stands for hierarchical precision,
hierarchical recall and hierarchical F-measure, respectively.
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P (x) is a subgraph formed by the predicted class labels for
the instance x while C(x) is a subgraph formed by the true
class labels for the instance x. p is one of the predicted
class labels and c is one of the true labels for instance x.
l(P (x)) and l(C(x))) are the set of leaves in graphs P (x)
and C(x), respectively. We also computed micro-averaged
hierarchical F-measure (hFµ

1 ) and macro-averaged hierar-
chical F-measure hFM

1 . hFµ
1 is computed by calculating hP

and hR for each path in the tree and then applying Equa-
tion 9. On the other hand, hFM

1 is computed by calculating
hF1 for each path in the hierarchical structure of the classes
independently and then averaging them.

Figure 2: Comparison of the per-level average pre-
cision across the five levels of the FunCat taxon-
omy using flat integration, hierarchical single source
(applied on PPI-BG dataset), HiBiNa and HiBiNp

methods. BG stands for PPI-BioGrid dataset.

The comparison between HiBiN algorithm and the flat
method is based on the “per-class” F1-measure that is ob-
tained by averaging the F1-measure for all the classes in the
FunCat hierarchy for each dataset. In other words, an over-
all F1-measure is obtained by computing the F1-measure for
each class separately and then averaging them across all the
classes. Furthermore, to get more insights into the perfor-
mance of the HiBiN algorithm, we performed a level-wise
analysis of the precision, recall and F1-measure on the base-
lines and the proposed algorithm. In measuring the level-
wise performance, level 1 represents the top level in the hi-
erarchy while level 5 is the deepest level in the hierarchy.

4.4 Results
In our experiments, after preprocessing the datasets as

described above, the prior probabilities are computed for
each label in the FunCat scheme. Prior probabilities are
computed based on the number of positive examples anno-
tated with each label obtained from all the datasets. Next,
boosting classifiers are used to obtain the likelihoods from
the different datasets. Finally, the Bayesian posteriors are
computed to obtain the probabilities that are used to make
the final decision about the classification.
Table 1 summarizes the results of the comparisons of the

average per-class precision, recall and F-measure for the hi-
erarchical single source, flat integration and HiBiN method.
We can observe that HiBiN algorithm brings considerable
improvement over the baselines. In particular, HiBiN out-
performs the baselines in terms of the per-class precision,
recall and F-measure. Comparing the flat integration with

Table 1: Average per-class precision, recall and F-
measure obtained from hierarchical single source (on
each dataset separately), flat integration and HiBiN
methods.

Single Source
Dataset Precision Recall F-measure
PPI-BG 0.5211 0.3176 0.4081

PPI-STRING 0.4882 0.3030 0.3823
Pfam-Binary 0.2977 0.1035 0.3901
Pfam-LogE 0.2244 0.2076 0.3837
Gene-Expr 0.2301 0.2107 0.3805
Seq-Sim 0.2136 0.2074 0.3545

Integration Methods
Flat 0.3592 0.307 0.4521

HiBiNa 0.7436 0.4535 0.6175
HiBiNp 0.7083 0.4779 0.6222

the hierarchical single source method, there is no clear trend
of the winner. For example, the hierarchical single source
method performed better on the PPI-BG and PPI-STRING
datasets than the flat integration in terms of the per-class
precision and recall, while the flat integration performed
slightly better than the hierarchical single source method
on all the datasets, in terms of per-class F-measure.

Figure 3: Comparison of the per-level average recall
across the five levels of the FunCat taxonomy using
flat integration, hierarchical single source (applied
on PPI-BG dataset), HiBiNa and HiBiNp methods.
BG stands for PPI-BioGrid dataset.

In Table 2, we compare the hierarchical precision, hier-
archical recall, hierarchical F-micro (hFM

1 ) and hierarchical
F-macro (hFµ

1 ) measures for both hierarchical single source
and HiBiN methods. Note that hierarchical precision and hi-
erarchical recall are not applicable to flat integration method
as flat integration does not take the hierarchy constraint into
account. Hence, the obtained predictions may be inconsis-
tent with the hierarchy constraint. As we can observe, Hi-
BiN achieved the best results in terms of all the hierarchical
measurements. To a large extent, the two variations of Hi-
BiN have similar performances, which indicates that incor-
porating the parent-child relationship in the computation of
the prior probabilities does not add a noticeable improve-
ment to the overall integration scheme.

A closer look into per-level precision, recall and F-measure
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Table 2: Hierarchical precision, hierarchical recall,
hierarchical F-micro and hierarchical F-macro mea-
sures obtained from hierarchical single source (on
each dataset separately) and HiBiN methods.

Single Source
Dataset Precision Recall F-Micro F-Macro
PPI-BG 0.9259 0.6071 0.6953 0.7147

PPI-STRING 0.8882 0.5933 0.6846 0.6926
Pfam-Binary 0.8974 0.5912 0.6882 0.7006
Pfam-LogE 0.7340 0.5593 0.6115 0.6348
Gene-Expr 0.7426 0.5801 0.6414 0.6644
Seq-Sim 0.7274 0.5574 0.6067 0.6312

Integration methods
HiBiNa 0.9492 0.6298 0.7361 0.7572
HiBiNp 0.9442 0.6329 0.7355 0.7579

highlights the differences between the proposed method and
the baselines. Figures 2, 3 and 4 show the level-by-level per-
formance comparisons in terms of precision, recall and F-
measure, respectively, between hierarchical single source ap-
plied on PPI-BioGrid dataset, flat integration, HiBiNa and
HiBiNp methods. Since PPI-BioGrid dataset performed the
best for hierarchical single source method, compared with
other datasets, we chose it as a representative dataset for
the hierarchical single source method. The per-level analy-
sis reveals a degradation in the performance, in all methods,
with respect to the depth of the functional classes. However,
this degradation is significantly lower when the data integra-
tion and the hierarchial relationships among the classes are
taken together into account.

Figure 4: Comparison of the per-level average F-
measure across the five levels of the FunCat taxon-
omy using flat integration, hierarchical single source
(applied on PPI-BG dataset), HiBiNa and HiBiNp

methods. BG stands for PPI-BioGrid dataset.

5. CONCLUSION
In this paper, we developed HiBiN, a general probabilis-

tic framework for gene function prediction through the in-
tegration of heterogeneous data sources while maintaining
the hierarchy constraint among the functions. Our results
showed that the integration can improve the performance
of the standard classification-based gene function prediction

algorithms. Our future work includes establishing a proba-
bilistic weighting scheme of data sources.
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