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Abstract

In the recent years, reciprocal link prediction has received
some attention from the data mining and social network anal-
ysis researchers, who solved this problem as a binary clas-
sification task. However, it is also important to predict the
interval time for the creation of reciprocal link. This is a chal-
lenging problem for two reasons: First, the lack of effective
features, because well-known link prediction features are de-
signed for undirected networks and for the binary classifica-
tion task, hence they do not work well for the interval time
prediction; Second, the presence of censored data instances
makes the traditional supervised regression methods unsuit-
able for solving this problem. In this paper, we propose a
solution for the reciprocal link interval time prediction task.
We map this problem into survival analysis framework and
show through extensive experiments on real-world datasets
that, survival analysis methods perform better than traditional
regression , neural network based model and support vector
regression (SVR).

1 Introduction

Reciprocal altruism is a behavior whereby one performs an
act of gift-giving with the expectation that the receiving per-
son will act in a similar manner at a later time (Trivers 1971).
People’s activities on online social networks are filled with
many examples of reciprocal altruism: we follow a friend’s
Twitter feed with the hope that he will follow back our feed;
we endorse our friends for their technical skills in LinkedIn
hoping that they will return the favor in a similar manner.

However reciprocity usually has a conflict with another
social phenomenon called social stratification, which favors
hierarchical arrangement of people in a society based on var-
ious factors such as power, wealth, and reputation (Hopcroft,
Lou, and Tang 2011). This phenomenon is prevalent in on-
line social networks as well. People who are higher up in the
hierarchy are sometimes reluctant to perform a reciprocal act
to an individual who is at a lower hierarchy; they defer the
reciprocal action for a later time or sometimes indefinitely.

For reciprocal link creation, understanding the criteria
which control the interval time and building learning mod-
els which predict the interval time are important. From the
research standpoint, such studies help scientists to study the
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interaction between reciprocity and different social phenom-
ena. From the perspective of real-life applications in so-
cial network analysis, such prediction model enables better
link suggestions, where the interval time is also factored in
within the suggestion.

The majority of the existing works on link predic-
tion (Hasan and Zaki 2011) assume an undirected network,
in which the concept of reciprocal edges do not exist. A few
works consider reciprocal link prediction (Hopcroft, Lou,
and Tang 2011; Gong and Xu 2014) in a directed network
where the prediction is binary, yielding yes/no answer to the
question whether a reciprocal link will be created within a
fixed observation window. Other works utilize reciprocity
as a tool for network compression (Chierichetti et al. 2009)
and information propagation in social networks (Zhu et al.
2014). However, none of the existing works consider pre-
dicting the interval time for the creation of a reciprocal edge.

Extending a model which predicts a binary answer for re-
ciprocal link prediction to a model which predicts the in-
terval time of reciprocal link is non-trivial. The major chal-
lenge for interval time prediction is that, typical link predic-
tion features for undirected network, such as common neigh-
bors, Jaccard’s similarity, Adamic-Adar do not have a well-
defined counterpart for directed networks, which makes in-
terval prediction a difficult task. Besides, we observe a net-
work for a finite time window, and the absence of a recipro-
cal link within that time window does not necessarily mean
the absence of that reciprocal edge, because a reciprocal
edge might have formed outside (after) the observation time
window. This yields numerous right censored data instances,
for which the target variable, i.e., the reciprocal link forma-
tion time is not available. Traditional supervised regression
models cannot include censored data instances in the train-
ing data and hence perform poorly in predicting reciprocal
link creation time.

In this work, we present a supervised learning model for
predicting the interval time for the creation of a recipro-
cal edge between a pair of vertices in an online social net-
works, given that a parasocial edge already exists between
the vertex-pair. We study real-life networks and validate a
collection of topological features that may influence the re-
ciprocal edge creation time. Then, we design the prediction
task as a survival analysis problem and propose five cen-
sored regression models. Our experimental results show that
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Cox regression performs better than traditional supervised
learning models for reciprocal link prediction.

2 Our Methodology

In this section, we first define the problem of Reciprocal
Link Time Prediction (RLTP ). Then we discuss topological
features used to solve the RLTP problem and how we can
map the RLTP problem into survival analysis framework.
Finally we discuss different survival analysis methods which
we have used for solving the RLTP problem.

2.1 Problem Formulation

G(V,E) is a directed time-stamped network where V is
the set of vertices and E is the set of directed edges. For
a vertex u ∈ V , Γin(u) and Γout(u) are the set of in-
neighbors and the set of out-neighbors of u. d(u, v) is the
directed shortest path distance from u to v. There also ex-
ists a mapping function τ : E → T , which maps each link
e ∈ E to a specific time-stamp τ(e) = te ∈ T denoting
the creation time of the link e. For vertices u, v ∈ V and
link e = (u, v) ∈ E the corresponding time-stamp te can
be represented as tuv . For a link (u, v) ∈ E, if ∃(v, u) ∈ E
and tvu < tuv then (u, v) is called a reciprocal link; on the
other hand, if (v, u) /∈ E, it is called parasocial link.

The time interval of a reciprocal link (u, v) is defined
as Int(u, v) = tuv − tvu. Objective of the RLTP problem
is to predict the time interval of a reciprocal link Int(u, v)
given the time-stamp of the parasocial link tvu in a directed
network. From the knowledge of Int(u, v) and tvu, the re-
ciprocal link creation time tuv can be obtained easily. The
main reason for defining the problem in terms of interval
is that interval avoids the problem of temporal bias that ex-
ists between the train and test datasets. We use a supervised
learning approach for this prediction using only topological
features constructed from G.

2.2 Topological Feature Design

The majority of the existing topological features for link
prediction are defined for an undirected network, hence
we adapt those features for predicting reciprocal links.
Our features belong to following two groups: directed al-
truism based features and social stratification based features.

Directed Altruism Based Features

Here, we define topological features which quantify the di-
rected altruism phenomenon of reciprocal link prediction.

Shortest directed distance: For a parasocial link
(v, u), we use directed distance for reciprocal link i.e.,
DirectDist(u, v) = d(u, v).

Common in/out neighbors count: For directed graphs,
we have two separate features: common in-neighbors and
common out-neighbors. Commonin(u, v) = |Γin(u) ∩
Γin(v)| , Commonout(u, v) = |Γout(u) ∩ Γout(v)|.

Jaccard coefficient (In/Out): It is normalized version
of common neighbors counts, hence similar to common
neighbors, Jaccard coefficients can also be presented by
two separate features. Jacccardin = |Γin(u)∩Γin(v)|

|Γin(u)∪Γin(v)|

Jacccardout =
|Γout(u)∩Γout(v)|
|Γout(u)∪Γout(v)| .

Local Reciprocity. In (Gong and Xu 2014), the authors
studied two local reciprocity features and showed relative in-
fluence of both on linking back probability. Acceptance Lo-
cal Reciprocity (ALR): ALR(v) = |Γin(v)∩Γout(v)|

|Γin(v)| . Request

Local Reciprocity (RLR): RLR(u) = |Γin(u)∩Γout(u)|
|Γout(u)| .

We consider RLR of the tail node (RLR(u)) and ALR for
head node (ALR(v)) for reciprocating link (u, v). These
features capture the tendency of u to request and the
tendency of v to accept a link.

Social Stratification Based Features

The following topologial features quantify the social strati-
fication phenomenon.

Preferential Attachment: The basic idea of prefer-
ential attachment is to give more weight to the higher
degree nodes. For directed graphs, we consider out de-
gree of tail node and in degree of head node of the
future (reciprocating) link, which is given as follows:
PrefAtt(u, v) = |Γout(u)| × |Γin(v)|.

Preferential Jaccard: PrefJacc is inspired by both
Preferential Attachment and Jaccard Coefficient. We
calculated PrefJacc using the following equation:
PrefJacc(u, v) = |Γout(u)∩Γin(v)|

|Γout(u)∪Γin(v)| .
In/Out Ratio: These features capture the social stratifi-

cation. A node in the upper hierarchy has a higher tendency
to create reciprocal edge with another node at the same level
in the hierarchy (Hopcroft, Lou, and Tang 2011). Hierarchy
of a node can be identified by the ratio of their in-degrees
and out-degrees. Hence, we consider InRatio and OutRatio
as features. InRatio = |Γin(u)|

|Γin(v)| OutRatio = |Γout(u)|
|Γout(v)| .

PageRank: PageRank represents the prestige of the node
in the network. We use both, pagerank of u and pagerank of
v as features.

2.3 RLTP and Survival Analysis

In this section, we describe how the RLTP problem can be
mapped into survival analysis framework and provide defini-
tions of the required concepts to comprehend our approach.
Survival analysis is widely used in the medical domain to
predict survival time or time to a specific event (Ping Wang
and Reddy 2017). For a set of instances under observation,
events happen over a time period, from which a survival
model learns the temporal patterns of these events.

Survival analysis assumes a starting time of the study,
from when a model starts to observe for the events. For
the RLTP problem, at the first time-stamp, a given directed
time-stamped network is static (initialized), the second time-
stamp from when new links are added to the static network
is called the beginning of graph expansion, which serves
as the starting time of the study. For RLTP , the last time-
stamp in the training period is considered to be the end of
the study. Hence, the time window from beginning of graph
expansion to the end of the study is considered to be study
period. For a parasocial link (v, u), if a reciprocal link (u, v)
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is created during the study period, we call it a reciprocal
event. Time-stamp of a parasocial link is the time when the
data instance is considered into the network for study, which
is called as the starting time of observation for the data
instance. We study the network for a limited time window
(study period), and hence for a set of parasocial links, the
corresponding reciprocal event may not be observed before
the end of the study, we call these links as immortal links.
These immortal links carry the information about links for
which the reciprocal link creation event does not happen for
a specific period of time. In the survival analysis terminol-
ogy the immortal links are called censored instances.

Time difference, from starting time of observation for a
parasocial link to the time-stamp of the reciprocal event is
considered to be the life-span of the parasocial link. In the
RLTP problem, the interval time of a reciprocal link is ex-
actly defined as the life-span of parasocial link, which is the
survival time in the survival analysis problem.

In a traditional regression task, immortal links may either
be ignored, or their survival time may be replaced by a large
number which is higher than the time difference between
the end of study time and the starting time of observation
for that parasocial link. The first of the above cases will be
ignoring important information, and the second is simply a
crude approximation. These links give precise information
that the survival time for immortal links is higher than the
time difference between the end of the study and the starting
time of observation for that parasocial link.

2.4 Survival Analysis Models

The most widely used survival analysis model is Cox re-
gression model (Cox 1972) which predicts the time taken
for an event to occur. We used cocktail algorithm (Yang and
Zou 2013) for optimization of the elastic net penalized Cox
model. We used two parametric survival models: Acceler-
ated Failure Time (AFT) model and Buckley-James (BJ)
model. The AFT model is used with three distributions for
survival time: weibull, log-logistic and log-normal. For AFT
models and BJ regression, we used Survival package5 and
Bujar package6, respectively, available in R.

3 Experiments and Results

We conducted a set of rigorous experiments to demonstrate
the benefit of using censored information and the superior-
ity of censored models to solve the RLTP problem. We used
the following five censored models: Cox regression model,
three AFT models with Weibull, log-normal and log-logistic
distributions respectively, and Buckley-James (BJ) regres-
sion model. To prove the fact that the censored models are
more suitable for solving the RLTP problem, we compared
them with traditional regression models, such as, ridge re-
gression (RidgeReg), lasso regression (LassoReg), feed for-
ward neural networks (FFNN) and support vector regression
(SVR). Note that, these traditional regression models cannot
use censored information (immortal links).

5cran.r-project.org/package=survival
6cran.r-project.org/web/packages/bujar/index.html

Table 1: TD-AUC results [mean (± standard deviation)] for
various methods on real-world datasets.

Models Epinion MC-Email Enron

RidgeReg 0.6086
(±.0013)

0.6083
(±.0146)

0.5847
(±.0159)

LassoReg 0.6020
(±.0014)

0.5709
(±.0201)

0.5850
(±.0152)

FFNN 0.5048
(±.0822)

0.4609
(±.0964)

0.5407
(±.0434)

SVR 0.4871
(±.0039)

0.5737
(±.0187)

0.5680
(±.0176)

BJ Model 0.7339
(±.0020)

0.5910
(±.0146)

0.6096
(±.0076)

Weibull 0.5210
(±.1446)

0.6171
(±.0069)

0.6319
(±.0050)

logNormal 0.4461
(±.0283)

0.6463
(±.0015)

0.6146
(±.0097)

logLogistic 0.5110
(±.0196)

0.6494
(±.0062)

0.6224
(±.0069)

Cox 0.7436
(±.0016)

0.6558
(±.0125)

0.6311
(±.0110)

3.1 Datasets

We used three real-world directed network datasets for our
experiments. We selected datasets where reciprocal link cre-
ation is an important (meaningful) event; another selection
criterion is that the selected datasets have a sufficient num-
ber of reciprocal links to train and test the models. Our first
dataset, Epinion2 is a trust network where a directed link
from one vertex to another vertex represents the fact that the
former trusts the latter. The network has 131, 828 vertices
and 841, 373 edges created during 938 timestamps. The pre-
diction task for this dataset is to find the time at which a
trusted person acknowledges that (s)he also holds a similar
sentiment towards the other person. We also collected two
enterprise email datasets: MC-Email3 and Enron. For both
these datasets the task is to predict the response time of an
email. MC-Email has 167 users with 5, 783 email conver-
sations with 237 timestamps, and Enron has 182 users with
3, 007 email links with timestamps range 0− 944.

3.2 Experimental Setting

For our experiments, we divided the time-stamps of a dataset
into two non-overlapping continuous partitions, where the
earlier partition is the train period and the latter is the test
period. We used 70% split of the time-stamps as the training
period for the experiments. For calculating the topological
feature values, we considered a snapshot of the network until
the time-stamp of the reciprocating link or the end of the
train period (whichever is earlier).

2http://konect.uni-koblenz.de/networks/
3This is Manufacturing Company email dataset available from

R. Michalski’s website, https://www.ii.pwr.edu.pl/∼michalski
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Like any other link prediction task, RLTP also suffers
from the class imbalance issue, where the number of pos-
itive instances are much smaller than that of the negative
instances. To alleviate this problem we use majority under-
sampling as follows: all the reciprocal links generated dur-
ing a training period are considered in the training data pool
as positive instances and only 50% of the parasocial links
generated during the same period are censored negative in-
stances in the pool. The test data pool (and their labels) are
also generated similarly from the test period. As train and
test data instances need to be from their corresponding time
periods, we use a modified K-fold cross validation, where
each fold contains a random subset of train and test data in-
stances from their respective pools. For all our experiments,
we used 5-fold cross validation in this manner.

For RidgeReg, LassoReg and SVR, we used scikit-learn
python library and for FFNN, we used Matlab NNtool-
box. To choose the best parameters of SVR, we used grid
search, where the cost parameter C takes values from
{0.0001, 0.001, 0.01, 0.1, 1.0} and Epsilon (ε) takes values
from {0.0001, 0.001, 0.01, 1.0}.
3.3 Evaluation Metrics

Datasets generated from directed time-stamped networks are
longitudinal data and for the RLTP problem, the datasets
also have censored information. Evaluating models on these
datasets using traditional evaluation metrics is not suitable,
instead we used time-dependent AUC (also known as c-
Index), which is widely used in longitudinal data analy-
sis (Pencina and D’Agostino 2004). Time-dependent AUC
(TD-AUC) is calculated as follows:

TD-AUC =
1

Ncnt

∑
i:Ci=1

∑
yj>yi

(ŷj > ŷi) (1)

where, Ncnt is total count of (yi,yj) pairs such that Ci = 1
(the event has occured) and yj > yi holds.

For the i’th data instance xi and Cox model parameter β
the TD-AUC for Cox model can be calculated as:

TD-AUC =
1

Ncnt

∑
i:Ci=1

∑
yj>yi

(xT
i β̂ > xT

j β̂) (2)

3.4 Comparison results of censored models and
regression models

We compared proposed survival models with four traditional
regression models and results are shown in Table 1. For
the Epinion dataset, as depicted in Table 1, Cox regres-
sion model performs the best with mean TD-AUC 0.7436.
BJ model also performs very good with small degradation
(0.7339) compared to the Cox model. Among competing
methods, ridge regression performs the best with mean TD-
AUC 0.6086. For the MC-Email dataset, again Cox regres-
sion model performs the best with mean TD-AUC 0.6558.
AFT models also perform better than all competing tradi-
tional regression methods. Especially, AFT with log-logistic
and log-normal distributions perform excellent and their
mean TD-AUC is very close to results of Cox regression.
Best among competing methods is ridge regression with
mean TD-AUC of 0.6083; all other competing methods
perform poorer than any censored models. For the Enron

dataset, AFT model with Weibull distribution performs the
best with mean TD-AUC 0.6319. BJ model performs poorly
compared to the other survival models with mean TD-AUC
0.6096, still better than all competing methods.

4 Conclusion

In this paper, we proposed a novel problem, namely, recipro-
cal link time prediction (RLTP ), which has wide applicabil-
ity in email, social and other directed networks. We designed
various socially meaningful topological features specifically
for directed networks, which are useful to solve the RLTP
problem. We map the RLTP problem into a survival anal-
ysis framework and through experiments on three real-life
network datasets, we show that such a framework is better
suited than traditional regression based approaches for solv-
ing RLTP . To the best of our knowledge this is the first study
for the prediction of time interval of reciprocal links.
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