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Abstract—Building effective predictive models from high-
dimensional data is an important problem in several domains
such as in bioinformatics, healthcare analytics and general
regression analysis. Extracting feature groups automatically from
such data with several correlated features is necessary, in order
to use regularizers such as the group lasso which can exploit
this deciphered grouping structure to build effective predic-
tion models. Elastic net, fused-lasso and Octagonal Shrinkage
Clustering Algorithm for Regression (oscar) are some of the
popular feature grouping methods proposed in the literature
which recover both sparsity and feature groups from the data.
However, their predictive ability is affected adversely when the
regression coefficients of adjacent feature groups are similar,
but not exactly equal. This happens as these methods merge
such adjacent feature groups erroneously, which is also called
the misfusion problem. In order to solve this problem, in this
paper, we propose a weighted �1 norm-based approach which
is effective at recovering feature groups, despite the proximity
of the coefficients of adjacent feature groups, building extremely
accurate predictive models. This convex optimization problem
is solved using the fast iterative soft-thresholding algorithm
(FISTA). We depict how our approach is more effective at
resolving the misfusion problem on synthetic datasets compared
to existing feature grouping methods such as the elastic net, fused-
lasso and oscar. We also evaluate the goodness of the model on
real-world breast cancer gene expression and the 20-Newsgroups
datasets.

Keywords-regression; regularization; feature grouping; high-
dimensional data.

I. INTRODUCTION

Extracting feature groups from high-dimensional data is

an extremely important problem in several domains such as

bioinformatics, healthcare analytics and general regression

analysis. Real-world datasets from these domains have an

inbuilt feature grouping structure which is difficult to decipher

apriori. Groups of features can be interpreted as clusters where

features within each cluster (group) are highly correlated and

differ significantly from the features in other groups. However,

this task is conceptually different from clustering the features

or co-clustering, as these methods are primarily used in an

unsupervised setting, whereas feature grouping is done in a

supervised setting such as classification or regression.

One of the advantages of developing accurate feature group-

ing algorithms is to discover inherent feature groups present in

the dataset, and then utilize structured sparsity methods such as

the group lasso along with this discovered grouping structure

to build effective models with good predictive ability [1]–

[5]. It is also desirable for regression models built on high-

dimensional data to recover cohesive and homogenous feature

groups with good accuracy, as this reduces the error variance

of the model and increases its generalizability.

Existing regularization methods such as lasso are not capa-

ble of performing feature grouping. Elastic net, fused-lasso and

oscar are popular methods which perform feature grouping,

but the elastic net does not promote equality of coefficients

among the features in each group [6]. The fused-lasso [7]

is not capable of grouping positive and negative variables

together even if they share similar magnitude of regression

coefficients, and oscar [8] solves a quadratic programming

(QP) problem and it’s computationally expensive to compute.

More importantly, these feature grouping methods are not

capable of solving the misfusion problem which is explained

below.

A. The Misfusion Problem

In this section, we present an illustration of the misfusion
problem on a small synthetic dataset. In Figure 1, we present

a scenario of how feature grouping algorithms such as oscar

are unable to resolve the misfusion problem [9]. We consider

a small dataset with seven features F = {f1, f2, . . . f7}
and plot these feature indices on the X-axis and their cor-

responding ground truth regression coefficient values β∗ on

the Y-axis in Figure 1. Ground truth β∗ values are segregated

into three groups which are G1={f1, f2, f3} with β∗
G1

=0.21,

G2={f4, f5} with β∗
G2

=0.24, and G3={f6, f7} with β∗
G3

=0.4.

The response variable Y =Xβ∗ + ε is created where X ∈
R
100×7 is a random feature vector matrix created using the

normal distribution N (0,1), and ε is the error term which is

created using N (0,1). Subsequently, we fit an oscar regression

model on this dataset and we plot the learned regression

coefficient values (β) on the Y-axis in Figure 1(b).

One can clearly observe from Figure 1(b) that oscar has mis-
fused groups G1 and G2 without recovering G2 correctly. This

is due to the proximity of their regression coefficient values

and oscar is unable to differentiate features in group G1 from

G2. In contrast to existing methods, our approach presented

in this paper effectively resolves the misfusion problem as

can be seen in Figure 1(c), with a minor trade-off being the

complete recovery of the ground truth. This misfusion problem
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Fig. 1: A simple illustration demonstrating the misfusion problem and the results obtained by applying existing methods and

our approach.

can be seen in many high-dimensional regression problems

where coefficient values vary marginally across feature groups,

and it needs to be addressed appropriately in order to build

robust predictive models.

B. Our Contributions

The major contributions of this paper are as follows.

• We propose a novel weighted �1 norm regularized linear

regression algorithm for feature grouping which solves the

misfusion problem to build a more effective predictive

model compared to existing feature grouping methods such

as the elastic net, fused-lasso and oscar.

• We formulate this as a convex optimization problem and

solve it efficiently using the fast iterative soft-thresholding

algorithm (FISTA).

• We evaluate the goodness of prediction of our approach

on high-dimensional real-world datasets, namely, the 20-

Newsgroups and breast cancer gene-expression datasets. We

also evaluate our approach on three synthetic datasets and

visualize the feature groups obtained.

This paper is organized as follows. In Section II, we describe

the related work on feature grouping algorithms. In Section III,

we present the preliminaries needed to comprehend our ap-

proach. In Section IV, we present our proposed weighted

�1 approach by explaining the formulation of the proximal

operator and the corresponding algorithm. In Section V, we

conduct experiments to evaluate the performance of our ap-

proach compared to baseline models on the 20-Newsgroups,

breast cancer gene-expression and synthetic datasets.

II. RELATED WORK

In this section, we briefly review existing methods for

supervised feature grouping. The elastic net [6] which uses

a convex combination of the �1 and �2 norms groups corre-

lated features together. However, the regression coefficients

of features within a group are not equal which leads to

the misfusion problem explained earlier. The kernel elastic

net [12] is an extension of the elastic net which can capture

feature correlation more effectively using a kernel matrix. It

was proven to outperform the elastic net for highly correlated

data but it does not address the misfusion problem.

The fused-lasso [7] uses a combination of the �1 norm

and a smoothness term which is used to capture the differ-

ence among the regression coefficients of adjacent features.

Penalizing this difference promotes equality of coefficients

among features which helps to capture feature groups. In

this manner, the fused-lasso improves over the elastic net

by promoting feature coefficient equality within a group.

However, it assumes that such a temporal ordering exists

among adjacent features in the real-world data which need

not always be observed.

Oscar [8] improves over both the fused-lasso and the

elastic net by capturing homogeneous groups and it does

not assume any temporal ordering among features. However,

the quadratic programming-based solver employed in oscar

is not scalable. The alternate direction method of multipliers

(ADMM) [11] has been used to accelerate the graph-based

oscar regression [10], but this modified approach requires the

feature graph to be provided apriori which need not be known

in advance for most datasets.

In contrast to the aforementioned methods, the main goal of

our weighted �1 norm-based formulation is to obtain groups

of features efficiently by directly resolving the misfusion

problem. This is also different from the weighted �1 norm

proposed in [13], where the focus is on learning sparsity

efficiently with fewer examples and not feature grouping. In

addition, in this approach the weights are optimized over

several iterations, whereas our approach uses a fixed set of

weights which satisfy a pre-specified ordering scheme which

is explained in the next section.

III. PRELIMINARIES

In this section, we present the preliminaries needed to

comprehend our weighted �1 norm-based algorithm for feature
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TABLE I: Notations used in this paper.

Notation Description

n number of instances.

p number of features.

X R
n×p feature matrix.

y R
n response variable.

β R
p regression coefficient vector.

|x|↓ non-increasing sorted |x|.
P (x) permutation matrix.

Ω(β) weighted �1 norm.

w R
p weight vector.

K+m monotone non-negative cone.

grouping. Table I presents important terms and notations used

in this paper. We now explain the interpretation of each

of these notations in detail. Lower case letters x, y denote

column vectors and their transposes are denoted as xT , yT ,

respectively. The ith and jth components of these vectors are

written as xi and yj , respectively. Matrices are written in

upper case (such as X) and the ith column vector of X is

represented using Xi. The vector with the absolute values of

the components of the vector x is written as |x|. For a vector

x ∈ R
p the ith largest component of x is represented using

x[i]. This implies that x[1] ≥ x[2] ≥ . . . ≥ x[p]. Using this

analogy, we define |x|↓ which represents the vector obtained

by sorting the absolute values vector of x (denoted by |x|) in

non-increasing order so that |x|[1] ≥ |x|[2] ≥ . . . ≥ |x|[p] and

ties are broken arbitrarily. This vector based transformation of

|x| to |x|↓ can be done using the permutation matrix P , i.e,

|x|↓ = P (|x|)|x|. The permutation matrix follows the property

P (|x|)−1=P (|x|)T and it sorts the entries of |x| in a non-

increasing order. With this background, we now discuss the

formulation of oscar briefly and introduce the weighted �1
norm.

Oscar is convex and shape of the norm ball is octagonal.

The oscar regularizer is defined as in Eq. (1), where the �1
term promotes sparsity and the pairwise �∞ term promotes

equality in magnitude of each pair of elements |βi|, |βj | among

the
p(p−1)
2 feature pairs present in the dataset. This can also

be interpreted as the feature grouping component of oscar.

h(β) = λ1 ‖ β ‖1 + λ2
∑
i<j

max{|βi|, |βj |} (1)

We now define the weighted �1 norm and the regularized

linear regression problem in Eq. (2).

arg min
β∈Rp

1

2
‖ y − Xβ ‖22 + Ω(β) (2)

Ω(β) =‖ w � |β|↓ ‖1
In this equation, w is a weight vector of non-increasing

weights, which is defined as w = {w1 ≥ w2 ≥ . . . ≥ wp ≥ 0}
and � is the element-wise multiplication (Hadamard Product).

This can be written as w ∈ K+m which represents the monotone

non-negative cone [14]. This definition of the weighted �1

norm now makes the oscar regularizer a specific case of this

weighted �1 problem with the weights as (wi = λ1 + λ2(p −
i) ∀i = 1, 2, . . . p.). Apart from oscar, other regularizers such

as the lasso and �∞ also become special cases of the weighted

�1 norm. When all the wi values are fixed, the weighted �1
norm becomes the weighted lasso. Similarly, when w1 = 1
and wi = 0, ∀ i = 2, 3, . . . , p, then the weighted �1 norm

becomes the �∞ norm. In the next section, we formulate the

proximal operator [15] for the weighted �1 norm and use it

within an accelerated proximal gradient (APG) algorithm for

solving this problem efficiently.

IV. THE PROPOSED METHOD

In this section, we present an accelerated proximal gradient

FISTA-based algorithm to solve the weighted �1 norm reg-

ularized linear regression problem. This algorithm uses the

proximal operator for the weighted �1 norm and we present

the method for obtaining it efficiently. We also discuss the

complexity of our approach.

A. Proximal operator for Weighted �1 Norm.

The proximal operator for Ω, which is denoted by proxΩ(.)
is defined in Eq. (3) for any v ∈ R

p using the standard

definition of a proximal operator proposed in [15]. We will

now simplify the proximal operator using the steps provided

below and explain the procedure for obtaining it.

proxΩ(v) = arg min
β∈Rp

(
1

2
‖ β − v ‖2 + Ω(β)

)
(3)

In Eq. (3), we must estimate proxΩ(v) in order to employ

it within the FISTA framework. We use the fact that w, β ∈
K+m ⊂ R

p and mention the steps needed to simplify Eq. (3)

further as follows

proxΩ(v) = arg min
β∈K+m

1

2
‖ β − v ‖22 + wTβ (4)

= arg min
β∈K+m

1

2
‖ β − (v − w) ‖22

s.t β1 ≥ β2 ≥ . . . ≥ βp ≥ 0

The simplification yields Eq. (4) which needs to be solved to

obtain proxΩ(v). This computation can be interpreted as con-

sisting of two operations which are (i) obtaining the projection

(v−w) onto the monotone cone Km = {β1 ≥ β2 ≥ . . . ≥ βp}
by solving Eq. (5), and (ii) applying a subsequent projection

of this result onto Rp+ by clipping the negative values.

arg min
β∈Km

1

2
‖ β − (v − w) ‖22 (5)

s.t β1 ≥ β2 ≥ . . . ≥ βp

This projection problem in Eq. (5) has the form as given in

Eq. (6) which is also called the isotonic regression problem

which is a submodular convex optimization problem [16]. To

solve Eq. (5), we use an existing isotonic regression solver
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such as the pool adjacent violators algorithm (PAVA).

arg min
y∈Rp

p∑
i=1

fi(yi) (6)

s.t y1 ≤ y2 ≤ . . . ≤ yp

PAVA [17] is one of the most efficient methods for solving

the isotonic regression problem with O(p logp) time complex-

ity. By applying this PAVA algorithm to solve Eq. (5) and

then by applying the clipping operator to project the result

onto Rp+, we obtain proxΩ(v). This proximal operator is now

used within the FISTA-based algorithm given in Algorithm 1,

which is the proposed weighted �1 norm regularized linear

regression solver.

B. FISTA-based Algorithm

In this section, we present the solver for the weighted �1
norm regularized linear regression problem, which uses the

fast iterative soft-thresholding algorithm (FISTA) [18]. FISTA

is a variant of the iterative soft-thresholding algorithm (ISTA)

which uses the accelerated proximal gradient (APG) method

based on Nesterov’s technique [19]. First-order optimization

methods such as FISTA converge at a rate of O( 1n2 ) compared

to traditional gradient methods which have a slow convergence

rate of O( 1√
n
).

In Algorithm 1, we describe the FISTA-based algorithm

used to learn the regression coefficient vector. The inputs

to the algorithm are X , Y , the Lipschitz constant L which

is estimated using the maximum value among all the Eigen

values (Λ(XTX)). The weight vector w is also provided, and

it is used for the weighted �1 norm computation as given

in Eq. (2). w satisfies the property that w ∈ K
+
m such that

w1 ≥ w2 ≥ . . . ≥ wp ≥ 0. In this algorithm, after initializing

the parameters, proxΩ is computed by solving Eq. (4) using

the PAVA algorithm and the subsequent projection using the

clipping operator onto Rp+. In Lines 4 and 5 the updates

are done as per the accelerated proximal gradient method.

Subsequently, in lines 6-10, the final converged regression

coefficient vector is returned.

C. Complexity Analysis

The number of iterations for the FISTA algorithm to obtain

an ε-optimal solution is O(1/
√

ε). The computation of the

proximal operator for the weighted �1 norm requires solving

Eq. (5) which has a time complexity of O(p logp) as mentioned

earlier for the PAVA algorithm. The projection onto Rp+ using

the clipping operator takes constant time. Hence, the total

time complexity of the algorithm is O

(
1√
ε
(p(n+ logp)

)
. We

observe that for most of the real-world datasets n 
 logp, so

the complexity of this algorithm is O(np/
√

ε).

V. EXPERIMENTAL RESULTS

In this section, we present the experiments conducted to

evaluate the performance of our weighted �1 approach. We

explain the details pertaining to the synthetic dataset creation

and also describe the real-world datasets used. We also explain

Algorithm 1: FISTA-based solver for the weighted �1
norm regularized linear regression.

Input: Feature Vector X ∈ Rn×p, Response vector

Y ∈ Rn, Lipschitz constant L = 2Λmax(X
TX),

Weight vector w, Tolerance parameter tol, max

iterations max iter.

Output: Regression coefficients β ∈ Rp
1 Initialize: β0 ∈ Rp, u1 = β0, t1 = 1;

2 for k=1 to max iter do

3 βk = proxΩ

(
uk − XT (Xuk − y)/L

)
using Eq. (4) ;

4 tk+1 =
1+

√
1+4t2k
2 ;

5 uk+1 = βk +

(
tk−1
tk+1

)
(βk − βk−1) ;

6 if ‖ βk − βk−1 ‖2< tol then
7 break;

8 end
9 end

10 Return βk ;

the implementation details for these methods. We conduct

different experiments to assess the goodness of prediction and

recovery of feature groups using the proposed approach.

A. Datasets Description

1) Synthetic datasets: We created three synthetic datasets

with moderate dimensionality which are Syn-1, Syn-2 and Syn-
3. We include a feature grouping pattern in these datasets

which is specified below. This allows to visualize the goodness

of feature grouping methods for moderate dimensionality

datasets. The response variable in these datasets is created

using the linear regression model which can be written as

y=Xβ∗+ε where β∗ ∈ Rp and ε ∼ N (0, σ2) is the error term.

Features for these datasets are generated as X ∼ N (0, C)
where C=[cij ] is a covariance matrix.

1) Syn-1: σ=3, cij=0.7|i−j|, p=8,

β∗=[ 3,2,1.5,0,0,0,0,0 ]T .

2) Syn-2: σ=3, cij=0.7|i−j|, p=8,

β∗=[ 3,0,0,1.5,0,0,0,2 ]T .

3) Syn-3: σ=15, cij=0.5 when i �= j, and 1 otherwise,

p=40 and β∗=[0, · · · , 0︸ ︷︷ ︸
10

, 2, · · · , 2︸ ︷︷ ︸
10

, 0, · · · , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

]T .

2) 20-Newsgroups dataset: This dataset is a collection

of approximately 20,000 newsgroup documents, partitioned

evenly across 20 different newsgroups1. We extracted 5 pairs

from the 20 different newsgroups to form 5 datasets as given

in Table II. In this table, we use short acronyms to represent

the names of the datasets concisely. We treat each of these

5 pairs as a binary classification problem, where in we label

each document in the dataset with the newsgroup it belongs

to. As a part of the preprocessing step, we do stemming to

1http://qwone.com/∼jason/20Newsgroups/
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TABLE II: Description of the datasets used in our experiments.

Dataset # Features # Instances

Syn-1 8 280

Syn-2 8 280

Syn-3 40 800

breast-cancer 8141 295

ath vs gra 7943 2000

win vs rel 8442 2000

auto vs moto 7094 2000

bb vs hoc 7909 2000

fs vs msw 6678 2000

reduce the redundancy of words and remove the stop words.

We only consider words which appear in atleast 4 documents.

Subsequently, we build a weight matrix using the TF-IDF

method which is commonly used in text analytics to obtain

a feature vector-based representation.

3) Breast Cancer dataset: We use a high-dimensional

breast cancer gene expression dataset2 in our experiments.

This dataset contains information about 8,141 genes for 295

breast cancer tumors. These tumor information were collected

from 295 women suffering from breast cancer. Out of the 295

tumors, 78 are metastatic which are labeled as 1 and 217 are

non-metastatic which are labeled as -1. To decrease the class

imbalance, we duplicate the metastatic class instances twice

before evaluating performance of models used here. This helps

to obtain unbiased results.

B. Performance evaluation

We use the Area Under ROC Curve (AUC) to compare

the performance of the proposed model with the baseline

models. Our proposed weighted �1 norm and its corresponding

proximal operator was implemented in R. The isotone R-

package is used to implement the PAVA algorithm. The R-

package Sparse Modeling Software (SPAMS) [20] was used to

implement algorithms such as the elastic net and fused-lasso.

To calculate AUC we use the R package pROC. The AUC

and standard deviation (std) are obtained using five-fold cross

validation. Parameter tuning of the regularization parameters

was done using a hold-out set for all the baseline models.

The weight vector (w) which follows a pre-specified ordering

in our weighted �1 approach was generated using a Gaussian

Benjamini-Hochberg (BHq) procedure [21]. All codes used for

running the baseline models and our weighted �1 algorithm are

available at this link to ensure reproducibility of our work3.

C. Goodness of Prediction

In Table III we provide the AUC (along with the standard

deviation) for six real-world binary classification tasks. We

obtain the binary classifier output from the regression-based

models by computing the sign of the predicted response

variable. We observe that for all the cases our weighted �1

2http://lbbe.univ-lyon1.fr/-Jacob-Laurent-.html?lang=fr
3https://github.com/Karthikpadthe/ICDM-2016

approach does better compared to the remaining four models.

This proves the effectiveness of our approach for real-world

classification problems.

TABLE III: AUC (std) of our weighted �1 approach compared

to other methods for various real-world high-dimensional

datasets.

Dataset elastic net fused-lasso oscar weighted �1

breast-cancer
0.734

(0.020)

0.776

(0.025)

0.745

(0.039)

0.796
(0.066)

ath vs gra
0.836

(0.019)

0.820

(0.044)

0.810

(0.016)

0.955
(0.020)

win vs rel
0.880

(0.023)

0.876

(0.067)

0.870

(0.018)

0.968
(0.015)

auto vs moto
0.867

(0.007)

0.878

(0.114)

0.841

(0.016)

0.979
(0.004)

bb vs hoc
0.872

(0.025)

0.872

(0.056)

0.857

(0.034)

0.973
(0.012)

fs vs msw
0.880

(0.017)

0.828

(0.117)

0.854

(0.009)

0.977
(0.003)

D. Recovering Feature Groups

In this section, we conduct an experiment to visually assess

the goodness of our weighted �1 approach compared to other

feature grouping methods for Syn-1, Syn-2 and Syn-3 datasets.

In Figure 2 the y-axis represents the feature regression coef-

ficients obtained after fitting four different feature grouping

algorithms for all three synthetic datasets and the x-axis

represents the feature indices. The first, second and third

rows in Figure 2 corresponds to Syn-1, Syn-2 and Syn-3
datasets, respectively. We can observe that oscar infers the

feature grouping structure for Syn-1 and Syn-2 datasets upto

some extent, whereas the fused-lasso and elastic net are not

effective at inferring the grouping structure. Our weighted

�1 approach recovers the ground truth almost completely for

Syn-1 and Syn-2. For Syn-3 dataset one can observe that all

competing algorithms perform poorly, but our approach is

relatively more effective at recovering the grouping structure,

and it successfully avoids misfusing the groups which can be

seen clearly.

VI. CONCLUSION

In this paper, we presented a weighted �1 algorithm for

solving the misfusion problem while learning regression mod-

els from high-dimensional data with inherent feature groups

which are not known apriori. We formulated the proximal op-

erator for this weighted �1 norm and solved the corresponding

weighted �1 norm regularized linear regression problem using

the FISTA algorithm. Our approach can automatically learn

the feature grouping structure, and it was more effective at

resolving the misfusion problem compared to existing methods

such as elastic net, fused-lasso and oscar. We conducted

experiments on the 20-Newsgroups and breast-cancer gene-

expression high-dimensional datasets to assess the goodness

1237



� � � � �
��

�

�

�

	

�

(a) ground truth (Syn-1)

� � � � �
��

�

�

�

	

�

(b) elastic net

� � � � �
��

�

�

�

	

�

(c) fused-lasso

� � � � �
��

�

�

�

	

�

(d) oscar

� � � � �
��

�

�

�

	

�

(e) weighted �1

� � � � �
��

�

�

�

	

�

(f) ground truth (Syn-2)

� � � � �
��

�

�

�

	

�

(g) elastic net

� � � � �
��

�

�

�

	

�

(h) fused-lasso

� � � � �
��

�

�

�

	

�

(i) oscar

� � � � �
��

�

�

�

	

�

(j) weighted �1

� �� �� 	� ��
��

�

�

�

	

�

(k) ground truth (Syn-3)

� �� �� 	� ��
��

�

�

�

	

�

(l) elastic net

� �� �� 	� ��
��

�

�

�

	

�

(m) fused-lasso

� �� �� 	� ��
��

�

�

�

	

�

(n) oscar

� �� �� 	� ��
��

�

�

�

	

�

(o) weighted �1

Fig. 2: Visualizing feature groups obtained on three synthetic datasets by applying four feature grouping algorithms.

of our approach. This work can be extended by developing

a more theoretical procedure of providing the optimal weight

sequence for the weighted �1 norm computation.
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