
Transfer Learning for Survival Analysis
via Efficient L2,1-norm Regularized Cox Regression

Yan Li∗, Lu Wang†, Jie Wang∗, Jieping Ye∗‡ and Chandan K. Reddy§
∗Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI -48109.

Email: {yanliwl, jwangumi, jpye}@umich.edu
†Dept. of Computer Science, Wayne State University, Detroit, MI - 48202. Email: lu.wang3@wayne.edu
‡Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI -48109.

§Dept. of Computer Science, Virginia Tech, Arlington, VA - 22203. Email: reddy@cs.vt.edu

Abstract—In survival analysis, the primary goal is to monitor
several entities and model the occurrence of a particular event
of interest. In such applications, it is quite often the case that the
event of interest may not always be observed during the study
period and this gives rise to the problem of censoring which
cannot be easily handled in the standard regression approaches.
In addition, obtaining sufficient labeled training instances for
learning a robust prediction model is a very time consuming
process and can be extremely difficult in practice. In this
paper, we propose a transfer learning based Cox method, called
Transfer-Cox, which uses auxiliary data to augment learning
when there are insufficient amount of training examples. The
proposed method aims to extract “useful” knowledge from
the source domain and transfer it to the target domain, thus
potentially improving the prediction performance in such time-
to-event data. The proposed method uses the l2,1-norm penalty to
encourage multiple predictors to share similar sparsity patterns,
thus learns a shared representation across source and target
domains, potentially improving the model performance on the
target task. To speedup the computation, we apply the screening
approach and extend the strong rule to sparse survival analy-
sis models in multiple high-dimensional censored datasets. We
demonstrate the performance of the proposed transfer learning
method using several synthetic and high-dimensional microarray
gene expression benchmark datasets and compare with other
related competing state-of-the-art methods. Our results show
that the proposed screening approach significantly improves
the computational efficiency of the proposed algorithm without
compromising the prediction performance. We also demonstrate
the scalability of the proposed approach and show that the time
taken to obtain the results is linear with respect to both the
number of instances and features.

Keywords—Transfer learning; survival analysis; regularization;
regression; high-dimensional data.

I. INTRODUCTION

Due to the emergence of a wide range of data acquisition
technologies, it has become a common practice in many
domains to monitor subjects over a period of time in order to
tell if there are any interesting events (such as device failure,
disease occurrence, project success [1], etc.) that occur. Such
monitoring typically starts from a particular time point and
lasts until a certain event of interest occurs [2]. Due to time
limitations or loss of data traces, however, the event of interest
may not always be observed during the study period. This
phenomenon is known as censoring and makes this problem
more challenging for standard regression methods. For the
instances where the event of interest is observed, the time to
the event of interest is known as the failure time (or event
time); while for the remaining (censored) instances, the last
observed time is known as the censored time.

Survival analysis is an important branch of statistics which
aims at predicting the time to the event of interest, and
it can simultaneously model event data and censored data.
Collecting labeling information of such problems is very time
consuming, i.e., one has to wait for the occurrence of the
event of interest from sufficient number of training instances
to build robust models. Moreover, in many practical appli-
cations, appropriate feature collection can also be extremely
expensive and tedious. A naive solution for this insufficient
data problem is to merely integrate the data from related
tasks into a consolidated form and build prediction models on
such integrated data. However, such approaches often show
poor performance since the target task (where the prediction
needs to be done) will be overwhelmed by auxiliary data with
different distributions. In such scenarios, knowledge transfer
between related tasks will usually produce much better results
compared to a mere integration scheme. Transfer learning
methods have been extensively studied to solve classification
and standard regression problems. However, transfer learning
for survival analysis has not been studied in the literature so
far, in spite of the clear practical need for this problem. In this
paper, we employ the Cox proportional hazards model, one
of the most popular survival analysis methods, for modeling
time-to-event data.

The main objective of this paper is to improve the pre-
diction performance of the Cox model in the target domain
through knowledge transfer from the source domain in the
context of survival models built on multiple high-dimensional
datasets. The key component of our transfer learning method
called Transfer-Cox is to identify the “useful” knowledge that
can potentially improve the performance on the target data and
transfer knowledge into the model to be learned on the target
domain. Specifically, we propose to employ the l2,1-norm
to penalize the sum of the loss functions (Cox proportional
hazards model) for both source and target domains [3], [4].
The l2,1-norm penalty encourages multiple predictors to share
similar sparsity patterns; thus, it will not only select important
features but also learn a shared representation across source
and target domains to improve the model performance on
the target task. The proposed transfer learning formulation is
solved via the fast iterative shrinkage thresholding algorithm
(FISTA) [5]. In addition, with the help of a risk set updating
method [6], the proposed Transfer-Cox algorithm achieves a
linear time complexity with respect to both training sample
size and feature dimensionality.

We demonstrate the prediction performance of our
Transfer-Cox model using real-world high-dimensional mi-
croarray gene expression datasets which include patients from
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TABLE I: Relationship between the proposed model and traditional multi-task learning related inductive transfer learning methods

Tasks Source Domain Labels Target Domain Labels Related Literatures

Classification Categorical / Fully informative Categorical / Fully informative [7],[8],[9]

Regression Numeric / Fully informative Numeric / Fully informative [3],[10],[11]

Survival analysis Numeric / Partially informative Numeric / Partially informative This paper

various cancer types. Our results demonstrate the power of the
proposed Transfer-Cox model in transferring knowledge from
the related cancer types to improve the survival prediction for
one particular cancer type. Although the proposed algorithm is
efficient, it is still time consuming due to the high dimension-
ality of the dataset (19, 171 features). To this end, we adapt
the idea of screening so that it is applicable to censored data
by utilizing the strong rules [12]. Screening is a state-of-the-
art technology which is able to efficiently identify the number
of features whose corresponding coefficients are guaranteed to
be zero. Removal of these features will dramatically reduce
the dimensionality of the feature space. In this paper, we
extend the strong rule to sparse survival analysis models with
multiple datasets and significantly increase the efficiency of the
algorithm without compromising the prediction performance.

The main contributions of our work are summarized as
follows:

• Propose a novel transfer learning method Transfer-Cox for
survival analysis which can select a subset of joint features
to transfer the knowledge from the source domain to the
target domain in the presence of censored data.

• Develop screening mechanism for censored data by extend-
ing the strong rule to sparse survival models with multiple
datasets and use it to improve the efficiency of the algorithm
without compromising the prediction performance.

• Demonstrate the performance of the proposed transfer learn-
ing method using several synthetic and high-dimensional mi-
croarray gene expression benchmark datasets, and compare
it with state-of-the-art survival analysis methods.

The rest of this paper is organized as follows: Section II
provides some relevant background regarding various transfer
learning methods and regularized Cox regression models. Our
novel transfer learning method for survival analysis, Transfer-
Cox, is explained in detail in Section III. In Section IV,
the effectiveness of the proposed Transfer-Cox method is
demonstrated using several synthetic and high-dimensional mi-
croarray gene expression benchmark datasets. Finally, Section
V concludes our discussion and gives some future research
directions for the proposed work.

II. RELATED WORK

In this section, we present the related works in the area
of transfer learning and survival analysis and highlight the
primary distinctions of the proposed work compared to the
existing methods that are available in the literature.

A. Transfer learning

Transfer learning methods have been successfully applied
in many real-world applications such as text mining [9],
collaborative filtering [13] and biomedical data analysis [14]
[15]. In transfer learning, the primary goal is to adapt a model

built on source domain DS (or distribution) for performing
prediction on the target domain DT. Pan et al. [16] categorized
transfer learning methods into three different types, namely, in-
ductive, transductive and unsupervised transfer learning, based
on different settings for transfer. The model we propose in
this paper belongs to the inductive transfer learning approach,
more specifically, similar to multi-task learning [3]. In multi-
task learning different tasks are learned simultaneously and
equally weighted, while in the case of transfer learning, one
set of data is selected as the target domain and the remaining is
used as the source domains. Furthermore, it is very convenient
to change the multi-task learning algorithm to transfer learning
algorithm by merely enhancing the importance (weight) of the
target task [16].

In all the methods described above and other related
works (refer to [16]), the source and target tasks are either
classification or regression problems. However, in this paper,
the source and target tasks are the corresponding regression-
based loss functions which include censored information. We
propose a proportional hazards [17] based transfer learning
model to transfer the useful and relevant knowledge from the
source to the target domain. Our approach can effectively
handle censored information based on the partial likelihood
function which makes it unique compared to all the existing
works. Table I summarizes the relationship between traditional
multi-task learning related inductive transfer learning methods
and the proposed model. It should be noted that in survival
analysis, the label information is available but is partially
imformative for censored instances. Hence, techniques like
self-taught learning [18] and transductive learning [19] which
handle scenarios with missing label information are not suit-
able for handling such partially informative label information.

Based on the underlying learning mechanism, transfer
learning methods can be grouped into four categories [16]:
instance-based, feature-based, parameter-based, and relational
knowledge-based. Our proposed model is a feature-based trans-
fer learning paradigm, which employs the l2,1-norm [3], [4]
to penalize the sum of the loss functions (Cox proportional
hazards model) of both source and target tasks. The l2,1-
norm encourages multiple predictors to share similar sparsity
patterns; thus, it can not only select important features and
alleviate over-fitting in high-dimensional datasets but also
learn a shared representation across source domain and target
domain to improve the model performance on the target task.

B. Survival Analysis

Survival analysis is the field of statistics which produces
optimal models for handling censored data [2]. Due to its
flexibility in modeling and superiority in performance, the Cox
proportional hazards model has been the most widely used
model in survival analysis in the past several decades since its
inception in the early 1970’s [17]. It has garnered significant
interest from researchers in both statistics and data mining
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communities. Unlike parametric methods [20], this model does
not require knowledge of the underlying distribution, but the
attributes are assumed based on an exponential influence on the
hazard ratio. The baseline hazard function in this model can
be an arbitrary nonnegative function, but the baseline hazard
functions of different individuals are assumed to be the same.
The estimation and hypothesis testing of parameters in the
model can be calculated by minimizing the negative log-partial
likelihood function rather than the ordinary likelihood function.

Several variants of the basic Cox regression model have
been proposed in the literature [21], [22]. The most interesting
extension was done in terms of handling high-dimensional
data, where the number of features are significantly larger
than the number of samples, which typically creates the over-
fitting issues with the basic Cox model. To tackle this problem,
various sparsity-inducing regularization methods are widely
used to penalize the negative log-partial likelihood function of
Cox model. These methods include LASSO-COX [23] which
employs the L1 norm penalty, Elastic-Net Cox (EN-COX) [6]
which uses the elastic net penalty term, and the kernel elastic
net penalized Cox regression [21]. In the presence of limited
amount of data, most of these methods produce inferior results
and do not take advantage of the large amount of auxiliary data
that is available. Recently, a multi-task learning formulation
[24] has been proposed which reformulates the standard sur-
vival analysis as a series of related binary classification tasks.
However, in this paper, the source and target tasks are both
survival analysis. To the best of our knowledge, there is no
work in the literature which provides transfer learning or multi-
task learning for high-dimensional survival analysis.

III. PROPOSED MODEL

In this section, we will first introduce some basic concepts
of survival analysis and Cox proportional hazards regression.
Then we will propose the transfer learning methods based
on l2,1-norm regularized Cox model and the optimization
approach.

A. Preliminaries

In survival analysis, for each data instance, we observe
either a failure time (Oi) or a censored time (Ci), but not both.
The dataset is said to be right-censored if and only if yi =
min(Oi, Ci) can be observed during the study. An instance in
the survival data is usually represented by a triplet (Xi, Ti, δi),
where Xi is a 1×p feature vector; δi is the censoring indicator,
i.e. δi = 1 for an uncensored instance, and δi = 0 for a
censored instance; and Ti denotes the observed time and is
equal to the failure time Oi for uncensored instances and Ci

otherwise, i.e.

Ti =

{
Oi if δi = 1
Ci if δi = 0

(1)

For censored instances, Oi is a latent value, and the goal
of survival analysis is to model the relationship between Xi

and Oi by using the triplets (Xi, Ti, δi) for censored and
uncensored instances.

In survival analysis, one of the most important concepts in
modeling such censored data is the hazards function hi(t) =

lim
Δt→0

Pr(t≤Oi<t+Δt|Oi≥t)
Δt , which is the event rate at time t

conditional on survival until time t or later. In the Cox model,
the proportional hazards assumption is

h(t,Xi) = h0(t) exp(Xiβ) (2)

for i = 1, 2, ..., N , where the h0(t) is the baseline hazard
function, which can be an arbitrary non-negative function of
time, and β is a p × 1 regression coefficient vector of the
Cox proportional hazards model. The Cox model is a semi-
parametric model since all the instances share a same baseline
hazard function and the coefficient estimation is independent
from the form of h0(t). Let O1 < O2 < · · · < OK be
the increasing list of unique failure times of all N instances;
given the fact that an event occurs at Oi, the conditional
probability of the individual’s corresponding covariate is Xi

can be formulated as

Pr(Xi|Oi) =
h(Oi, Xi)Δt∑

j∈Ri
h(Oi, Xj)Δt

=
exp(Xiβ)∑

j∈Ri
exp(Xjβ)

(3)

where Ri is the risk set at Oi which consists of all instances
whose failure times are equal to or greater than Oi. Thus, the
β can be learned via maximizing the partial likelihood:

L(β) =
K∏
i=1

exp(Xiβ)∑
j∈Ri

exp(Xjβ)
(4)

B. L2,1-norm regularized Cox model

In this paper, we propose a feature-based transfer learning
method which aims at finding “good” features to transfer
knowledge from source domian to target domain and miminize
the prediction error of target task. In standard transfer learning
the source and target tasks are either classification or standard
regression, but in survival analysis, the source and target tasks
are censored regression. Cox model is the most widely used
survival analysis method, and we employ its loss function for
both source and target tasks. However, Eq.(4) fails to handle
the tied failures, i.e., two or more failure events that occur at
same time. In this paper, the Breslow approximation [25] is
used to deal with the tied failures. The partial likelihood is
reformulated as follows

L(β) =

K∏
i=1

exp(
∑

j∈Di
Xjβ)

[
∑

j∈Ri
exp(Xjβ)]di

(5)

where Di contains all instances whose failure time is Oi

and di = |Di| is the size of Di. Therefore, the coefficient
vector can be learned via minimizing the negative log-partial
likelihood.

l(β) = −
K∑
i=1

⎧⎨
⎩

∑
j∈Di

Xjβ − di log[
∑
j∈Ri

exp(Xjβ)]

⎫⎬
⎭ (6)

To find “good” features for knowledge transfer, we propose
a model which is able to learn a shared representation across
source and target tasks. The l2,1-norm is chosen to be one
penalty term for our model because it encourages multiple
coefficient vectors to share similar sparsity patterns. Therefore,
the regularized model learns a shared representation across
source and target tasks. In addition, a sparsity inducing penalty
also helps the model deal with high-dimensional datasets and
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alleviate model over-fitting. The proposed transfer learning
model “Transfer-Cox” can be learned via solving the following
minimization problem.

min
B

∑
t∈{S,T}

−wt

Nt
l(βt) +

μ

2
‖ B ‖2F +λ ‖ B ‖2,1 (7)

where S and T denote the tasks in the source domain and
target domain, respectively. B = (βS , βT ), B ∈ R

p×2, NS

and NT are the number of training instances in the source
domain and target domain, respectively. wS and wT are two
empirically determined weight parameters, and usually wS <
wT which induces the model focusing more on the target task.
The l2 regularization on the coefficient matrix B is introduced
to further reduce the variance of B and alleviate model over-
fitting.

C. Optimization

The optimization problem proposed in Eq.(7) follows the
standard l1,2-norm regularization problem:

min
B∈Rp×2

g(B) + λ ‖ B ‖2,1 (8)

where λ > 0 is the regularization parameter, and

g(B) =
∑

t∈{S,T}
−wt

Nt
l(βt) +

μ

2
‖ B ‖2F

is a smooth convex loss function, and its first order derivative
can be calculated as:

g
′
(B) =

[
wS

NS
l
′
(βS) + μβS ,

wT

NT
l
′
(βT ) + μβT

]
(9)

where l
′
(βS) and l

′
(βT ) are the gradient of the negative log-

partial likelihood as shown in Eq.(6), and these two terms share
the same formulation

l
′
(β) = −

K∑
i=1

⎧⎨
⎩

∑
j∈Di

Xj − di

∑
j∈Ri

Xj exp(Xjβ)∑
j∈Ri

exp(Xjβ)

⎫⎬
⎭ (10)

coresponding to the source and target datasets, respectively.

The optimization problem in Eq.(8) can be solved effi-
ciently via the FISTA based algorithm (refer to the Appendix
for more details) with the general updating step,

B(i+1) = πP (S
(i) − 1

γi
g

′
(S(i))) (11)

where S(i) = B(i) +αi(B
(i)−B(i−1)) = [S

(i)
S , S

(i)
T ] are two

search points of the source task and target task, respectively.
αi is the combination scaler, g

′
(S(i)) is the gradient of g(·) at

point S(i), 1
γi

is the possible biggest stepsize which is chosen

by line search, and πP (·) is the l1,2-regularized Euclidean
projection:

πP (G(S(i))) =min
1

2
‖ B −G(S(i))) ‖2F +λ ‖ B ‖2,1 (12)

where G(S(i)) = S(i) − 1
γi
g

′
(S(i)). An efficient solution

(Theorem 1) of Eq.(12) has been proposed in [4].

Theorem 1: Given λ, the primal optimal point B̂ of
Eq.(12) can be calculated as:

B̂j=

⎧⎪⎨
⎪⎩

(
1− λ

‖G(S(i))j‖2

)
G(S(i))j if λ > 0, ‖ G(S(i))j ‖2> λ

0 if λ > 0, ‖ G(S(i))j ‖2≤ λ
G(S(i))j if λ = 0

(13)

where G(S(i))j is the jth row of G(S(i)), and B̂j is the jth

row of B̂.

1) Complexity Analysis: The main cost per iteration of
our optimization scheme is the computation of g(·) and g

′
(·),

more specifically, the computation of the negative log-partial
likelihood and its gradient. From Eq.(6) and Eq.(10), we can
see that, at each failure time point Oi, one needs to calculate∑

j∈Ri
eXjβ and

∑
j∈Ri

Xje
Xjβ ; thus, for all failure times, it

needs O(N2p) calculations, because Ri has O(N) elements.
To speedup the training process, we employ the risk set
updating method proposed in [6] which is given as follows.∑

j∈Ri+1

eXjβ =
∑
j∈Ri

eXjβ −
∑

j∈(Ri−Ri+1)

eXjβ (14)

∑
j∈Ri+1

Xje
Xjβ =

∑
j∈Ri

Xje
Xjβ −

∑
j∈(Ri−Ri+1)

Xje
Xjβ

Here, we only need to calculate
∑

j∈R1
eXjβ and∑

j∈R1
Xje

Xjβ . Then for the subsequent failure time
point Oi, we subtract the contribution from instances which
are failed or censored between Oi−1 and Oi. Therefore,
the calculations of l(β) and l

′
(β) are both reduced to

O(Np), and the computation cost of g(·) and g
′
(·) are both

O((NS +NT )p).

In our transfer learning problem, there are only two tasks
(source and target tasks), so the Euclidean projection in Eq.(12)
can be efficiently calculated in O(2p) = O(p). Therefore,
the optimization procedure solves the optimization problem
in Eq.(7) with a time complexity of O( 1√

ε
(NS + NT )p) for

achieving an accuracy of ε.

D. Solution Path and Strong Rule

Usually, in the learning process, the model has to be trained
based on a series of values for λ, and the best λ is selected
via cross-validation. In this paper, we employ the warm-start
approach given in [26] to build the solution path; initialize λ to
a sufficiently large number, which forces B to a zero matrix,
and then gradually decreases λ in each learning iteration. For
a new λ, the initial value of B is the estimated B learned from
the previous λ, so the initial value of B is not far from the
optimal value, and the algorithm will converge within a few
iterations.

Firstly, λmax, the smallest tuning parameter value which
forces B to a zero matrix, needs to be calculated. From Eq.(13)
we can see that if ‖ G(S(0))j ‖2< λ for all j, then B = 0 is
the optimal solution. Thus, we set

λmax = max
j
‖ G(S(0))j ‖2 (15)

= max
j
‖ S(0)

j − 1

γ0
g

′
(S(0))j ‖2= max

j
‖ g′

(0)j ‖2
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to be the first λ, where g
′
(·)j is the jth row of g

′
(·).

If min(NS , NT ) ≥ p we set λmin = 0.0001λmax, else
we set λmin = 0.05λmax. In our experiments, we search
m different λ values in total, and for the kth step λk =
λmax(λmin/λmax)

k/m.

The FISTA based learning scheme is an efficient method
to solve the transfer learning problem proposed in Eq.(7).
However, if the feature dimensionality (p) is extremely large,
the proposed optimization approach will still take substantial
amount of time. Screening is a state-of-the-art technology
which is able to efficiently identify features whose corre-
sponding coefficients are guaranteed to be zero. Removal of
these features will dramatically reduce the feature dimension;
thus, screening is able to improve the efficiency of many
sparse models [27]. Our optimization problem in Eq.(7) can
be rewritten as

min
B

g(B) + λ

p∑
j=1

‖ Bj ‖2 (16)

where Bj stands for the jth row of B. Eq.(16) belongs to the
general Lasso-type problems, and based on the the Karush-
Kuhn-Tucker (KKT) conditions, Tibshirani et al. proposed
the strong rules for this type of problems [12]. The KKT
conditions for Eq.(16) are

g
′
(B̂)j = λθj for j = 1, 2, · · · , p (17)

where B̂ is the optimal solution and θj is a subgradient of

‖ B̂j ‖2, which satisfies ‖ θj ‖2≤ 1 and ‖ θj ‖2< 1 implies

B̂j = 0. Based on the above KKT conditions and [12, Section
6, page 17], for our problem the sequential strong rule for
Eq.(16) to discard inactive features (corresponding coefficients
are zero) is as follows.

Theorem 2: Given a sequence of parameter values λmax =
λ0 > λ1 > · · · > λm, and suppose the optimal solution B̂(k−
1) at λk−1 is known. Then for any k = 1, 2, · · · ,m the jth

feature will be discarded if

‖ g′
(B̂(k − 1))j ‖2< 2λk − λk−1 (18)

and the corresponding coefficient B̂(k)j will be set to 0.

However, based on the experimental analysis in [12], we
know that, Theorem 2 might mistakenly discard active features
(corresponding coefficients are nonzero), so we need to check
KKT conditions of the discarded features. Let V d and V s

denote the index set of discarded features and selected features,
respectively. From Theorem 2, we get B̂(k)j = 0, ∀j ∈ V d,
and based on Eq.(13) we know that if

‖ g′
(B̂(k))j ‖2≤ λk ∀j ∈ V d

is true, then B̂(k) is the optimal solution at λk. Otherwise, V s

need to be updated via V s = V s ∪ V v where

V v =
{
j
∣∣∣j ∈ V d, ‖ g′

(B̂(k))j ‖2> λk

}
(19)

is the index set of mis-discarded features.

Above all, Figure 1 summarizes our proposed model with
solution path and strong rule. Firstly, λmax will be calculated
by Eq.(15) as the starting searching point. Next, the strong rule
will be used to discard inactive features, and the model will be

Let k = 0, B̂(0) = 0,
calculate λ0 = λmax by Eq.(15)

k = k+1

k > m StopRecord B̂(k)

Calculate λk and let B(0) = B̂(k − 1)

Discard inactive features by
Theorem 2, get V s and V d

Call Algorithm 1 (in Appendix)
based on features in V s

with initial B(0), get B̄

Compute V v by Eq.(19)
to check KKT conditions

V v = ∅Update
B̂(k) = B̄

Update
V s = V s∪V v

Update
B(0) = B̄

yes

no

yes

no

Fig. 1: Flowchart for Transfer-Cox algorithm with strong rule.

trained with the selected features. To prevent mis-discarding,
we then have to check the KKT conditions. If there are any
mis-discarded features, we have to update the set of selected
features and retrain the model; if not, we can train a model
based on a new λ. In order to ensure the reproducibility of our
work, the codes of Transfer-Cox model with strong rule are
made available at this github website 1.

IV. EXPERIMENTAL RESULTS

In this section, we will first describe the datasets used in our
evaluation and demonstrate the prediction performance of the
proposed Transfer-Cox model. Then we will experimentally
demonstrate the efficiency of the screening methods and the
scalability of the proposed algorithm. Finally, we perform a
detailed study on the biomarkers selected by the proposed
algorithm on different cancer types and show their biological
significance as well.

A. Dataset Description

For our model evaluation, we use publicly available
high-dimensional gene expression cancer survival benchmark
datasets 2 from The Cancer Genome Atlas (TCGA) [28]. In this
paper, we perform knowledge transfer in survival analysis by
analyzing the microarray gene expressions for different cancer
types. We have labeled data in all cancer types. The dataset

1https://github.com/MLSurvival/TransferCox
2Downloaded from https://cran.r-project.org/web/packages/dnet/index.html
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contains somatic mutational profiles for 3, 096 cancer patients
with survival information, and for each patient the relative
activity of 19, 171 genes are measured. These gene values are
considered to be the features in our data. The cancer patients
belong to one of the 12 major cancer types: bladder urothelial
carcinoma (BLCA), breast adenocarcinoma (BRCA), colon
carcinoma (COAD), rectal carcinoma (READ), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), acute
myeloid leukaemia (LAML), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), ovarian serous carci-
noma (OV) and uterine corpus endometrial carcinoma (UCEC).

TABLE II: Basic statistics of the selected 8 cancer types.

Data # Instances # Uncensored # Censored
BRCA 763 90 673

GBM 275 176 99

HNSC 300 119 181

KIRC 417 136 281

LAML 185 117 68

LUAD 155 50 105

LUSC 171 68 103

OV 315 181 134

In our experiments, the goal is to improve the performance
of survival prediction for a particular cancer type. Hence, in our
transfer learning setting, this specific cancer type is considered
to be the target domain and the data from remaining types
is considered to be the source domain. Table II shows the
basic statistics of the cancer types considered for our analysis.
The number of uncensored instances in four cancer types are
too small and hence these four cancer types were eliminated
for our evaluation. In our experiment, for the remaining 8
cancer types, each of them will be considered as the target
domain and the data from the remaining cancer types will be
considered as the source domain. In this table, the columns
titled “# Uncensored” and “# Censored” correspond to the
number of uncensored and censored instances in each cancer
type, respectively. For these cancer types, the event of interest
is patient death; therefore, an uncensored instance refers to the
patient being dead during the study, while a censored instance
refers to the corresponding patient is still alive at the last
observed time (which will be the censored time).

B. Performance Comparison

To the best of our knowledge, neither transfer learning
nor multi-task learning for survival analysis has been studied
in the literature. Hence, we can only compare our proposed
Transfer-Cox with standard related survival analysis meth-
ods. As our Transfer-Cox is a Cox-based model and l2,1-
norm is a Lasso-type penalty, we choose Cox model and
two other popular regularized Cox models: LASSO-COX and
EN-COX as comparison methods. In our experiments, these
three survival analysis methods are applied both on the target
dataset (the specified cancer type) and the entire dataset. For
simplicity, they are referred to as “Local” models and “Global”
models, respectively. It should be noted that, in “Global”
models, although each model is built on the entire dataset,
the performance is measured only on the target dataset. For
a “Local” model, the training and testing are performed only
on the target cancer type (using cross validation). For a global

model, the training is done on the source+target samples and
the testing is done on the target cancer samples.

The concordance index (C-index), or concordance proba-
bility, is used to measure the performance of prediction models
in survival analysis [29]. Let us consider a pair of bivariate
observations (y1, ŷ1) and (y2, ŷ2), where yi is the actual
observation, and ŷi is the predicted one. The concordance
probability is defined as

c = Pr(ŷ1 > ŷ2|y1 ≥ y2). (20)

By definition, the C-index has the same scale as the area under
the ROC curve (AUC) in binary classification, and if yi is
binary, then the C-index is same as the AUC. In the standard
Cox and regularized Cox models, the hazard ratio is modeled
to describe the time-to-event data. The instances with a low
hazard rate should survive longer, so the C-index is calculated
as follows:

c =
1

num

∑
i∈{1···N |δi=1}

∑
yj>yi

I[Xiβ̂ > Xj β̂] (21)

where num denotes the number of comparable pairs and I[·]
is the indicator function.

In Table III, we show the performance results of C-index
values of different algorithms using 5-fold cross validation.
The best results are highlighted in bold. The results show
that our proposed Transfer-Cox model outperforms the other
state-of-the-art models. We also notice that for 7 out of the 8
cancer types, the “Global” Cox model performs better than
the “Local” Cox model, which indicates that having more
samples from other cancer types will help in generalization
and alleviate over-fitting. However, for 4 cancer types in
the “Local” regularized Cox models perform better than the
“Global” regularized Cox models; this phenomenon reflects
that, from the genomics perspective, the preventable factors
and reflections of different cancer types are clearly different.

C. Empirical Analysis of Efficiency

In this section, we will demonstrate the efficiency of the
strong rule and also show the scalability performance of the
proposed Transfer-Cox algorithm.

1) Efficiency of strong rule: To measure the efficiency of
applying strong rule, we measure the rejection ratio and screen
ratio which are defined as follows:

rejection ratio =
number of identified inactive features

number of true inactive features

screen ratio =
number of selected features

original feature dimension

Figure 2 shows the rejection ratio and screen ratio of the strong
rule on gene expression data of 8 cancer types. In Figure
2(a)–(f) the λmin is set equal to 0.05λmax, as mentioned
in Section III-D. However, under this setting, less than one
hundred features will be selected as active features in “LUSC”
and “OV”, so we set λmin = 0.01λmax and draw the screening
ratio in Figure 2(g) and Figure 2(h), for these two cancer
types. All eight plots in Figure 2 reflect that the strong
rule in the proposed Transfer-Cox model can successfully
identify a majority of the inactive features (high rejection
ratio) and dramatically decrease the feature dimensionality
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TABLE III: Performance comparison of the proposed Transfer-Cox method and other existing related methods using C-index
values (along with their standard deviations).

Dataset Local Global Transfer-CoxCOX LASSO-COX EN-COX COX LASSO-COX EN-COX

BRCA
0.4348 0.3868 0.4055 0.5547 0.5822 0.5811 0.5869

(0.0756) (0.0418) (0.0426) (0.0238) (0.0394) (0.0411) (0.0456)

GBM
0.5064 0.5741 0.5613 0.5592 0.5841 0.5842 0.6136

(0.0677) (0.0181) (0.0260) (0.0243) (0.0131) (0.0130) (0.0300)

HNSC
0.5663 0.5591 0.5788 0.5794 0.5528 0.5542 0.6157

(0.0759) (0.0527) (0.0491) (0.0059) (0.0776) (0.0789) (0.0379)

KIRC
0.5689 0.6001 0.6061 0.5553 0.5903 0.5908 0.6255

(0.0322) (0.0206) (0.0216) (0.0603) (0.0401) (0.0386) (0.0393)

LAML
0.5599 0.6861 0.6838 0.6057 0.6591 0.6580 0.6939

(0.0887) (0.0189) (0.0227) (0.0397) (0.0103) (0.0141) (0.0305)

LUAD
0.3832 0.5327 0.5435 0.4463 0.5354 0.5378 0.5877

(0.1371) (0.0840) (0.0337) (0.0443) (0.1026) (0.1040) (0.0409)

LUSC
0.5250 0.4670 0.4861 0.5520 0.5798 0.5770 0.5905

(0.0719) (0.1009) (0.0598) (0.0426) (0.0465) (0.0584) (0.0374)

OV
0.5132 0.4991 0.4971 0.5438 0.5708 0.5697 0.6167

(0.0260) (0.1043) (0.0911) (0.0826) (0.0850) (0.0825) (0.0342)
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Fig. 2: Efficiency of strong rule: plots of the rejection ratio and screen ratio on gene expression data for 8 cancer types.

(low screen ratio) in the learning phase. Table IV presents
the running time of the Transfer-Cox with and without strong
rule and the speedup achieved. All the timing calculations
are based on running the experiments on an Intel Xeon 3
GHz processor with 12 cores (24 threads). Speedup is the
ratio of the running time of Transfer-Cox without screening
to it’s running time with screening. We only show the result
on one cancer type “LUAD” because without the screening
procedure, the computation of Transfer-Cox takes very long
(more than one day). In addition to this cancer data, we also
generated two synthetic datasets “Syn1” and “Syn2” using
the the function “simple.surv.sim” in survsim package [30].
These two datasets have 500 instances in source domian, 100
instances in the target domian, and a maximum follow-up

time of 1, 000 days. All the features are generated based on
the uniform distribution, and each of them have a different
random setted value interval. The coefficient vector is also
randomly generated and remain in [−1, 1]. The observed time
is assumed to follow a Log-logistic distribution and time to
censorship follows a Weibull distribution. The datasets in
scalability analysis are also generated in the same manner
with different sample size and feature dimension. The results
show that the screening method can dramatically speed up the
algorithm and become more effective as the feature dimension
increases (see Table IV).

2) Scalability of Transfer-Cox: We empirically evaluate the
scalability of the proposed Transfer-Cox model with respect to
the sample size (N = NS +NT ) and the number of features
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Fig. 3: Scalability resuts: Plots of the runtimes for the Transfer-Cox model. The times denote total runtimes for 100 λ values
averaged over five trials.

TABLE IV: Running time comparison for the Transfer-Cox
model with and without screening rule for 100 λ values with
default setting (λmin = 0.05λmax).

Data p
With Without speedupscreening screening

Syn 1 5,000 768 (s) 2944 (s) 3.83

Syn 2 10,000 1286 (s) 6084 (s) 4.73

LUAD 19,171 3.59 (hrs) 35.13 (hrs) 9.78

(p). In this experiment, we did not use strong rule as it will
influence the the scalability analysis with respect to p. This
is because the strong rule will discard features and make p
unstable with different λ values, which is clearly shown in
Figure 2. Figure 3(a) shows runtimes for fixed N and varying
p, and Figure 3(b) shows runtimes for fixed p and varying N .
These two plots suggest that the runtime of Transfer-Cox is
close to being linear with respect to both N and p.

D. Biomarker Discovery

Biomarkers are important indicators used to diagnose a
particular disease in a clinical setting. From a clinical per-
spective, it is known that different cancer types should share
some common significant biomarkers such as one particular
anticarcinogen, chemotherapy dose, and radiotherapy dose.
However, at the genetic level, the preventable factors and
reflections of different cancer types are clearly different. In
Table V, we show a list of top 10 gene expression features
for each cancer type based on their contributions (coefficient
weights) in the Transfer-Cox model and find that most of the
top-ranked gene expression features are usually related to the
genetics of the corresponding cancer types. For example, in
BRCA, CD6 is heterotypic adhesion with activated leukocyte
cell adhesion molecule which is in breast cancer lines acting
in melanoma tumor progression and resected breast tumors
[31]. In GBM, AK5 affects the cyclophilin B depletion on
GBM cell line3. In HNSC, the content of MRPL48 is one
of the high expression genes to influence the HNSC as one
essential mitochondrial ribosomal protein4. ITGB4 is the high

3http://www.ncbi.nlm.nih.gov/geoprofiles/104754733
4http://amp.pharm.mssm.edu/Harmonizome/gene/MRPL48

expression of cell adhesion models as heterogeneous immuno-
histochemical feature in KIRC [32]. The lack of GSTM1
will increase the risk of LAML when GSTM1 gene is null
genotype among LAML patients [33]. For LUSC, APOA1BP
is in human serum, cerebrospinal and spinal fluid to help
body’s transport and metabolism related to lung cancer cell
lines reported in human body fluids in pathological conditions
[34]. For LUAD, MIR655 is one of the discovered class of
small RNS which is linked to the development and progression
of cancer in lung [35]. For OV, ST14 is in the papillary serous
subtype of ovarian tumors reported by cytogenetic analysis
of primary ovarian carcinomas and ovarian cancer cell lines
[36]. It should be noted that some of the remaining features
listed can be strong potential candidates for further biological
testing for generating new hypotheses in the future. From this
analysis, it is clear that the proposed Transfer-Cox algorithm
not only provides better results in an efficient manner, but
also inherently provides insights about the critical features for
further analysis.

V. CONCLUSION

In this paper, we developed a novel transfer learning model
for survival analysis. The proposed Transfer-Cox is a regular-
ized Cox regression model that is able to efficiently select
common hidden features in high-dimensional (right) censored
data to transfer knowledge from the source domain to the target
domain. The l2,1-norm penalty is used to induce common
sparseness into both source and target domains thus learning a
shared low-dimensional feature representation for knowledge
transfer and alleviating over-fitting the data, especially in
high-dimensional scenarios. In order to speedup the learning
scheme, we use the idea of screening and extend the strong
rule to the proposed Transfer-Cox model. Thus, our model is
able to efficiently identify most of the inactive features, and
the computational cost of learning Transfer-Cox is dramatically
reduced by the removal of the inactive features in the training
phase. We compared the performance of the proposed Transfer-
Cox algorithm with several state-of-the-art censored regression
methods using publicly available high-dimensional microarray
gene expression data from different cancer types. We also
demonstrated the efficiency of the strong rule and showed
linear scalability of the proposed model with respect to the
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TABLE V: Top 10 gene expression features obtained for each cancer type using Transfer-Cox model.

Cancer Type: BRCA Cancer Type: GBM

Symbol Description Symbol Description
SSBP4 single stranded DNA binding protein 4 CALR3 calreticulin 3
METTL22 methyltransferase like 22 AK5 adenylate kinase 5
SGCD sarcoglycan (35kDa dystrophin-associated glycoprotein) PSMF1 proteasome inhibitor subunit 1 (PI31)
LYPD6B LY6/PLAUR domain containing 6B SLC31A2 solute carrier family 31 (copper transporter), #2
FCGR1B Fc fragment of IgG, high affinity Ib, receptor (CD64) PPP1R12C protein phosphatase 1, regulatory subunit 12C
CXCL14 chemokine (C-X-C motif) ligand 14 CHORDC1 cysteine and histidine-rich domain containing 1
RAB27A RAB27A, member RAS oncogene family PROX2 prospero homeobox 2
CD6 CD6 molecule OR1A1 olfactory receptor, family 1, subfamily A, member 1
GOLGA8DP golgin A8 family, member D, pseudogene SRRM4 serine/arginine repetitive matrix 4
PTGR2 prostaglandin reductase 2 IL32 interleukin 32

Cancer Type: HNSC Cancer Type: KIRC

Symbol Description Symbol Description
MRPL48 mitochondrial ribosomal protein L48 ITGB4 integrin, beta 4
MAP2K1 mitogen-activated protein kinase kinase 1 CCT8L2 chaperonin containing TCP1, subunit 8 (theta)-like 2
NSUN4 NOP2/Sun domain family, member 4 TP73-AS1 TP73 antisense RNA 1
OVOL1 ovo-like zinc finger 1 PGM1 phosphoglucomutase 1
SSX9 synovial sarcoma, X breakpoint 9 MEPE matrix extracellular phosphoglycoprotein
INSIG1 insulin induced gene 1 CXorf40B chromosome X open reading frame 40B
SP9 Sp9 transcription factor BANK1 B-cell scaffold protein with ankyrin repeats 1
DDIT4 DNA-damage-inducible transcript 4 C10orf120 chromosome 10 open reading frame 120
EPN2 epsin 2 PRDX3 peroxiredoxin 3
EWSR1 EWS RNA-binding protein 1 C10orf91 chromosome 10 open reading frame 91

Cancer Type: LAML Cancer Type: LUSC

Symbol Description Symbol Description
NPIPB15 nuclear pore complex interacting protein family, #B15 C10orf76 chromosome 10 open reading frame 76
LOC285696 uncharacterized LOC285696 APOA1BP apolipoprotein A-I binding protein
GSTM1 glutathione S-transferase mu 1 MIR1267 microRNA 1267
IGKV2-24 immunoglobulin kappa variable 2-24 MIR509-2 microRNA 509-2
C2orf83 chromosome 2 open reading frame 83 IGLC7 immunoglobulin lambda constant 7
MIR1255A microRNA 1255a MIR1251 microRNA 1251
MTFR1L mitochondrial fission regulator 1-like P3H2 prolyl 3-hydroxylase 2
CCKBR cholecystokinin B receptor IMP4 IMP4, U3 small nucleolar ribonucleoprotein

SULT4A1 sulfotransferase family 4A, member 1 MAPKAPK3 mitogen-activated protein kinase-activated
protein kinase 3

LINC00313 long intergenic non-protein coding RNA 313 CNTROB centrobin, centrosomal BRCA2 interacting protein

Cancer Type: LUAD Cancer Type: OV

Symbol Description Symbol Description
MIR655 microRNA 655 NADSYN1 NAD synthetase 1
GATC glutamyl-tRNA(Gln) amidotransferase, subunit C DNMT1 DNA (cytosine-5-)-methyltransferase 1
ZNF419 zinc finger protein 419 VMO1 vitelline membrane outer layer 1 homolog (chicken)
TRIM34 tripartite motif containing 34 OR2A1 olfactory receptor, family 2, subfamily A, member 1
PAK1IP1 PAK1 interacting protein 1 ST14 suppression of tumorigenicity 14 (colon carcinoma)
C11orf72 chromosome 11 open reading frame 72 FCRL4 Fc receptor-like 4
KLRC2 killer cell lectin-like receptor subfamily C, member 2 LRRTM1 leucine rich repeat transmembrane neuronal 1
WNT7A wingless-type MMTV integration site family, # 7A RFX7 regulatory factor X, 7

MST1P2 macrophage stimulating 1 (hepatocyte growth factor- SPRED1 sprouty-related, EVH1 domain containing 1
like) pseudogene 2

AP2S1 adaptor-related protein complex 2, sigma 1 subunit BET1L Bet1 golgi vesicular membrane trafficking protein-like

number of samples and the number of features. In the future,
we will design new safe screening method for Transfer-Cox
which does not need to check the KKT conditions. We also
plan to develop other instance-based and feature-based transfer
learning methods for survival analysis.
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APPENDIX

Algorithm 1: FISTA algorithm for Transfer-Cox
Input: Source dataset DS , Target dataset DT ,

Initial coefficient matrix B(0), w, μ, λ
Output: B̄

1 Initialize: B(1) = B(0), d−1 = 0,
d0 = 1,γ0 = 1,i = 1;

2 repeat
3 Set αi =

di−2−1
di−1

,

S(i) = B(i) + αi(B
(i) −B(i−1));

4 for j = 1, 2, · · · do
5 Set γ = 2jγi−1;

6 Calculate B(i+1) = πP (S
(i) − 1

γ g
′
(S(i)));

7 Calculate Qγ(S
(i), B(i+1));

8 if g(B(i+1)) ≤ Qγ(S
(i), B(i+1)) then

9 γi = γ, break ;
10 end
11 end

12 di =
1+
√

1+4d2
i−1

2 ;
13 i = i+ 1;

14 until Convergence of B(i);

15 B̄ = B(i);

Algorithm 1 outlines the learning procedure of FISTA
algorithm to solve optimization problem in Eq.(7). In lines
4-11, the optimal γi is chosen by the backtracking rule based
on [5, Lemma 2.1, page 189], γi is greater than or equal to the
Lipschitz constant of g(·) at S(i), which means γi is satisfied
for S(i) and 1

γi
is the possible biggest stepsize. In line 7,

Qγ(S
(i), B(i+1)) is the tangent line of g(·) at S(i), which can

be calculated as

Qγ(S
(i), B(i+1)) (22)

= g(S(i)) +
γ

2
‖ B(i+1) − S(i) ‖2 +〈B(i+1) − S(i), g

′
(S(i))〉
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