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Abstract. In a successive Point of Interest (POI) recommendation prob-
lem, analyzing user behaviors and contextual check-in information in past
POI visits are essential in predicting, thus recommending, where they
would likely want to visit next. Although several works, especially the
Matrix Factorization and/or Markov chain based methods, are proposed
to solve this problem, they have strong independence and conditioning
assumptions. In this paper, we propose a deep Long Short Term Memory
recurrent neural network model with a memory/attention mechanism,
for the successive Point-of-Interest recommendation problem, that cap-
tures both the sequential, and temporal/spatial characteristics into its
learned representations. Experimental results on two popular Location-
Based Social Networks illustrate significant improvements of our method
over the state-of-the-art methods. Our method is also robust to overfit-
ting compared with popular methods for the recommendation tasks.

Keywords: Deep learning · spatio-temporal data · attention mechanism
· recurrent neural network · long short term memory · social networks.

1 Introduction
Location-Based Social Networks (LBSNs) produce a huge amount of data, in
both veracity and volume, thus providing opportunities for building personalized
Point-of-Interest (POI) recommender systems. In a typical POI recommendation
task, a user makes a sequence of check-ins at various POIs that are both geo-
tagged and time-stamped, and the task is to recommend the next POI that
the user is likely interested in visiting. Here a check-in comprises of which POI
is visited, and additional contextual information such as the time or geotag
of the visit. Finding an efficient way to represent the POI and its contextual
information is essential because this can improve the performance of the model
and allow a better understanding of the seemingly complex inter-relationships
of the heterogeneous properties of the POIs.

The recommendation task has been studied in numerous works [12, 11, 20,
16, 6]. One of the most widely used technique is matrix factorization (MF), or a
hybrid of MF and Markov Chain (MC). These methods, albeit having impressive
performance, rely on strong independent assumption among different factors.
Several attempts (e.g., Neighborhood-based MF methods [16, 13, 14]) have been
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made to overcome these limitations, but are unable to efficiently model the
sequential, periodic check-in behaviors.

It has been shown that human movements usually demonstrate strong pat-
terns in both spatial and temporal domain [3]. To take advantage of the spatio-
temporal nature of check-ins, several recommendation systems have been pro-
posed particularly for POIs (e.g., [18]). The state-of-the-art POI recommenda-
tion systems [15, 5] use neural networks to learn the latent correlation between
spatio-temporal features from historical check-ins and the next check-in location
of a user. By mining spatio-temporal information from such correlations, these
techniques are able to significantly outperform generic recommendation systems
in the POI recommendation task.

In this paper, we will tackle this challenge and try to advance the state-of-
the-art in POI recommendation systems. We propose a novel Attentive Spatio-
TEmporal Neural (ASTEN) model that is able to recommend a POI by 1)
extracting useful information from the most relevant POI visits reported by a
user, and 2) minimizing the influence from non-relevant POI visits from the user.
At the core of the proposed system is a Long-Short Term Memory (LSTM) Net-
work structure, which employs the attention mechanism [2, 4] to automatically
select and extract information from the most relevant check-ins on a user’s tra-
jectory and make recommendations. ASTEN’s network architecture overcomes
the limitations of using a single hidden vector to represent a user’s dynamical
check-in behavior. As a result, our system is able to exploit long user trajectories
without having to deal with the excessive noise. The main contributions of our
work are:

– We propose a novel ASTEN model that addresses the challenge of noise han-
dling in user trajectory data and advances the state-of-the-art of POI rec-
ommendation systems. This is achieved by combining the LSTM Network
structure with a sophisticated attention mechanism specifically designed for
spatio-temporal information present in LBSN datasets. To the best of our
knowledge, this approach and the model design have not been studied for
POI recommendation in the literature.

– We demonstrate the effectiveness of our method using three real-world LBSN
datasets. Experiments show that our model outperforms existing POI rec-
ommendation systems. Our method is not only scalable but also robust to
overfitting when the complexity increases.

– From our analysis of experimental results, we derive a set of practical impli-
cations that are useful for real-world applications.

2 Related Works
We describe the prior works that capture sequential, temporal and geographical
influences in the context of LBSNs.

2.1 POI Recommendation

MF-based methods are arguably one of the best user-based collaborative filter-
ing approaches [12, 6]. Neighborhood-based MF methods attempt to incorporate
temporal and spatial features. TimeSVD++ [11], for example, takes advantage
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of both the transition effect and the long-term transition pattern by modeling
the user preference as a function of time. Similarly, recent works [16, 13] model
users’ interest limited to the neighborhoods of the recently visited locations. In
[6], PRME learns a personalized metric embedding and models the sequential
POI transition. Another popular approach for modeling sequential data is MC,
which learns a transition probability matrix over sequential events. In recent
works [20], instead of estimating a single matrix for all users, each user can be
mapped to a personalized transition probability matrix. For example, Factoriz-
ing Personalized MC (FPMC), which has the ability to model sequential data
in an MF-based approach, is the state-of-the-art method [20].

Besides the cold-start problem, the common drawbacks of the MF based ap-
proaches are their strong independent assumptions among the factorized compo-
nents and that their generalization strengths depend on designing a good feature
space, which might not be a realistic assumption for many real-world problems.

2.2 Neural Models and Attention Mechanism

Progress in RNNs has shown impressive results in modeling sequential data [7].
Although RNN is theoretically capable of conditioning the model on all of the
previous time-steps, the number of time-steps, in practice, what such a RNN
model can remember is limited because of its difficulties in training.

Because RNN assumes discrete influence of the sequential events, it does
not explain well real-world situations where the transition to a POI is contin-
uously influenced by the historical spatial and temporal context. ST-RNN [15]
models the continuous local temporal and spatial contexts with time-specific
and distance-specific transition matrices and achieves a significant performance
improvement in the recommendation task. RMTPP [5] jointly models the predic-
tion of the time to next events and the event themselves. ST-RNN and RMTPP,
however, suffer from the bottleneck problem in RNN where the use of the sin-
gle hidden vector is insufficient to capture the complex characteristics of the
sequences in a problem [2]. A recent success in training RNNs is a concept of
attention [2, 4]. For POI recommendation, however, it is not straightforward how
the attention mechanism should be modeled.

In this paper, we attempt to formalize the concepts of POI and check-in rep-
resentations and describe how such representations can be embedded and learned
within an efficient spatio-temporal attentive recurrent network structure. The
proposed model is able to capture the sequential information, and spatio-
temporal influence between check-ins in an end-to-end network that
is robust to noisy check-in data.

3 Data Description and Analysis

3.1 Data Description

We use three datasets collected from various activities of users on two popular
LBSNs, namely, Foursquare (4SQ) and Gowalla. For 4SQ, we collect activities of
users in the United States and in Europe separately and denote them as 4SQ-US
and 4SQ-EU, respectively. For Gowalla, we use the dataset described in [3]. We
pre-process the check-in data by filtering out POIs that were checked into by less
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than 10 users and users who checked-in less than 10 POIs. Table 1 summarizes
the pre-processed datasets.

Table 1: Summary Statistics of the LBSN datasets.
4SQ-US 4SQ-EU Gowalla

Number of Users 21,878 15,387 52,484

Number of POIs 21,651 30,276 115,567

Number of Check-ins 569,091 56,301 3,227,845

Average Length 37 34 61

3.2 Check-in Data Exploration
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Fig. 1: Statistics of check-ins in the studied datasets. Figures (a-c) show the total
number of check-ins on different days of the week. Solid lines correspond to week-
days. Dashed-lines correspond to weekends. Figures (d-f) show the distribution
of approximate entropies of transition distances of user check-in sequences.

Figures 1a-1c show the temporal characteristics of the check-in activities. We
observe that weekdays and weekend have different patterns of cumulative check-
ins, defined as the total number of observed check-ins from all users at a specific
hour of the day. Moreover, check-in activities form different patterns for different
hours of the day inside the weekday or weekend group. Therefore, modeling POI
and check-in representations should consider the temporal periodic variances and
their interaction patterns.

Next, we perform analysis on the regularity of the check-in sequences. For
each user, we calculate the transition distances between the sequentially visited
POIs. We employ approximate entropy [19] as a measure of the regularity and
unpredictability of local fluctuations in the resulting sequences of transition dis-
tances. We set a filtering level of 1 mile. Figures 1d-1f show the histogram of
approximate entropies of the sequences in the three datasets. We filter highly
irregular series with infinite approximate entropies. In all datasets, the filter re-
moves at most 25% of the users. We observe that the majority of the sequences
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Table 2: Notations used in our paper.
Notation Description

W∗ Weight matrices of the network architecture. A Wab is a matrix of size
Rm×n, where m is the dimension of the input layer a and n is the
dimension of the output layer b.

b∗ Bias term associated with the corresponding W∗.

lt One-hot encoding vector of POI at time t.

pt Embedding of a POI at time t.

st1,t2 Spatial distance between POIs at time t1 and t2. Note that t1 and t2
may not be consecutive time-steps.

tt Temporal periodicity vector at time t.

have low approximate entropies, which means that their transition distances ex-
hibit not only regularity but also less fluctuation. This observation motivates us
to model the distance transition behavior into a sequence’s representation.

4 Proposed Methodology

4.1 Problem Definition

In this section, we formally define the successive recommendation task discussed
in this paper.

Definition 1 (Check-in). A check-in Cu(t) is a tuple of (u, l, t, s) ∈ U × L×
T × S, where U is a set of unique users, L is a set of unique POIs, T is the
continuous time domain, and S is continuous spatial domain, indexed by the
latitude and longitude coordinates. Cu(t) indicates that user u visited location l
geo-tagged with coordinates s at time t.

Definition 2 (User-historical check-ins). A set of time-ordered, historical
check-ins of a user u is defined as CTu

u = {Cu(t) : t ∈ [1, Tu]}, where Tu is the
number of check-ins of user u.

Definition 3 (Successive POI Recommendation). Given a set of user-
historical check-ins CTu

u , the successive point of interest recommendation task
is to suggest the POI(s) that the user u will likely check-in after time Tu.

In the following sections, we discuss our proposed method. Table 2 describes
the notations used in our discussion.

4.2 POI Embedding and Check-in Representation

We propose to learn efficient representations of POIs and check-ins. Given a
user u who performs a sequence of check-ins CTu

u = (Cu(1), ..., Cu(Tu)), where
each check-in, as described, contains a POI l(j) ∈ L, and the spatio-temporal
information about the check-in, we learn two types of representations:
1. POI embeddings: we learn a function fl(j) : L 7→ Rm that maps every POI to

a real-valued vector Rm where m is the dimension of the embedding.
2. Check-in representations: we learn a similar function fCu(t) : Cu(t) 7→ Rn that

maps every check-in, which is a tuple of the checked POI, and its temporal
information and spatial transition relationship to the previously checked POI,
into a n-dimensional real-valued vector.
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Given these objectives, we model a check-in xt at time t as a function of the
embedded visited-POI, its temporal context and its spatial transition distance
shown in Equation 1. pt is the one-hot encoding of the checked POI at time step
t. The temporal context is a set of one-hot vectors encoding the time periodicity
and denoted by tt = concatenate(domt, dowt, hrt), where domt is the day of the
month, dowt is the day of the week and hrt is the hour of the day. The spatial
transition context st,t−1 is the great-circle distance between the checked POIs
at time-points t and t− 1. The spatio-temporal model is shown in Figure 2a.

xt = ReLU(Wvx ∗ ct + bx)

ct = concatenate(pt, tt, st,t−1) (1)

4.3 Recurrent Neural Networks and LSTMs

We model the hidden state as a latent representation of the past events. The
predicted output, the ranked list of the recommended POIs, is a function of the
hidden state:

ht = σ(Whhht−1 +Wxhxt + bh)

ŷ = softmax(Whyht + by) (2)

where Whh and Wxh are weight matrices of the hidden-hidden and input-hidden
connections respectively, bh is the hidden bias term, Why and by are the weights
and bias of the hidden-output connections respectively, and σ is a Rectified
Linear Unit (ReLU) [7] in our paper.

(a) Input Module (b) Attention Module

Fig. 2: Network architecture of ASTEN. (a) illustration of the recurrent input.

(b) illustration of the attention module: ht in the vanilla RNN is replaced by ĥt.

In our model, we use a combination of the gradient-clipping technique to
overcome the gradient exploding problem [7] and the LSTM units [9] to better
capture long-term dependencies.

4.4 The Proposed ASTEN Model

Most of the existing RNNs rely on the last hidden activation vector as input
into a feed-forward module, such as the softmax layer used in Section 4.3. Con-
sequently, the last hidden state becomes the primary bottleneck of the neural
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model as discussed in Section 2.2, which often results in non-trivial model tuning
and longer training time. In our paper, we introduce an attention or memory
access mechanism that allows the recommendation task to pool a fixed set of
the hidden states created in the previous time-steps in order to make the rec-
ommendation.

At a time step t, we learn the unit-length alignment vector at ∈ RW . W is
called the window and is a hyperparameter that determines how many of the
previous hidden states in the previous timesteps should play a role in construct-
ing the pooled hidden representation. An element at position w of at determines
the amount of information from the previous hidden state ht−w the model should
retain and can be calculated by:

at,w =
score(ht, ht−w)∑W
k=1 score(ht, ht−k)

(3)

where there are several options for the score function. A common version of the
score function can be specified as:

score(ht, hk) = htWahhk (4)

Although there are other choices of the attention score function, we have seen
better performance of the proposed score function, which is similar to the findings
in [17]. Since spatial check-in characteristics and temporal transition distances
could influence the check-in behaviors as discussed in Section 3, we propose
modeling the score as a function of the relative relationship between the spatial
and temporal properties of the check-ins at time t− w and t. Specifically, score
can be expressed as follows:

score(ht, hk) = htWahhk + htWattk + htwasst,k (5)

where tk is the temporal periodicity vector at time k defined in Section 4.2, while
st,k – similar to the definition of st,t−1 also in Section 4.2 – is the great-circle
spatial transition distance between check-in at time k and the current check-in
at time t.

Given at, the final attentive hidden state ĥt can be calculated as follows:

ĥt = Wchconcat(ht, gt)

gt =

W∑
w=1

at,wht−w (6)

Our goal, therefore, is to learn parameters of the scoring function such that
the scores reflect the similarity between the past hidden states and the current
hidden state t based on their temporal and spatial similarities. The architecture
of our proposed ASTEN model is shown in Figure 2b.
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4.5 Parameter Inference

We train an LSTM network that, given a sequence of check-ins, will recommend
the next likely checked-in location. Given a sequential representation of check-
ins, we minimize the cross entropy loss as follows:

W∗,w∗,b∗

1

T

T∑
t=1

−yt+1 log ŷt − (1− yt+1) log (1− ŷt) (7)

where

ŷt =
exp(Whyĥt + by)∑L

j=1 exp(Why[j, :]ĥt + by[j])
(8)

and Why and by are the weight matrix and bias vector of the softmax classifier
to predict the next checked-in POI, respectively.

To train the proposed model, we adopt the gradient based backpropagation
through time training technique [8] and Adam optimizer [10]. We also employ
dropout technique [7] for learning all parameters. We set the dropout value to
0.2. We train our model using an initial learning rate of 0.01 and an exponential
learning rate decay of 0.96 at every 100 train steps.

5 Experimental Results
In this section, we show the performance evaluation of our proposed model
through empirical experiments.

5.1 Experimental Setup

We perform our experiments on real-world LBSN datasets, namely, Foursquare
(Europe and US) and Gowalla, as described in Section 3.1. We employ the 5-
fold cross validation technique. The performance metrics are reported from their
averages across the folds.

To evaluate the performance, we employ two popular ranking metrics, Recall@k
and F1-score@k, where k is the number of recommended POIs. We also report
the Area under the ROC curve (AUC) in our experiments.

5.2 Comparison Methods

We compare the effectiveness of our ASTEN model with several representative
recommendation methods:

1. Most Popular Location (TOP): recommend the most popular locations.
2. Markov Chain (MC): the popular MC model for sequential data. We choose

the Markov order using its generalization error on the validation set.
3. Spatio-temporal Analysis via Low Rank Tensor Learning (LRTL) [1]: an ex-

tension of Matrix Factorization into three-dimensional user, spatial and tem-
poral information.

4. Factorizing Personalized Markov Chains (FPMC) [20]: state-of-the-art Markov
chain method based on matrix factorization.

5. Personalized Ranking Metric Embedding (PRME) [6]: state-of-the-art pair-
wise Metric Embedding method for POI recommendation that jointly models
the sequential information, user preference and geographical influence.
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Table 3: Evaluation results of various methods on various LBSN datasets.
Dataset Method recall@1recall@5recall@10F1@1 F1@5 F1@10 AUC

TOP 0.029 0.120 0.275 0.029 0.051 0.049 0.731
MC 0.101 0.209 0.301 0.101 0.134 0.107 0.761
LRTL 0.125 0.237 0.307 0.125 0.135 0.128 0.787

Foursquare-US FPMC 0.141 0.258 0.322 0.141 0.159 0.147 0.804
PRME 0.148 0.265 0.343 0.148 0.161 0.153 0.820
RNN 0.145 0.267 0.349 0.145 0.163 0.151 0.825
ST-RNN 0.159 0.281 0.364 0.159 0.175 0.165 0.846
ASTEN 0.181 0.328 0.414 0.181 0.189 0.178 0.897

TOP 0.028 0.074 0.153 0.028 0.044 0.043 0.610
MC 0.073 0.131 0.204 0.073 0.083 0.078 0.702
LRTL 0.107 0.188 0.259 0.107 0.117 0.112 0.746

Foursquare-EU FPMC 0.112 0.196 0.275 0.112 0.126 0.123 0.768
PRME 0.120 0.208 0.291 0.120 0.131 0.125 0.780
RNN 0.121 0.219 0.304 0.115 0.139 0.129 0.774
ST-RNN 0.125 0.243 0.329 0.125 0.148 0.138 0.794
ASTEN 0.144 0.281 0.35 0.144 0.159 0.150 0.827

TOP 0.009 0.025 0.061 0.009 0.013 0.012 0.566
MC 0.019 0.054 0.097 0.019 0.065 0.062 0.601
LRTL 0.026 0.063 0.132 0.026 0.077 0.071 0.608

Gowalla FPMC 0.044 0.083 0.174 0.044 0.091 0.089 0.652
PRME 0.050 0.091 0.192 0.050 0.097 0.090 0.670
RNN 0.048 0.098 0.189 0.048 0.121 0.095 0.673
ST-RNN 0.061 0.120 0.223 0.061 0.138 0.120 0.695
ASTEN 0.081 0.152 0.266 0.081 0.165 0.158 0.735

6. Recurrent Neural Network (RNN): RNN model for discrete temporal data.
7. Spatial Temporal RNN (ST-RNN) [15]: state-of-the-art RNN-based POI rec-

ommender system that models both local temporal and spatial transition
context via time-specific and distant-specific transition matrices respectively.

For the MF models, we perform grid-search to find the best hyperparameters
using a validation set, which is 20% of the training data, before evaluating their
performances on a hold-out test set. For RNN and ST-RNN, we use a similar
learning rate, decay schedule, and batch sizes as those of ASTEN.

5.3 POI Recommendation Performance

Table 3 shows the averaged performance results across different metrics dis-
cussed in Section 5.1. TOP has the worst performance results, as expected.
MC improves over TOP since it incorporates the sequential transitions into the
model. However, MC’s recall, F1-scores and AUC are worse than that of the
three neural models that have a better memory capacity. Since FPMC combines
the successes of MF-based models and MC-based models, in our experiments,
FPMC outperforms MC by at least 2% in all metrics. FPMC also outperforms
LRTL. PRME improves further upon FPMC and its performance is comparable
to that of RNN. However, its performance is worse than that of ST-RNN and
the proposed ASTEN model in our experiments.
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Among the neural models, ST-RNN expectedly outperforms RNN by 2%−5%
in our results. Nevertheless, ASTEN achieves a better performance improvement
compared to ST-RNN. Moreover, when K increases, ASTEN experiences the
highest recall improvement compared to the other methods, suggesting that
the top-ranked POIs are more relevant to the recommendation. The results are
consistent across all the datasets.

5.4 ASTEN Performance Analysis

Table 4: Performance evaluation when adding spatial and temporal components.
Dataset Method recall@1 recall@5 recall@10

LSTM 0.155 0.279 0.361
4SQ-US ST-LSTM 0.161 0.303 0.378

A-LSTM 0.159 0.309 0.371
ASTEN 0.181 0.328 0.414

LSTM 0.049 0.105 0.192
Gowalla ST-LSTM 0.054 0.118 0.218

A-LSTM 0.067 0.132 0.231
ASTEN 0.081 0.152 0.266

In this section, we present the performance improvements of our proposed
model when various modeling components are being added in the 4SQ-US and
Gowalla datasets. We look at the recall@k metric in the experiments on both
4SQ-US and Gowalla datasets in the following settings:

1. Discrete LSTM (D-LSTM), which is similar to the discrete (vanilla) RNN
mentioned in Section 5.2 but using LSTM as hidden units.

2. Spatio-temporal LSTM (ST-LSTM), the ASTEN model without the spatio-
temporal attention mechanism.

3. Attentive LSTM (A-LSTM), the ASTEN model without spatio-temporal
embedding inputs as described in Section 4.2.

4. ASTEN model, which is our proposed model described in Section 4.4.

In Table 4, D-LSTM only slightly outperforms the previous RNN’s recall
discussed in Section 5.3. This result may be explained by the fact that although
LSTM models are theoretically more robust to the gradient problems, in practice,
this is not always the case. Both of the baseline neural models, however, have
lower recall values compared to ST-LSTM and A-LSTM, both of which have
comparable recall values in our experiments. We conjecture that the superior
performances of these two models are due to the following reasons:

– Learning the spatio-temporal interaction of check-in sequences results in
better recommendation quality.

– Our attentive mechanism captures better the check-in representation of a
user, thus improving the recommendation quality.

Finally, our proposed model combines the spatio-temporal and attention mech-
anism and achieves the best performance in our experiments.
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(a) 4SQ-US (b) Gowalla

Fig. 3: Recall@1 when varying ASTEN’s dimensions.

5.5 Varying Dimensions

To determine the effect of increasing the network complexity on its performance,
we vary the dimensionality of POIs and check-in representations, and the hid-
den layer’s LSTM size from 50 to 400, and compute the network’s generalization
using recall@1 for each case. As the dimension increases, the network’s perfor-
mance increases until an optimal value is achieved, after which the recall slowly
decreases, though the decrease is not very significant. We notice that the gen-
eralization recall@1’s, around and after the optimal values, are still better than
that of the methods compared in Section 5.3, which indicates that increasing the
network’s performance is not sensitive to its capacity when the dimensionality is
sufficient. We conjecture that this is probably because of the dropout technique
employed in our model.

6 Conclusion
We proposed a novel end-to-end learning model that takes advantage of the
sequential nature and spatial/temporal contextual information of user check-
ins. We also proposed a novel attention/memory access mechanism that can
effectively overcome the hidden layer bottleneck of RNNs. We have shown that
the proposed ASTEN model outperforms various existing methods on real-world
datasets. A primary goal of our work is to find efficient representations for a
learning task and our results clearly illustrate that our method could achieve
this goal. Our complexity analysis shows that ASTEN outperforms state-of-the-
art methods even as the number of parameters increases.
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