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ABSTRACT
Time-to-event outcomes based data can be modelled using
survival regression methods which can predict these out-
comes in different censored data applications in diverse fields
such as engineering, economics and healthcare. Predictive
models are built by inferring from the censored variable in
time-to-event data, which differentiates them from other re-
gression methods. Censoring is represented as a binary in-
dicator variable and machine learning methods have been
tuned to account for the censored attribute. Active learn-
ing from censored data using survival regression methods
can make the model query a domain expert for the time-
to-event label of the sampled instances. This offers higher
advantages in the healthcare domain where a domain ex-
pert can interactively refine the model with his feedback.
With this motivation, we address this problem by providing
an active learning based survival model which uses a novel
model discriminative gradient based sampling scheme. We
evaluate this framework on electronic health records (EHR),
publicly available survival and synthetic censored datasets
of varying diversity. Experimental evaluation against state
of the art survival regression methods indicates the higher
discriminative ability of the proposed approach. We also
present the sampling results for the proposed approach in an
active learning setting which indicate better learning rates
in comparison to other sampling strategies.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications-
Data Mining; G.3 [Mathematics of Computing]: Sur-
vival analysis.

General Terms
Algorithms, Design, Performance

Keywords
Active learning; Survival analysis; Cox regression; Health-
care
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1. INTRODUCTION
Time-to-event data is widely noticed in many real world

applications ranging from engineering to economics to health-
care [3, 28]. In this data, the time is measured until the
occurrence of the event of interest. The time measured is
the prediction attribute in time-to-event data. The other
components of this data include the covariates and a binary
censoring indicator variable. Censoring occurs when an ob-
servation is incomplete due to some random cause which is
independent of the event of interest. The most frequent form
of censoring is right censoring where subjects are followed
until some time, at which the event has yet to occur, but
then the subject takes no further part in the study. Censor-
ing differentiates time-to-event data from other commonly
observed forms of data.

Active learning from censored data can be very useful in
a wide range of applications where a domain expert (oracle)
can be involved in the model building process. In health-
care applications, the survival model can select instances
by learning from a small labelled set of instances and then
query the expert to receive the time-to-event label before
including it in the model. This expert feedback can help in
refining the model which is particularly useful for healthcare
applications such as predicting 30-day readmission risk [20,
21]. In such applications, the domain expert can integrate
domain knowledge into the survival model to build a more
robust model.

Active learning from censored data is particularly chal-
lenging because the model must choose an instance from
both censored and uncensored set of instances in the dataset
and query the expert to obtain the time-to-event label. In
general censored data mining tasks, censored instances are
either deleted or the missing values are imputed to convert
it into an uncensored problem. An important challenge here
lies in utilizing the censored instance completely while build-
ing the active learning based survival regression model with-
out deleting or modifying the instance.

Over the past few years, data mining methods have been
tuned to predict from censored data. Machine learning meth-
ods such as neural networks [25], random forests [15] and
support vector machine [13] based approaches have been
applied to deal with censored data. These methods in par-
ticular can handle non linear relations between the covari-
ates in censored data. Survival regression methods such as
Cox proportional hazards [8] and Accelerated failure time
(AFT) [26] model are also used to build regression models
from censored data.



Cox regression differs from other methods mentioned
above because it estimates the relative risk rather than the
absolute risk of occurrence of the event. In the healthcare
scenario, this is highly useful for a doctor to compare two pa-
tients from the same cohort to identify who is at a relatively
higher risk. Cox regression also has a simple formulation
which consists of just estimating two quantities (i) the un-
specified baseline hazard function and (ii) a linear function
of the set of covariates.

In this paper, we present an Active Regularized Cox
regression (ARC) framework which effectively integrates ac-
tive learning and Cox regression using a novel model dis-
criminative gradient sampling strategy and robust regular-
ization. Regularization helps in providing good generaliz-
ability in ARC and the model discriminative gradient sam-
pling encourages selecting appropriate instances to be la-
belled by the domain expert. ARC is tested on censored elec-
tronic health records (EHR), synthetic censored and pub-
licly available survival datasets. Experimental results over
10 different datasets indicate that ARC outperforms other
competing methods on 8 datasets and attains very compet-
itive AUC values. To our knowledge, this is the first work
which combines active learning with Cox regression for pre-
dicting time-to-event outcomes in the 30-day readmission
problem [20, 21] for heart failure.

1.1 Our Contributions
The main contributions of this paper are as follows:

1. Propose an Active Regularized Cox regression (ARC)
framework which effectively integrates active learning
and regularized Cox regression. ARC uses a novel
model discriminative gradient based sampling strat-
egy to select instances to label during the active learn-
ing process. In addition, we propose a scalable and
efficient coordinate majorization descent (CMD) op-
timization method for solving regularized Cox regres-
sion.

2. Develop a unified ARC framework which encapsulates
three regularized Cox regression algorithms which in-
clude the kernel elastic net Cox (KEN-COX) [11], elas-
tic net Cox (EN-COX) [10] and LASSO-COX [9] re-
gression algorithms.

3. Demonstrate the performance of ARC on various syn-
thetic and real survival datasets. In addition, we con-
duct experiments using real electronic health records
for heart failure diagnosed patients. We evaluate the
performance using domain specific discriminatory met-
rics such as survival AUC (concordance index) and
mean squared error. The active learning curves are
also plotted over several datasets which illustrate the
effectiveness of the model discriminative gradient based
sampling strategy in ARC.

This paper is organized as follows. In Section 2, the re-
lated work in the areas of using machine learning approaches
in survival regression are discussed. Specifically, we empha-
size the work done in the area of integrating machine learn-
ing techniques with Cox regression. In Section 3, the Cox
regression algorithm is introduced, and the associated ter-
minology is explained in detail.

In Section 4, the algorithm for the CMD based regular-
ized Cox regression (RegCox) is provided and the proposed
ARC framework is explained. The model discriminative gra-
dient based sampling strategy used in this approach is also
explained. In Section 5, experimental analysis is conducted
to evaluate ARC against different kinds of survival regres-
sion algorithms. In Section 6, we provide the conclusions
and some interesting directions for future research.

2. RELATED WORK
In this section, we present the related work in the area

of using machine learning methods for survival analysis. In
the survival analysis framework, Cox regression has garnered
significant interest from researchers in the clinical and ma-
chine learning communities [7].

• Regularized Cox Regression: Regularization was one
of the first few methods to be integrated with Cox
regression. LASSO-COX is a regularized Cox regres-
sion approach which introduces the L1 norm penalty
in the Cox log-likelihood loss function [9]. Elastic net
Cox (EN-COX) further adds the elastic net regular-
izer to the log-likelihood loss function in Cox regres-
sion [10]. LASSO-COX and EN-COX performed bet-
ter than Cox regression on a wide range of datasets.
More recently, robust regularizers such as the kernel
elastic net (KEN-COX) and OSCAR have also been
integrated within the Cox regression framework [11].
Experimental results indicate that the R2 and MSE
values for KEN-COX were better than EN-COX for
EHR datasets.

In [12], the problem of diabetes risk prediction was
tackled using real patient data. For the risk predic-
tion, the authors used methods such as LASSO-COX
and Cox regression coupled with strong feature selec-
tion mechanisms. They also applied different variants
of Cox and other machine learning techniques such as
k-nearest neighbour method to obtain highly discrim-
inative models.

• Machine Learning for Survival Data: Standard ma-
chine learning algorithms cannot handle censoring in
survival analysis. Hence, machine learning methods
have been modified to handle censoring. Support vec-
tor regression to handle censoring (SVRC) is an ap-
proach where the standard SVM quadratic program-
ming problem is modified by introducing the censored
target variable into it [13, 14]. This SVM framework
handles censored data by minimizing the regularized
empirical risk with respect to this data dependent loss
function to obtain a SVM decision function for cen-
sored data. This formulation uses an inverse probabil-
ity of censoring weighting scheme.

Random Survival Forests (RSF) is a random forests
method for censored survival data [15]. Its difference
from random forests lies in the fact that in RSF the
splitting criterion in growing the tree must explicitly
involve survival time and censoring information. A
survival tree is grown for each bootstrap sample and
the prediction error is calculated for the ensemble.

• Optimizing performance metrics: Other approaches of
integrating machine learning into survival analysis in-
clude optimizing the survival AUC criterion directly to



build robust models. Boosting the concordance index
for survival data is an approach where the concordance
index metric is modified into an equivalent smoothed
criterion using the sigmoid function. Using this and
the gradient of this smoothed survival concordance cri-
terion, a gradient boosting algorithm is run to itera-
tively generate ensembles [16, 17]. Boosting has also
been applied to Cox regression to build a CoxBoost
framework for high dimensional micro array data [18].
In contrast to this approach, our ARC framework em-
ploys a model discriminative gradient based sampling
strategy in active learning.

Ranking in survival analysis is based on developing
an approach that learns models by directly optimizing
the concordance index [19] . In this paper, the authors
focus on maximizing the log-sigmoid and the exponen-
tial bounds on the concordance index respectively.

In contrast to the above mentioned methods, our
ARC framework aims at obtaining good instances to
label through a model discriminative gradient based
sampling strategy. Active learning for supervised re-
gression tasks [32, 33] have been developed on different
real world datasets. However, existing active learning
methods fail to handle time-to-event data and censor-
ing. We address this critical problem in the active
learning literature through our ARC framework.

3. SURVIVAL ANALYSIS
Survival analysis is a statistical discipline that deals with

censored data and it tries to extract patterns which quan-
tify the relation between the covariates and the risks. More
specifically it aims at quantitatively evaluating the effects
of covariates and predict event times in the cohort from the
knowledge of the covariates. The main complications in sur-
vival analysis are caused by the statistical noise which is
primarily due to censoring.

Censored times Ci are associated with each instance
i along with observed time for the event Oi. The failure
time for instance i, Ti is set to the minimum of Oi and
Ci. If Oi ≤ Ci this indicates that the event of interest has
occurred within the censoring time. However, if Oi is un-
known then Ti is set to Ci and the instance is censored.
Censoring is included in the computation of Cox regression
using the risk set Ri which is calculated using Ti where
(Ti = min(Oi, Ci)).

Censoring can also be explained in the context of med-
ical problems such as readmission prediction. In this prob-
lem, an event is defined as the onset of heart failure readmis-
sion within 30 days of discharge from the previous admission.
For example, if a patient was not readmitted after discharge
from the previous admission different cases can arise.

The censored cases can be identified as (i) the patients
whose follow up details were lost over time or (ii) the pa-
tients who were not readmitted within the time period of
follow up until the end of the study (which if fixed to 30
in this case). This is commonly called the right censoring
setting, which is the most frequently studied censoring phe-
nomena in survival analysis.

Cox regression is one of the most widely used survival
analysis methods. It is a semi parametric regression model
which can accommodate both discrete and continuous mea-
sures of event times. It assumes that conditioned on the
covariates X all risks are statistically independent, and that

Table 1: Notations used in this paper

Name Description
X n x m matrix of feature vectors.
T n x 1 vector of failure times.
K number of unique failure times.
δ n x 1 binary vector of censored status.
Ri set of all patients at risk at time Ti (Tj > Ti).
β m x 1 regression coefficient vector
L(β) partial log-likelihood
h(t|X) conditional hazard probability
h0(t) base hazard rate
S0(t) base survival rate
S(t|X) conditional survival probability
Ke column wise kernel matrix

the hazard probability of the primary risk for individuals
with covariates X is a function of the following parametrized
form.

h(t|X) = h0(t)× exp(X · β) (1)

h(t|X) = h0(t)︸ ︷︷ ︸
base hazard rate

× exp(X1β)× . . .× exp(Xmβ)︸ ︷︷ ︸
proportional hazards

(2)

Here X ·β =
∑m

µ=1 Xµβµ with time independent parameters

β = (β1, . . . βm). The function h0(t) is called the base haz-
ard rate. It is the base hazard rate one would find for the
trivial covariates X = (0, 0, . . . 0). The proportional hazards
(PH) assumption in Cox regression also basically states that
different covariates contribute each an independent multi-
plicative factor to the primary risk hazard rate.

The effect of covariates are taken to be mutually inde-
pendent and also independent of time. However, it is easy
to incorporate time-dependent covariates also into the Cox
regression model. In Cox regression, the goal is to find the
most probable parameters β = (β1, . . . , βm) and the most
probable base hazard function h0(t).

β is estimated using maximum likelihood estimation
over the partial log-likelihood function. The base hazard
function on the other hand is estimated using Equation (3).
This base hazard function is estimated for an arbitrary time
t after calculating β. During estimation the Cox regression
model does not assume knowledge of absolute risk and esti-
mates only the relative risk.

This model is also referred to as the CoxPH (Propor-
tional Hazards) model because of the proportional hazards
assumption which states that the hazard for any individual
is a fixed proportion of the hazard for any other individual.

h0(t) =
∑
Ti≤t

δi∑
j∈Ri

exp(Xjβ)
(3)

S0(t) = exp(−h0(t))

S(t|Xi) = S0(t)× exp(Xiβ)

In Equation (3), the formulae for estimating the base
survival function S0(t) and the conditional survival proba-
bility S(t|Xi) are provided. This function models the prob-
ability of survival for an instance whereas the hazard prob-
ability models the probability of occurrence of the event of



interest for an instance. Cox regression is one of the most
popular survival regression models and its simple formula-
tion makes it easier to integrate it with different data mining
techniques.

4. ACTIVE LEARNING WITH REGULAR-
IZED SURVIVAL ANALYSIS

In this section, we explain the proposed Active Regu-
larized Cox regression (ARC) framework. In Section 4.1,
we explain a simple regularized Cox regression algorithm
(RegCox) which uses the elastic net regularizer. A scalable
coordinate majorization descent (CMD) based algorithm for
solving this problem is provided.

In Section 4.2, the model discriminative gradient based
sampling strategy used in active learning is explained. In
Section 4.3, the ARC framework which combines active learn-
ing and regularized Cox regression using model discrimina-
tive gradient based sampling is explained.

4.1 RegCox: Regularized Cox Regression
Cox regression models have the tendency to overfit the

dataset, which limits their generalizability to different sce-
narios [30]. Regularization is used to overcome the over-
fitting tendency of the models. The corresponding prob-
lem can be solved using unconstrained optimization meth-
ods such as gradient descent and coordinate descent (CD).

However, in practice these methods do not scale well. To
alleviate this problem, we present a coordinate majorization
descent (CMD) based algorithm for solving RegCox which
is more efficient and scalable than the regular CD solver.

L(β) = n−1
K∑
i=1

−Xiβ + log(
∑

m∈Ri

exp(Xmβ)) (4)

L
′
j(β) = n−1

K∑
i=1

{−X(i, j) +

∑
m∈Ri

X(m, j)exp(Xmβ)∑
m∈Ri

exp(Xmβ)
}

In this section, we present the RegCox framework which
is a generic regularized Cox regression framework which can
use any standard regularizer such as the LASSO, elastic net
and kernel elastic net. We consider solving RegCox here
with the specific instance of the elastic net regularization.

In Equation (4), L(β) is the partial log-likelihood loss

function in Cox regression and L
′
j(β) is the gradient of log-

likelihood with respect to the jth attribute. G(β) is the
composite function consisting of the log-likelihood and reg-
ularization term.

G(β) = L(β) +
m∑

j=1

λ(α|βj |+ 1

2
(1− α)β2

j ) (5)

G(βj) = L(βj , k �= j) + λ(α|βj |+ 1

2
(1− α)β2

j )

To apply CMD optimization, we define the objective
function G(βj) in Equation (5) for fixed λ, α and βk. The
majorization minimization principle [22] is applied here and
instead of minimizing G(βj) in Equation (5) an update of βj

is found such that the univariate function G(βj) is decreased.
To write this updating formula for βj some additional nota-
tion is defined using Dj in Equation (6).

Dj =
K∑
i=1

1

4n
{max
m∈Ri

(X(m, j))− min
m∈Ri

(X(m, j))}2 (6)

βnew
j =

S(Djβj − L
′
j(β), λα)

Dj + λ(1− α)

S(z, t) = (|z| − t)+sign(z)

In Equation (4), the formulae for computing the jth compo-
nent of the log-likelihood gradient vector is provided. We use

this notation to represent this gradient (L
′
j(β) =

∂
∂β

Lj(β)).
Ri represents the risk set at time point i. K represents the
number of unique failure times.

λ is the regularization parameter and α is the elastic net
parameter (0 < α < 1). S(z, t) is the soft thresholding func-
tion. The equation for estimating the regression coefficient
vector βnew in RegCox using coordinate majorization de-
scent (CMD) optimization is also provided.

In Algorithm 1, the regression coefficient vector for the
jth coordinate is estimated by keeping all other coordinate
values fixed. The regularization parameter λ is determined
through cross validation. The LASSO-COX is another in-
stance of RegCox which we consider in our ARC framework.
LASSO-COX [9] can be considered as a special case of the
elastic net regularizer for the value of α set to 1.

The third regularized Cox regression algorithm we con-
sider in RegCox is the kernel elastic net Cox regression
(KEN-COX). Kernel elastic net Cox regression supplements
EN-COX [10] with a column wise kernel matrix information.
A RBF kernel matrix (Ke) is computed over the features
(columns) of the dataset, and this information is plugged
into the elastic net regularizer. The formulation is provided
in Equation (7). In this formulation, we use a notation where
X(:, i) represents the ith column vector of the matrix X.

KEN-COX can also be solved by using the CMD pro-
cedure used for solving RegCox. The only modification re-
quired in Algorithm 1 is modifying the denominator in the
equation for estimating βnew

j . The details and algorithm for
solving KEN-COX are provided in [11].

Algorithm 1 Regularized Cox Regression (RegCox)

Require: Training Feature Vectors X, Censored variable δ,
Time-to-event T , Regularization parameter λ

1: Initialize β
2: repeat
3: Compute L(β), G(β) from X, T ,λ and α using Equa-

tions (4), (5)
4: for j = 1, . . . , m do
5: Set the objective function G(βj) and apply the

CMD procedure
6: Compute the updating factor Dj for computing

βnew
j using Equation (6)

7: βnew
j =

S(Djβj−L
′
j(β),λα)

Dj+λ(1−α)

8: end for
9: Update β = βnew

10: until Convergence of β
11: Output β
12: Output hazard function using h0(t), β and δ



β = min
β

L(β) + λ(α ‖ β ‖1) + λ(1− α)βTKeβ (7)

Ke(i, j) = exp(
− ‖ X(:, i)−X(:, j) ‖22

2σ2
)

4.2 Model Discriminative Gradient Based Sam-
pling Strategy

In this section, we explain the model discriminative gra-
dient based sampling strategy used by RegCox in ARC. In
general regression problems, solving for the optimal param-
eter β which can minimize the empirical error is a widely
used search approach. In this approach, the parameters are
repeatedly updated according to the negative gradient of the
loss L(β) with respect to each training example (Xi, Ti, δi).
The equation for obtaining β is provided in Equation (8).
In this equation, α is called the learning rate.

β = β − α
∂LX+(β)

∂β
(8)

In active learning, model change is estimated after adding a
new example X+ to the training data with censored status
δ+ and time-to-event value T+. The empirical risk on the
enlarged training setD+ = D∪(X+, T+, δ+) is defined using
Equation (9).

C(X+) = α
∂LX+(β)

∂β
(9)

The goal of our sampling strategy in active learning is then
to choose the example that could maximally change the cur-
rent model and this selection function can be formulated as

X∗ = argmaxX+∈pool ‖ C(X+) ‖ (10)

However, in practice we do not know the true label (time-
to-event) (T+) of the sampled data point X+ in advance.
Therefore, we are not able to estimate the model change
directly. Instead the expected change is calculated over all
possibleK unique time-to-event labels from {T1, T2, . . . , TK}
to approximate the true change.

X∗ = argmaxX∈pool

K∑
k=1

h(Tk|X) ‖ ∂LX(β)

∂β
‖ (11)

The impact of adding an instance X from the pool to the
training data is calculated in Equation (11). The absolute
value of the gradient of the loss function with respect to
the instance is weighted by the hazard probability h(Tk|X)
for that instance. This value is accumulated over all unique
time-to-event values to obtain an estimate of the impact ofX
on the model. Finally, the instance X∗ which can induce the
maximum model change over all the instances in the pool is
selected and assumed to be the most discriminative instance
for active learning. This explains our model discriminative
gradient based sampling strategy.

4.3 Proposed ARC Algorithm
In Algorithm 2, the basic ARC framework is explained. In

line 3, the RegCoxmodel is built using the training data and
time-to-event values. In lines 4-6, the model is applied to all
the instances in the unlabelled pool where Equation (11) is
applied. In lines 7-8, the instance which makes the highest
impact on the model is selected and the time-to-event la-
bel for this instance is requested. Finally, in lines 8-10, the

Algorithm 2 ARC Algorithm

Require: Training Set Train, Unlabelled pool Pool, Time-
to-event T , Censored status δ, Active learning rounds
max

1: p = 1
2: repeat
3: Model = RegCox(Train, δ, T )
4: for each instance in Pool do
5: Use model discriminative gradient sampling for each

instance in Pool
6: end for
7: X∗ = argmaxX∈pool

∑K
k=1 h(Tk|X) ‖ ∂LX (β)

∂β
‖

8: Query domain expert for label (time-to-event) of X∗

9: Train ← Train ∪ X∗

10: Pool ← Pool \ X∗

11: p = p+ 1
12: until p �= max

training data is updated to build the model at the end of
the current active learning round.

Convergence and Complexity of ARC: The coordi-
nate majorization descent (CMD) method mentioned earlier
is used in RegCox and it is known to converge efficiently [22]
which guarantees the convergence of ARC. However, con-
vergence rates may vary with the kind of regularizer used
among LASSO, EN and KEN. The time complexity of Cox
regression is O(mK ) where m is the number of columns, K
is the number of unique time-to-event values. The complex-
ity of ARC can be computed as O(nmK + nK ) where n is
the number of instances. The additional nK term here is
because of the model discriminative gradient sampling step
which is applied on the pool of unlabelled instances.

5. EXPERIMENTAL RESULTS
In this section, we present the experimental results ob-

tained after applying ARC on various diverse datasets. Sev-
eral real and synthetic survival datasets are used along with
electronic health records to assess the performance of ARC.
The data processing is explained in the experimental setup
subsection. We provide different results which assess the
goodness of fit, discriminative ability and learning rates re-
spectively. The ARC framework is implemented in C++
using the Eigen Matrix library [31]. The code for ARC
is available at [29]. This includes the code for ARC and
the preprocessed datasets (except the proprietary ones from
Henry Ford Health System).

5.1 Experimental Setup

5.1.1 Datasets used and data pre-processing
In this section, we demonstrate the performance of ARC

on the following datasets.

• Survival datasets: Breast, Primary biliary cirrhosis
(PBC) and Colon are survival datasets which are used
directly from the standard survival R package. PBC
data is from the Mayo Clinic trial in primary biliary
cirrhosis (PBC) of the liver conducted between 1974
and 1984. Breast cancer dataset is from the German
Breast Cancer Study Group. Colon cancer dataset is
obtained from the survival R package. These datasets



have the time-to-event and censored attributes pro-
vided along with the covariate values.

• EHR datasets: We consider electronic health records
(EHR) for heart failure diagnosed patients for our anal-
ysis. This dataset was obtained for patients diagnosed
with primary heart failure from Henry Ford Health
System, Detroit, Michigan, USA for a duration of 10
years. For pre-processing this data, we construct fea-
tures for all the distinct lab variables. To tackle the
problem of multiple lab values for the same patient,
we represent each lab by a set of summary statistics
and apply a logarithm transformation on these values
to normalize them.

Time-to-event (30 day readmission) values are cal-
culated using the prior admission and discharge dates.
Patients are right censored using the 30 day readmis-
sion study period. This implies that if the difference
between the last known follow up date and the previous
admission date for a patient exceeds 30 days without
the onset of a heart failure readmission, then this pa-
tient is right censored.

We present a snapshot of the distribution of read-
mission probabilities over this EHR dataset. In Fig-
ure 1, the readmission probabilities are plotted over
a small sample of the EHR dataset for 30, 60 and 90
day readmission for heart failure. An EN-COX model
was trained on 200 random instances from one of our
EHR datasets and the predicted survival probability
values were obtained on a validation sample of 1000
instances. The hazard probabilities are plotted using
the equations provided in Section 3. This plot can help
the readers understand the readmission trends present
in this EHR dataset.

• Synthetic datasets: We generate synthetic datasets by
setting the pairwise correlation ρ between any pair
of covariates to vary from -0.5 to 0.5. We generate
the feature vectors using this correlation and a normal
distribution N(0, 1). Feature vectors of different di-
mensionality are generated to construct four synthetic
datasets. For each of these synthetic datasets, the gen-
erated failure times T are calculated using a Weibull
distribution with γ set to 1.5. The Weibull distribu-
tion is used here to generate positive responses (fail-
ure times) to suit the constraints of synthetic survival
data. Censoring for each dataset was set randomly to
achieve 40% censoring in each synthetic dataset.

5.1.2 Evaluation Metrics
Survival AUC which is also known as the concordance in-

dex is used widely in the field of survival analysis [24, 19].
It can be interpreted as the fraction of all pairs of patients
whose predicted survival times are correctly ordered among
all patients that can actually be ordered.

The motivation behind using this evaluation metric in
survival analysis lies in the fact that in clinical decision mak-
ing the physicians and researchers are often more interested
in evaluating the relative risk of a disease between patients
with different covariates, than the absolute survival times of
these patients.

Survival AUC is the probability of concordance between
the predicted and the observed survival. It can be written
as in Equation (12). Survival AUC is equivalent to the area

under the time-dependent ROC curve, which is a measure
of the discriminative ability of the model at each time point
under consideration.

In Equation (12), the survival AUC (concordance index)
is computed using an indicator function where the predicted

values (S(T
′ |Xi)) are the conditional probabilities of sur-

vival computed at time T
′
. The indicator function Ia<b is

1 if a < b or 0 otherwise. S(T
′ |Xi) is estimated using the

equations given in Section 3. In Equation (12), num repre-
sents the number of comparable pairs.

SAUC =
1

num

∑
Ti∈uncensored

∑
Tj>Ti

IS(T
′ |Xi)<S(T

′ |Xj)
(12)

rMSE =

√∑n
i=1(δi − (exp(XT

i β)h0(T
′)))2

n

The other metric we used for evaluation is the root mean
squared error (rMSE). This is computed using the formula
given in Equation (12). In this equation, the hazard func-

tion h0(T
′
) is obtained using the equations from Section 3.

While presenting the experimental results in this paper,
we test ARC in an academic setting without the involvement
of a real domain expert. The instances which are sampled
through the model discriminative gradient based sampling
scheme in ARC are automatically assigned to their appro-
priate time-to-event labels by our program.

Table 2: # Instances, # Features and Active Learn-
ing Sampling Size in Dataset

Dataset # Inst # Feat Train(Samp Size)
Breast 686 10 100 (20)
PBC 311 19 50 (10)
Colon 888 15 200 (20)
HF1 5675 98 500 (100)
HF2 4379 98 500 (100)
HF3 3543 98 500 (100)
HF4 2826 98 500 (50)
Syn1 500 15 100 (15)
Syn2 500 50 100 (15)
Syn3 100 50 50 (1)

5.2 Comparison of ARC with other Survival
Regression Algorithms
In Table 2, we provide the details of the datasets con-

sidered for our experiments. In this table, the sample size
indicates the number of instances which are queried and la-
belled at the end of each iteration. The last column signifies
the initial training size selected for active learning, along
with the sample size queried at the end of each active learn-
ing round for that dataset.

In Table 3, we provide the survival AUC (concordance
index) values obtained after running the ARC framework
on several real life survival datasets and heart failure (EHR)
dataset. In the EHR datasets, we use the following notation;
HF 1-4 corresponds to four subsequent readmission datasets
for the patients diagnosed with primary heart failure. Each
of these dataset records the entire EHR for that particular
admission for the patient.
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Figure 1: Readmission Probabilities for Patients computed within 30, 60 and 90 days post discharge from
index hospitalization.

Table 3: Comparison of Survival AUC values of ARC with other survival regression algorithms

Dataset LASSO-COX EN-COX CoxBoost RSF BoostCI ARC(LASSO) ARC(EN) ARC(KEN)
Breast 0.61 0.63 0.67 0.68 0.69 0.65 0.6856 0.734
Colon 0.651 0.65 0.62 0.60 0.64 0.738 0.735 0.859
PBC 0.735 0.759 0.86 0.863 0.79 0.81 0.825 0.862
HF1 0.54 0.55 0.59 0.58 0.59 0.60 0.64 0.671
HF2 0.56 0.5822 0.60 0.61 0.601 0.66 0.68 0.71
HF3 0.533 0.553 0.59 0.59 0.58 0.575 0.58 0.601
HF4 0.54 0.55 0.58 0.569 0.56 0.585 0.581 0.645
Syn1 0.59 0.628 0.60 0.61 0.589 0.7823 0.838 0.92
Syn2 0.801 0.815 0.86 0.94 0.93 0.86 0.867 0.921
Syn3 0.67 0.688 0.64 0.64 0.664 0.73 0.78 0.81

We employ a notation through the remaining part of
this paper to represent different active learning algorithms
in ARC. ARC (LASSO) represents integrating LASSO-COX
with active learning. Similarly ARC (EN) and ARC (KEN)
represent integrating EN-COX and KEN-COX with active
learning respectively. The performance of these different al-
gorithms in ARC is compared to that of LASSO-COX [9],
EN-COX [10], Boosting Cox Regression (CoxBoost) [18],
Random Survival Forests (RSF) [15] and Boosting on Con-
cordance Index (BoostCI) algorithms [16].

The fast-cox package is used for the LASSO-COX and
EN-COX algorithms [27]. Fastcox is implemented in R and
offers an effective algorithm for obtaining the entire regu-
larization path of the EN-COX algorithm. CoxBoost and

Random Survival Forests are run using the publicly avail-
able CoxBoost and rsf R packages respectively. The BoostCI
algorithm was implemented in R based on the pseudo-code
provided in this paper [16]. KEN-COX uses an additional σ
parameter in its RBF kernel which is set to 0.3 for all the
experiments.

The results in Table 3 show that for 8 out of 10 datasets
considered,(ARC) obtains higher concordance index values
in comparison to other survival regression algorithms. This
better performance of ARC is attributed to the fact that it
selects informative instances during the initial active learn-
ing rounds. This directly helps in obtaining models with
higher discriminative ability.
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Figure 2: Comparison of the active learning rates of ARC with UNCERTAINTY and RANDOM sampling
over EHR, survival and synthetic datasets.



5.3 Comparison of Sampling Strategies in ARC
The sampling strategies evaluated in ARC in this experi-

ment are the following:

1. RAND: Randomly sample instances from the pool
and update the training data.

2. Uncertainty based Sampling: Sample those in-
stances from the pool, which the model is most un-
certain about [23].

3. Model Discriminative Gradient based Sampling:
Sample from the pool that instance which causes the
greatest change in the absolute value of the gradient
of the loss function evaluted at that instance scaled
by the hazard probability over all the unique time-
to-event values. The Equation for this is provided in
Section 4.2.

In Figure 2, the learning curves are plotted over 20
active learning rounds for 8 datasets. Depending on the
size of the dataset being considered, we set the sampling
size for each round in batch mode active learning. For each
dataset, we consider integrating LASSO-COX, EN-COX and
KEN-COX in the ARC framework. For plotting the curve
for uncertainty based sampling, we used the predicted sur-
vival probabilities to determine those instances the model
is most uncertain about. For the random setting, instances
were chosen randomly at the end of each active learning
round. The x-axis represents the number of active learning
rounds. The y-axis represents the concordance index (Sur-
vival AUC).

The learning curves for the heart failure EHR data in-
dicate that ARC (KEN) and ARC (EN) obtain significantly
better AUC values than other methods, with ARC (LASSO)
being marginally better than RAND and UNCERTAINTY.
We observe some aberration in the learning curves due to
the non-linearity and skewed distribution of EHR data. The
learning curves for Breast, PBC and Colon indicate that
ARC (KEN) still achieves the highest AUC value with ARC
(LASSO) or ARC (EN) being the second best. This suggests
that qualitative instances are being sampled from the pool
and added to the training data in the active learning rounds.
The results over all the datasets also show the effectiveness
of ARC based sampling in comparison to uncertainty and
random sampling.

5.4 Goodness of fit in ARC
In this section, we compare the performance of ARC(LASSO),

ARC(EN) and ARC(KEN). The root mean square error
(rMSE) values for the survival regression models are cal-
culated after 20 active learning rounds and the final values
are reported. The rMSE is used to assess the goodness of
fit obtained by the Cox regression model. It is calculated
using Equation (12). The standard deviation values are also
provided in Table 4.

The results in Table 4 show that ARC(KEN) provides
the best fit (lowest rMSE) amongst all the ARC based algo-
rithms. We attribute this to the fact that the kernel elastic
net is a more robust regularizer in comparison to the elastic
net and lasso. It uses additional pairwise feature similar-
ity information through the column wise kernel matrix (Ke)
and supplements the elastic net penalty. This makes it more
effective at capturing correlation in the dataset than other
competing approaches.

Table 4: Comparison of rMSE ± std values of ARC

Dataset ARC(LASSO) ARC(EN) ARC(KEN)
Breast 3.08±0.117 2.96±0.113 2.54±0.09
Colon 4.69±0.15 3.6±0.12 1.73±0.05
PBC 6.70±0.38 4.6±0.26 3±0.17
HF1 1.30±0.04 1.32±0.04 1.29±0.04
HF2 1.33±0.02 1.42±0.02 1.26±0.019
HF3 1.41±0.023 1.48±0.024 1.41±0.023
HF4 1.30±0.024 1.43±0.026 1.30±0.024
Syn1 3.35±0.134 3.76±0.1504 3.25±0.13
Syn2 3.23±0.129 3.9237±0.156 3.28±0.131
Syn3 2.92±0.41 3.25±0.45 2.58±0.364

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an Active Regularized Cox re-

gression (ARC) framework which integrates active learning
with Cox regression using a novel model discriminative gra-
dient based sampling strategy. In healthcare applications
such as readmission risk prediction, ARC can identify pa-
tient records to be labelled by a domain expert which can
help in building survival models with expert feedback. In
ARC, the domain expert provides a time-to-event label for
the instance sampled by the model. This labelled instance
is then added to the training data at the end of each active
learning round and the model is updated with the sampled
instance.

We conducted several experiments to study the perfor-
mance of ARC using three regularized Cox regression algo-
rithms on various synthetic and real datasets. Experimen-
tal results indicate that ARC(KEN) is more effective than
ARC(LASSO) and ARC(EN). The survival AUC values ob-
tained from ARC(KEN) were also observed to be higher
than those obtained from ARC(LASSO) and ARC(EN).

We plan to extend this work by studying the inclusion of
the Accelerated Failure Time (AFT) model [26] in the active
learning scenario. AFT model is a linear survival regression
model which is applicable when the proportional hazards
(PH) assumption is violated in certain domains. We would
also like to integrate other existing methods such as transfer
learning with Cox regression to build transfer learning based
survival regression models.
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