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Abstract

In this paper, we propose a novel component-wise
smoothing algorithm that constructs a hierarchy (or
family) of smoothened log-likelihood surfaces. Our ap-
proach first smoothens the likelihood function and then
applies the EM algorithm to obtain a promising solution
on this smoothened surface. Using the most promising
solutions as initial guesses, the EM algorithm is applied
again on the original likelihood. This effective opti-
mization procedure eliminates extensive search in the
non-promising regions of the parameter space. Empir-
ical results on some standard datasets show the reduc-
tion of the number of local maxima and improvements
in the log-likelihood values.

1. Introduction

In the field of statistical pattern recognition, finite
mixtures allow a probabilistic model-based approach
to unsupervised learning from multivariate data. One
of the most popular methods used for fitting mix-
ture models to the observed data is the Expectation-
Maximization (EM) algorithm which converges locally
to the Maximum Likelihood Estimate (MLE) of the
mixture parameters [1]. One of the main disadvan-
tages of using the EM algorithm is that it is very sen-
sitive to the initialization. Because of its greedy na-
ture, EM algorithm tends to get stuck at a local maxi-
mum which will correspond to erroneous set of param-
eters for the mixture components. The log-likelihood
surface on which the EM algorithm is applied is very
rugged with many local maxima. The fact that the local
maxima are not uniformly distributed across the entire
search space makes it important for us to develop al-
gorithms that help in avoiding search in non-promising
regions. More focus needs to be given for searching the
promising subspaces by obtaining promising initial es-
timates. Usually, a global method which incorporates
the global structure of the parameter space guides the

EM algorithm to obtain a more precise set of parameters
which correspond to a higher likelihood function value.
Though, several approaches for exploring the non-linear
log-likelihood surface were proposed [3, 1], the idea of
modifying the log-likelihood surface using component-
wise smoothing techniques has not been investigated in
the literature.

The smoothing procedure described in this paper is
a way to estimate the optimal set of parameters of the
Gaussian components in an effective manner. It is a pro-
cedure that reduces the ruggedness of the log-likelihood
surface and has the capability to avoid non-promising
regions during the search. Smoothing the log-likelihood
surface can potentially obtain the set of promising re-
gions which can then be used to gradually trace back the
promising solutions on the original log-likelihood sur-
face. In the convolution based component-wise smooth-
ing approach, a simplified version of the global method
is applied in combination with the EM algorithm to ob-
tain an optimal set of parameters on the smoothened
log-likelihood surface which are again used as initial
parameters for the EM algorithm to obtain optimal set
of parameters on the original log-likelihood surface.
Though applied for two levels in this paper, our algo-
rithm can be generically applied to any number of lev-
els.

Table 1. Description of the Notation used in this pa-
per.

Notation Description
Θ parameter space
Θ̃ smooth parameter space
θi parameters of a single ith component
θ0 parameters of the smoothing kernel
αi mixing weight for ith component
X observed data
Z missing data



2 Mixture Models and the EM

Table 1 gives the notation used in this paper. Let
us assume that there are k Gaussian components in the
mixture model. The form of the probability density
function is given as follows:

p(x|Θ) =
k∑

i=1

αip(x|θi) (1)

where x = [x1, x2, ..., xd]T is the feature vector of d
dimensions. Θ represents the collection of parameters
(α1, α2, ...αk, θ1, θ2, ...θk) and p is a multivariate den-
sity function parameterized by θi. Given a set of n i.i.d.
samples X = {x(1), x(2), .., x(n)}, the log-likelihood
corresponding to a mixture is

log p(X|Θ) =
n∑

j=1

log

k∑

i=1

αi p(x(j)|θi) (2)

The goal of learning mixture models is to obtain the
parameters Θ̂ from a set of n data points which are the
samples of a distribution with density given by (1). The
MLE is given as follows:

Θ̂MLE = arg max
Θ

{ log p(X|Θ) } (3)

Since this MLE cannot be found analytically for mix-
ture models, one has to rely on iterative procedures that
can find the global maximum of log p(X|Θ). The EM
algorithm assumes X to be observed data. The missing
part is a set of n labels Z = {z(1), z(2), .., z(n)} as-
sociated with n samples, indicating which component
produced each sample [1].

The EM algorithm produces a sequence of esti-
mates {Θ̂(t), t = 0, 1, 2, ...} by alternately applying
two steps (Expectation and Maximization) until conver-
gence. Several variants of the EM algorithm have been
extensively used to solve this problem. One of the main
challenges of the EM algorithm is the initialization step.
In this paper, we explore the idea of convolution-based
smoothing of the log-likelihood surface in order to re-
duce the number of local maxima thus diminishing the
sensitivity to the initial parameters used.

3 Convolution Kernels and Smoothing

Let us consider a continuous mapping p(x) : Rd →
R. In scale-space theory, p(x) is embedded into a con-
tinuous family P (x, σ). Our method starts with an ap-
proximation of the entire dataset with Gaussian ker-
nel of σ width. As the resolution (or scale) increases,
the sigma value is reduced and eventually converges to

zero. In simple terms, one can write the new kernel
p(x, σ) as a convolution of p(x) with a Gaussian kernel
g(x, σ) as shown below:

P (x, σ) = p(x)⊗g(x, σ) =
∫

p(x−y)
1

σ
√

2π
e
‖y‖2
2σ2 dy

For smoothing the mixture model, any kernel can be
used for convolution, if it can yield a closed form solu-
tion in each E and M step. Let us consider the following
Gaussian kernel for smoothing and obtain the new den-
sity function.

g(x) =
1

σ0

√
2π

e
− (x−µ0)2

2σ2
0 (4)

p′(x|θi) = p(x|θi)⊗ g(x)

=
1

σi

√
2π

e
− (x−µi)

2

2σ2
i ⊗ 1

σ0

√
2π

e
− (x−µ0)2

2σ2
0

=
1√

2π(σ2
i + σ2

0)
e
− (x−(µi+µ0))2

2(σ2
i
+σ2

0)

(5)

When a Gaussian density function with parameters µ1

and σ1 is convolved with a Gaussian kernel with pa-
rameters µ0 and σ0, then the resultant density function
is also Gaussian with mean (µ1 + µ0) and variance
(σ2

1 + σ2
0). Since shifting the mean is not a good choice

for optimization problems and we are more interested
in reducing the peaks, we chose to increase the variance
parameter without shifting the mean.

Convolving the complete log-likelihood function us-
ing a Gaussian kernel directly might result in an ana-
lytic expression that may not be easy to handle. Hence,
component-wise convolution is performed. This ap-
proach can smoothen different regions of the parameter
space differently. Since the log-likelihood surface is ob-
tained from individual densities, smoothing each com-
ponent’s individual function will smoothen the overall
log-likelihood surface. The smooth log-likelihood func-
tion is given by:

f ′(X , Θ) =
n∑

j=1

log

k∑

i=1

αi p′(x(j)|θi) (6)

Fig. 1 shows the block diagram of the smoothing proce-
dure. The original likelihood surface is obtained from
the initial set of parameters and the given dataset. The
kernel parameters are chosen from the initial set of pa-
rameters and the original likelihood surface. The kernel
is then convolved with the original likelihood surface to
obtain smooth likelihood surface. The parameters of the
smoothing kernel can be chosen to be fixed so that they
need not depend on the parameters of individual com-
ponents. Fixed kernels will be effective when the un-
derlying distribution comes from similar components.



Figure 1. Block Diagram of our approach.

The main disadvantage of choosing a fixed kernel is that
some of the components might not be smoothened while
others might be over smoothened. Since, the Gaussian
kernel has the property that the convolution sums up the
parameters, this can also be treated as Additive smooth-
ing. To avoid the problems of fixed kernel smoothing,
we introduce the concept of variable kernel smoothing
in this paper. In other words, σ0 must be chosen individ-
ually for different components and it must be a function
of σi for the ith component. Since, the kernel param-
eters are effectively multiplied, this smoothing can be
considered as Multiplicative Smoothing.

Proposition 1 (Parameter Smoothing): Convolution of
a Gaussian function with respect to its parameters is
equivalent to convolving it with a Gaussian density.

Convolution of Gaussian density with respect to the
mean is shown below :

c(x, θ̆1) =
∫ ∞

−∞

1√
2πσ1

e
− (x−(µ1−τ)2

2σ2
1

1√
2πσ0

e
− τ2

2σ2
0 dτ

Replacing τ with −τ and rearranging, we get

c(x, θ̆1) =
∫ ∞

−∞

1√
2πσ1

e
− (x+τ−µ1)2

2σ2
1

1√
2πσ0

e
− τ2

2σ2
0 dτ

= c(x̆, θ1)

where c(x̆, θ1) indicates smoothing with respect to den-
sity and c(x, θ̆1) indicates smoothing with respect to pa-
rameter. Hence, we can see that convolution of a Gaus-
sian density function with a Gaussian density with zero
mean is equivalent to convolving the function with re-
spect to its parameters.

4 Algorithm and its implementation

The basic advantage of the smoothing approach is
that a simplified global method can be used to explore
fewer promising local maxima on the smoothened sur-
face. These solutions are used as initial guesses for the

EM algorithm which is again applied to the next level
of smoothing. Smoothing will help to avoid search in
unwanted non-promising areas of the parameter space.
The likelihood surface (defined by L) depends on the
parameters and the available data. The smoothing fac-
tor (sfac) determines the extent to which the likelihood
surface needs to be smoothened. If the smoothing factor
exceeds certain threshold, the number of local maxima
will increase tremendously. ns denotes the number of
solutions that will be traced. nl determines number of
levels in the smoothing hierarchy. There is a trade-off
between the number of levels and the accuracy of the
proposed method. Having many levels might increase
the accuracy of the set of solutions, but is computation-
ally expensive. On the other hand, having fewer number
of levels is computationally cheaper, but one might have
to forgo the accuracy of the solution. Choosing these
parameters is not only user-specific but also depends
significantly on the data that is being modeled. Algo-
rithm 1 describes the smoothing approach. Initially, a

Algorithm 1 Smooth
Input: Parameters Θ, Data X , Tolerance τ , Smooth
factor Sfac, number of levels nl, number of solu-
tions ns
Output: Θ̂MLE

Algorithm:
L=Smooth(X , Θ,nl*Sfac)
Sol=Global(X ,Θ, L,ns)
while nl ≥ 0 do

nl=nl-1
L=Smooth(X , Θ,nl*Sfac)
for i=1:ns do

Sol(i)=EM(Sol(i),X ,L,τ )
end for

end while
Θ̂MLE =max{Sol}

simple global method is used to identify promising so-
lutions (ns) on the smooth likelihood surface which are
stored in Sol. With these solutions as initial estimates,
EM algorithm is applied on the likelihood surface cor-
responding to the next level smooth surface. Smooth
function returns the likelihood surface corresponding
to smoothing factor at each level. The EM algorithm
also returns ns number of solutions corresponding to
the initial estimates. At every iteration, new likelihood
surface is constructed with a reduced smoothing factor.
This process is repeated until the amount of smoothing
becomes zero which corresponds to the original likeli-
hood surface. The main difference between the stan-
dard multi-level methods and our smoothing approach
is that the dimensionality of the parameter space is not



(a) Elliptical Dataset (b) Iris Dataset

Figure 2. Reduction in the number of local
maxima.

changed during the smoothing (or coarsening) process.

5 Results and Discussion

Our algorithm is tested on four different datasets.
Due to the space limitations, the readers are referred to
[2] for more details about these datasets. Three different
kinds of Gaussian components (spherical, elliptical and
full covariance) with varying complexity (depending on
the covariance matrix) are chosen. One real-world (iris)
dataset is also used. One of the main advantages of
the proposed smoothing algorithm is to ensure that the
number of local maxima on the likelihood surface has
been reduced. To the best of our knowledge, there is no
theoretical way of estimating the amount of reduction
in the number of unique local maxima on the likelihood
surface. Hence, we use empirical simulations to justify
the fact that the procedure indeed reduces the number of
local maxima. Fig. 2 shows the reduction in the num-
ber of local maxima with respect to the smoothing fac-
tor for different datasets. Experiments were conducted
using 100 random starts and the number of unique local
maximum are reported. The same set of initial param-
eters were used for the smoothened surfaces. There is
a gradual reduction in the number of local maxima as
the smooth factor is increased. One can see that if the
smoothing factor is increased beyond a certain thresh-
old value, the number of local maxima increase rapidly.
This might be due to the fact that over-smoothing the
surface will make the surface flat, thus making it diffi-
cult for the EM to converge.

Smoothing the likelihood surface also helps in the
optimization procedure. Table 2 summarizes the results
obtained directly with the original likelihood and the
smoothened likelihood. Mean and standard deviations
across 100 random starts are reported. We have used
only two level and tracked three solutions for each level.

Table 2. Performance results for our algorithm.
Dataset RS+EM Smooth+EM

Spherical 36.3 ± 2.33 41.22 ± 0.79
Elliptical -3219 ± 0.7 -3106 ± 12

Full covariance -2391.3 ± 35.3 -2164.3 ± 18.56
Iris -196.34 ± 15.43 -183.51 ± 2.12

The average across all the starts is reported (RS+EM).
The surface is then smoothened and the some promis-
ing solutions are used to trace the local optimal solu-
tions and the average across all these starts are reported
(Smooth+EM). For the smoothened version, only two
levels were used. In other words, the optimal smooth-
ing parameter is chosen and the EM algorithm is applied
on the smoothened likelihood surface which were later
used as initial guesses for the EM algorithm on the orig-
inal likelihood surface.

6 Conclusion

This paper introduces a smoothing approach for
learning mixture models from multivariate data. Our
algorithm is based on the conventional EM algorithm
applied to a smoothened likelihood surface. A hierar-
chy of smooth surfaces is constructed and optimal set
of parameters is obtained by applying a discrete ver-
sion of continuation method to the promising solutions
of the smooth surface. This is an effective optimization-
based smoothing procedure reduces the number of local
maxima and thus it eliminates extensive search in some
non-promising regions of the parameter space. Empir-
ical results on standard datasets demonstrate a signifi-
cant improvement of the proposed algorithm compared
to other existing methods.
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