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Abstract
Identifying information-rich subsets in high-dimensional spaces
and representing them as order revealing patterns (or trends) is an
important and challenging research problem in many science and
engineering applications. The information quotient of large-scale
high-dimensional datasets is significantly reduced by the curse of
dimensionality which makes the traditional clustering and associa-
tion analysis methods unsuitable. Most interesting patterns cannot
be revealed using global methods which consider the entire data
and feature spaces during their analysis. Identifying some inter-
esting patterns in large scale high-dimensional data is usually ac-
complished using popular techniques such as dimensionality re-
duction, feature selection and subspace clustering. Though these
methods are successfully able to identify the groupings in the fea-
ture subsets and localized neighborhood data subspaces, none of
these methods extract the latent patterns that are present in local
information-rich subsets of the data. In this paper, we seek an
information-revealing representation of the data subsets and fea-
tures that may contain local patterns. We formalize the problem of
identifying ‘subspace trends’ in high-dimensional datasets focusing
on information-rich subsets and develop a new algorithm to extract
such subspace trends. We demonstrate our results on both synthetic
and real-world datasets and show the superiority of the proposed
methodology over traditional clustering and dimensionality reduc-
tion techniques.

Keywords: Clustering, subspaces, dimensionality re-
duction, trend analysis, regression, feature selection

1 Introduction
With the advancements in data collection and storage
technologies, there has been an exponential increase in the
availability and usage of large, high-dimensional datasets.
Many practical (biomedical, financial, web transactions and
others) applications produce datasets that contain thousands
of records and several hundreds of features. In such a
high-dimensional space, it is a tedious task to identify the
continuous structural patterns indicating the correlation
in the data in a reduced subspace of data within only the
relevant set of features. High-dimensional datasets, although
high in global information quotient, do not reveal many
locally relevant correlations with respect to features and
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subsets of data points. In many of these datasets, it is
certainly important to be able to identify those subsets of
data (and features) which form locally relevant patterns
and also be able to identify which features contribute to
this phenomenon. This would enable researchers to focus
their attention on these local subsets and make it easy to
identify the important and most informative aspects of the
data. One of the many objectives of data exploration is to
find correlation in the data, uncovering hidden patterns and
trends in the data distribution, thus providing additional
insights about the data [22, 21]. To achieve these goals, one
of the effective solution is to order the data and give a con-
tinuous representation. Such an ordered dataset will reveal
a non-discrete structural pattern indicating the correlation in
the data, which can be further analyzed to extract inferences
that were previously unknown.

The main goal of this paper to identify such hidden local
patterns or ‘trends’ over a subset of datapoints within the
reduced feature subset. This work is an extension of our
previous work on identifying trends to local subspaces [17].
As we consider a subspace of data points and features, the
patterns found are hence referred to as ‘subspace trends’.
Identifying such subspace trends is a three-fold problem:

1. We need to identify the dominant features that lead to
creation of such patterns.

2. We must limit the data points to a locally relevant
subsets.

3. We need to formulate ‘trends’ in these subspaces (of
data and features) and represent them using a reduced
dimension space, if necessary.

Our method finds trends containing strongly correlated data
points present in locally relevant data spaces and not in
the entire global feature space which might or might not
yield optimal trends. Some datasets are also predominantly
informative only in subsets of locally relevant data points. If
we find ‘global trends’ in such datasets, the ordering (or cor-
relation) could be very weak and the trends obtained might
be less informative. Hence, it is essential to focus on finding
local correlations and ordering in such high-dimensional
datasets.



The proposed solution is initiated with an unsupervised
subspace clustering method providing a similarity preserv-
ing base to build a structure for further analysis. Subspace
clustering identifies the feature subset and the data points
that will form the most fundamental building blocks of the
‘subspace trends’. Subspace clusters that share a common
feature space are then combined to form what are termed
as ‘Information-Rich Subsets’ (IRS) of the data. Using a
graph-based framework, each IRS is represented by local
proximity structures of the data points. This representation
is used to generate the hypotheses of trends and the most
prominent trends are then selected. These hypotheses are
then weighted based on an objective function and the optimal
trends that have complete coverage of the Information-Rich
Subset are chosen [17]. Such trends represent the ordering
and continuity information of the data points and have the
potential to explain the linear or non-linear correlations in
the subspaces. This continuous representation will provide
a more powerful model of these subspaces compared to the
traditional subspace cluster representation.

Figure 1: Correlation matrix representation of a simple
synthetic dataset that contains local correlations.

1.1 Motivating Example: Consider a simple synthetic
dataset (shown in Fig. 1) with 15 features {F1,...,F15} and
3602 data points {DP1,...,DP3602}. Features {F1,F2,F3}
spread over data points {DP1,...,DP1801} have embedded in
them a non-linear trend (sine wave). Features {F7,F8,F9}
and data points {DP1,...,DP3602} contain latent intersect-
ing sine waves. Features {F13,F14,F15} and data points
{DP600,...,DP2401} contain a latent linear pattern in them.
The rest of the data points and features are random noise.
The results of various dimensionality reduction methods on
this dataset are shown in Fig. 2. Classical methods such
as Principal Component Analysis (PCA) [19], Multidi-
mensional Scaling (MDS) [8], Locally Linear Embedding

(a) PCA (b) LLE

(c) Laplacian Eigenmap (d) Isomap

Figure 2: Results of dimensionality reduction methods on
the synthetic dataset.

(LLE) [18], Laplacian Eigenmap (LE) [4] and Isometric
Mapping (Isomap) [12] are unable to extract the locally
embedded ‘subspace trends’. These dimensionality reduc-
tion methods used for linear and non-linear embedding
of the data can only interpret the hidden geometry of the
entire dataset. They are unable to provide any information
about the local subspace trends. Clearly, it is important
to be able to extract such local subspace trends in large
high-dimensional datasets. Our method seeks to extract
such local ‘subspace trends’ that are spread over a subset
of features and datapoints. These subspace trends can be
further analyzed with respect to their inherent properties
such as length, continuity, overlap, coverage and ordering,
amongst others. Various trends identified in a given dataset
can be studied and compared for different variabilities in the
features and their effect on data distributions.

Analyzing individual trends can yield more information
about the structural arrangement of the data points with some
continuity information. We are able to represent data sub-
sets in order-preserving patterns by identifying optimal ‘sub-
space trends’ which might yield some useful insights for do-
main experts for any further analysis. The rest of this paper is
organized as follows: Section 2 explains the shortcomings
of different methods proposed in the literature. Section 3
describes the problem formulation and explains the key con-
cepts needed to comprehend our algorithm. The proposed
algorithm for finding subspace trends along with some im-
plementation details is given in Section 4. Section 5 shows
the experimental results of the proposed algorithm on vari-
ous synthetic and real-world datasets. Section 6 concludes
our discussion and gives the future research directions.



2 Related Work
We discuss some important methods studied widely in lit-
erature which are relevant to our problem. Specifically, we
explain some of the widely used techniques like dimension-
ality reduction, feature selection and subspace clustering and
discuss their shortcomings.

2.1 Dimensionality Reduction: Dimensionality reduc-
tion has become a well studied topic in data mining and
statistics to find meaningful interpretations of the data sets
from the high-dimensional representation. Dimensionality
reduction is one of the areas which attempts to extract the
meaningful dimensions from the large pool of features or
to develop a meaningful low-dimensional representation
that will preserve the information quotient of the data in
the entire feature space. Classical methods used for linear
dimensionality reduction that are widely used in many prac-
tical applications are PCA and MDS. PCA is an eigenvector
based dimensionality reduction method which preserves the
variance from the high-dimensional setting of the data and
represents it in a new low-dimensional coordinate system.
MDS is a distance preserving technique that preserves the
pairwise distance between the data points while representing
the embedding in a low dimensional space. Both PCA
and MDS, though widely in many applications, can only
produce a linear mapping into a low-dimensional space. But
there are many datasets where the underlying variability
of the features creates a highly non-linear structure. For
these datasets, methods such as ISOMAP, LLE, Laplacian
Eigenmap and other manifold learning algorithms focus on
preserving the inherent structural geometry of the dataset
if the data lies on a subspace manifold. All these methods
are geometry preserving dimensionality reduction methods
which are able to identify the hidden structure of the entire
dataset and preserve it in a low-dimensional space. They
are unable to extract the locality preserving structures that
are present in the subspaces of the datasets. Although
these methods succeed in identifying the structure, they are
essentially dimensionality reduction methods and do not
identify the trends that may be present in the subspaces.
They are able to only provide a guideline to generate a
basis to do preliminary investigation about any positive
correlations and cannot give any information about some of
the subspace correlations hidden in these datasets.

2.2 Feature Selection: In the high-dimensional feature
space, feature selection methods will allow us to extract
those relevant (useful) features and separate them out from
the redundant, repetitive and noisy features [5, 15]. Feature
Selection algorithms seek to identify such a subset of fea-
tures primarily to improve the interpretability and reduce the
unnecessary complexities that might arise during the data

mining process. All the same, these algorithms can only
extract the relevant features, but are not capable of select-
ing a subset of data points or provide any information about
some of the local latent structures, geometry or ordering of
the data points within those feature sets. A more compre-
hensive study about the different feature selection algorithms
proposed in the literature is given in [14].

2.3 Subspace Clustering Clusters of data are identified
in the entire data/feature space and this is not suitable for
high-dimensional spaces that contain many irrelevant fea-
tures [16]. In order to avoid sub-optimal cluster formation,
subspace clustering algorithms find locally relevant clusters
in subspaces in a low-dimensional feature space. Based
on the search strategy of the method, these algorithms are
classified as top-down approaches or bottom-up approaches.
Top-down approaches [2, 1, 10] perform clustering in the
original space and iteratively evaluate the clusters based
on their subspaces to identify the most similar data points
in reduced feature space. Bottom up approaches [3, 9, 6]
find locally dense data subspaces and iteratively combine
them to form clusters based on improving the quality of the
clusters. Although successful in grouping data points, sub-
space clustering algorithms do not provide any continuous
representation of latent patterns in these subspaces. In our
algorithm, we use subspace clusters of the dataset to identify
the information-rich data subsets.

The two main drawbacks of subspace clustering algorithms
that motivated the need for the proposed methodology are
that the subspace algorithms:

• Simultaneously optimize the data and features to obtain
localized clusterings and in this process, they tend to
provide local dense clusters and do not preserve patterns
in the data.

• Give a discrete set of clusterings which are hard to
interpret. Especially, when one is looking for certain
correlation patterns it is important to group some of
these subspace clusters to represent trends in the data.

In essence, we extend the notion of subspace clusters to
‘subspace trends’ in this paper. We solve these problems
by merging similar subspace clusters and identify trends in
these subspaces.

3 Problem Description
In this section, we provide the mathematical formulation
of the problem of identifying Information-Rich Subspaces
(feature subsets and data subspaces) followed by generating
‘subspace trends’ in them. We will now formally define the
notion of Information-Rich Subspaces - IRS and ‘subspace



Table 1: Notations used in this paper.
Notation Description

n Number of datapoints
m Number of features
F Feature Set F={F1,...,Fm}

DP Data Points DP={DP1,...,DPn}
X Input dataset X = {F ,DP}
fi Subset of Features for ith subspace cluster

fi = (Fi,...,F∗,...,Fl)⊂ F
d pi Subset of Data Points ith subspace cluster

d pi = (DPk,...,DP∗,...,DPr)⊂ DP
SCi Subspace Cluster SCi = { fi,d pi}
IRSI Information-Rich Subset

IRSI = {SCi ∪ SC j∪...∪SCm}
for fi ≈ f j ≈...≈ fm

k Number of cluster centroids
CCi Cluster centroids
tni Terminal Nodes of the Pattern Graph
cni Composite Nodes of the Pattern Graph

CLi j Edges connecting two Centroids CCi and CC j
PG Pattern Graph : MST connecting CCis

with CLi js
SPI Subpaths of PG = (tni, ...,cn∗, ..., tn j)
AM Adjacency matrix of the MST
lI Length of SPI
cI Curvature of SPI
w Input weight parameter for ΓI
ΓI Subpath Selection Factor (w*lI+(1-w)*cI)
ϒ Subspace Trends

trends’ and then provide the problem statement. Table 1
gives the notations used in this paper.

3.1 Information-Rich Subspaces (IRSI) is a subset of se-
lected set of features (F) and data points (DP), extracted
from the original dataset such that a strong local structure
is present. It is comprised of very dense regions in the se-
lected feature set. This forms the building blocks for the
identification of ‘subspace trends’ which are embedded in
that subspace.
The Subspace Clusters (SCi) are the groups of those data
points that have strong similarity in a selected feature sub-
space [16]. A high-dimensional dataset X = {F ,DP} can
contain several subspace clusters denoted by SCi = { fi,d pi}
where fi ⊂ F and d pi ⊂ DP. These subspace clusters
have locally dense and highly correlated data points and yet,
only by themselves, do not provide any continuity informa-
tion which is essential for extracting correlation information.
Subspace clusters are often small in size (have fewer data
points in comparison to the original dataset) and at best give
the similarity information in a local neighborhood. The sim-
ple subspace grouping of these clusters has to be enhanced

and made more coherent before they can be further analyzed
for any ‘subspace trends’. This forms the basis on which we
will identify the Information-Rich Subsets in the dataset.
IRS are the union of those similar subspace clusters that
share some common feature subspaces. IRSI = {SCi ∪ SC j
∪...∪ SCm} for fi ≈ f j ≈ ... ≈ fm. IRS are a collection of
similar subspace clusters sharing some common features and
contain significant number of data points compared to any
independent subspace cluster and offer more flexibility for
the detection of subspace trends. Each IRS is composed of a
selected and highly correlated set of features and only those
data points that have a high similarity value with each other
spread over those features that are correlated in that subspace
are selected to belong to the IRS. This grouping makes them
more informative and are hence referred to as ‘Information-
Rich Subsets’ of data.

3.2 Subspace Trends (ϒ) are the inherent, latent se-
quences of patterns present in the subsets of datasets. They
are the ordered representation of the locally informative sub-
set of data points. These patterns are represented in a con-
tinuous form in a feature space that is filled with data points
to a pre-designated density in subspaces. Each latent pattern
has properties of length and curvature based on which they
are selected and identified as ‘subspace trends’. We will now
introduce some of the terminologies used in this paper.

DEFINITION 1. Pattern Graph (PG) is a Minimum Span-
ning Tree(MST) representation of the Cluster Centroids
(CCi) joined by the edges (CLi j).

The MST offers a neighborhood preserving and mapping
based structural representation of the Cluster Centroids.
This forms the pattern graph from which the hypothesis of
‘subspace trends’ are identified and explored.

DEFINITION 2. Terminal Nodes (tni) are those CCi which
have just one edge in PG (|CLi|= 1).

DEFINITION 3. Composite Nodes (cni) are those CCi which
are not the Terminal nodes. They have 2 or more edges.
|CLi| ≥ 2 .

DEFINITION 4. SubPaths (SPi j) are those paths in PG that
contain several Composite Nodes (cni) which are bounded
by exactly two Terminal Nodes (tni and tn j).

The Terminal nodes are the end nodes of various
possible subspace trends. The entire ‘subspace trend’ is
bound between these tni’s. The subpaths are represented as
(tni, cn1, cn2, ..., cnm, tn j). The total number of SubPaths
depends on the number of Terminal Nodes in PG. There are
(n

2) subpaths for n Terminal Nodes.



(a) High-dimensional dataset with 2 subspace clusters identified. IRS1 is
formed by merging the two clusters.

(b) IRS represented in 2D space (step 4)

(c) Various Clusters and their Centroids
(step 5)

(d) Minimum Spanning Tree on IRS (step 6) (e) The subpaths and their lengths as identi-
fied from the MST (steps 7,8).

Figure 3: Demonstration of the different steps of our algorithm.

Length (lI) of SPI - is the Euclidian Distance mea-
sured between the Terminal Nodes, as we move along the
subpath over each one of its Composite Node in the order
they are traversed.
Curvature (cI) of SPI - is the measure of the non-linearity
of the subpath. It is calculated as the summation of the cos
values of each Composite Nodes present on the subpath and
normalized by averaging it over the length of the subpath.
For a given subpath SPI =(tn1,cn1,cn2,cn3,tn2) and lI ,
curvature cI is calculated as follows:

(3.1) (cos(cn1)+ cos(cn2)+ cos(cn3))/lI

We illustrate these concepts with an example shown in
Fig. 3 which on a high-dimensional dataset X = {F ,DP}.
Fig. 3(a) represents two distinct subspace clusters over the
same feature subset. They are merged to form IRS1 which
now is the Information-Rich dense Subset of X . Fig. 3(b) is
the 2-dimensional representation of IRS1. Fig. 3(c) shows
the results of the clustering algorithm where the IRS data
points are clustered and represented by their cluster centroids
(CC1,...,CC7). Fig. 3(d) shows the Pattern Graph which
joins all the Cluster Centroids. There are 3 Terminal Nodes
(tn1,tn2,tn3) and 4 Composite Nodes (cn1,cn2,cn3,cn4).
Based on the Terminal nodes and Composite Nodes, there
are 3 possible subpaths, shown in Fig. 3(e), along with the

lengths of each subpaths is measured based on the edges of
the Nodes belonging to that subpath.

Problem Statement: Given a Pattern Graph PG =(CCI ,
CLIJ), we would like to identify all the end to end SubPaths
SPI and find the minimal set of SPIs that cover all the CCis in
PG and maximize the objective function ΓI given below:

(3.2) ΓI = w∗ lI +(1−w)∗ cI

where the parameter Path Selection Factor (ΓI) is the
weighted sum of {lI ,cI} for each subpath and is used to op-
timize the selection criteria for the subpaths. Such a sub-
set of optimal most informative subpaths form the ‘subspace
trends’ that represent the correlations in the subspaces.

4 Algorithm for Finding Subspace Trends
We will now propose the following algorithm to generate
subspace trend hypotheses in an IRS:

1. IRS Identification - using a subspace clustering algo-
rithm with a data merging subroutine which assim-
ilates the data points and relevant features to form
Information-Rich Subspaces (IRS).

2. Pattern Graph Generation - using a local similarity
preserving algorithm for clustering of IRS followed by



fitting a MST to connect the local cluster centroids in
each IRS.

3. Identification of Independent Paths - implementing
Find Trends algorithm to obtain different ‘subspace
trends’ hypotheses.

The high-level pseudocode is shown in Algorithm 1.
Now, we will elaborate on each of the steps in the proposed
algorithm mentioned above.

Algorithm 1 Finding Subspace Trends
1: Input: Dataset X
2: Output: Subspace Trends ϒ
3: Algorithm:
4: IRS ← IRS Identi f ication(X)
5: σ ← local clusters(IRS)
6: AM ← fit MST(σ)
7: [SPI ,lI ,cI] ← SubPath Values(AM)
8: SubP←{SPI ,ΓI} (using Eq. (3.2))
9: ϒ← Find Trends(SubP)

(1) IRS Identification - As the first step, we use a subspace
clustering algorithm to identify the subspace clusters present
in the entire data and feature space. The output of this
module is the subspace cluster ID (SCi), the data points
(d pi) and the feature subset ( fi) of each subspace cluster.
Potentially, any subspace algorithm that is suitable for a
given dataset can be used to obtain these subspace clusters.
The algorithm returns the biclusters written in an output file.
In our implementation, we used the BiVisu1 biclustering
algorithm, which is an efficient method for finding subspace
clusters using parallel coordinate visualization [7].

Each subspace cluster has a distinct subset of features
associated with it. Based on the collective number of
data points belonging to each such subset of features,
the clusters are identified and merged to form an IRS.
There are as many IRS’s as many distinct feature subsets
of the subspace clusters. For example, let us consider
the 4 distinct subspace clusters SC1 = { f1,d p1}, SC2 =
{ f2,d p2}, SC3 = { f3,d p3} and SC4 = { f4,d p4}. If f1 ≈ f2
and f3 ≈ f4, then as the distinct and unique feature sets
are 2 ( f1 and f3), there will be only 2 IRS’s. The routine
UNIQUE(f) identifies this unique set of features. Based on
this number of unique feature sets, as described in Algo-
rithm 2, the IRS’s are identified and used for further analysis.

(2) Pattern Graph Generation - The building blocks of
the IRS must be identified in order to formulate a continuity
based Pattern Graph. To this end, the IRS is clustered into

1www.eie.polyu.edu.hk/˜nflaw/Biclustering/

Algorithm 2 IRS Identi f ication
1: Input: Subspace Clusters SCi,SC j...
2: Output: Information-Rich Subspaces IRSI
3: Pseudocode:
4: UniqueFS ← UNIQUE(f)
5: IRS = φ
6: for I← 1 : size(UniqueFS) do
7: F = UniqueFS(I)
8: for i← 1 : size(SC) do
9: if fi ≈ F then

10: IRSI ← IRSI ∪ d pi
11: end if
12: end for
13: end for

a suitable number (k) of clusters using any appropriate
clustering algorithm (such as k-means or hierarchical)
which groups each IRS into desired local clusterings
needed for the next step of our algorithm. Each cluster is
represented by its centroid CCi. The clusters provide the
similarity preserving basis on which the subspace trends
hypotheses can be built while the centroids are the single
point summarizations. We choose k-means for its high
run-time efficiency, simplicity and its ability to provide
good local (spherical) clusterings. Once the building blocks
(clusters represented by their centroids (CCi)) have been
identified, a continuity based structure representation of the
internal neighborhood preserving mapping of the datapoints
is generated by fitting a MST (using Kruskal’s algorithm)
on the cluster centroids which will give a graph with edges
CLi (joining the cluster centroids CCi) in the form of an
Adjacency matrix (AM). Based on this adjacency matrix,
the algorithm SubPath Values identifies all the possible
subpaths (end to end paths - SPI) along with their lengths
(lI) and curvatures (cI).

(3) Identifying the Optimal Trends - This is one of the
main components of our approach that will examine every
possible subpath and identifies a minimal subset which con-
tains the entire IRS within themselves while optimizing the
properties of length and curvature represented in their struc-
ture. Find Trends is a greedy procedure which takes the
subpaths matrix (SubP = {SPI ,ΓI}) and the Path Selection
Factor (ΓI) (see Eq. (3.2)). Each subpath is examined in
the descending order of their ΓI values. The first subpath is
automatically selected and is also the best representative of
the ‘subspace trends’ of that IRS. This is the most optimal
path with respect to length and curvature. Any new subpath
that needs to be considered as a trend must include at least
one new cluster centroid that is not present in the already
selected subpaths. After all the cluster centroids are consid-
ered in the set of subpaths, the algorithm is terminated with



selected subpaths as the ‘subspace trends.’

Algorithm 3 Find Trends
1: Input: Subpath matrix SubP
2: Output: Set of Optimal Subpaths τ
3: Pseudocode:
4: sort (SubP, ΓI)
5: Ind = σ // Set of Indicator variables for CCis
6: for I=1:size(SubP) AND Ind 6= φ do
7: SPCI ← Get CC(SPI)
8: for j=1:size(SPCI) do
9: for k=1:size(Ind) do

10: if SPCI(j) =Ind(k) then
11: Ind(k)← φ
12: τ(i)← SPI
13: end if
14: end for
15: end for
16: end for
17: return (τ)

The primary objective of our approach is to obtain
the most optimal set of subpaths (τi) that covers all the
data points and identifies the minimal set of subpaths that
within themselves will cover all the cluster centroids while
optimizing their lengths and curvature. The algorithm
Find Trends generates this minimal set τ using a maximiza-
tion solution where the aim is to maximize the length and
curvature in the selected subpaths using a weight parameter
(w). Algorithm 3 gives the implementation of Find Trends
subroutine. All Subpaths (SPI) are ranked in ascending order
according to their Γ value. The function Get CC obtains
the corresponding set of Nodes (Cluster Centroids) for each
SPI . The paths are ranked in the descending order of ΓI ,
are checked for the CCis that they include. Those CCis
are eliminated from the Ind set which is a set of Indicator
variables for CCis. The paths are sequentially checked
for any new CCi that they may add and the process termi-
nates once all CCis are eliminated, that is, (CCi ∈ τ)∩σ = φ .

Each SPI includes a sequence of CCis that represent the
clusters of the data. Hence each SPI is associated with a set
of data points included in those clusters. Thus, each SPI
is the representation of a trend in that data set in an order-
preserving and continuous form. The ‘subspace trends’ have
the latent patterns which can be seen when they are repre-
sented using direct plots or in the case of high-dimensional
data, using suitable dimensionality reduction and visualiza-
tion methods. Most importantly, these subspace trends have
much stronger correlations which can be mathematically
modeled.

5 Experimental Results
All programs were written in MATLAB Version 6.5 and run
on pentium Dual Core 2.8 GHz machines. Experiments were
performed using both synthetic and real-world datasets.

5.1 Synthetic Data sets Our algorithm was tested suc-
cessfully on various synthetic data sets that inherently
contain subspace trends. Several data sets were created with
various embedded patterns hidden in the original global data
space and the algorithm was successfully able to identify the
IRS and the ‘subspace trends’ in them. We will demonstrate
the results for two such datasets.

Synthetic dataset 1 : The dataset consists of 3602 data
points {DP1,...,DP3602} spread over 15 features {F1,...,F15}.
There are three latent non-linear patterns embedded in
3 different IRS. The first IRS spans over data points
{DP1,...,DP1081} with features {F1,F2,F3}, the second IRS
spans over data points {DP1082,...,DP3602} with features
{F4,F5,F6} and finally, the third IRS spans over data points
{DP600,...,DP2401} with features {F7,F8,F9}. All these IRS
have in them non-linear correlation with sinewave form.
The remaining features {F10,...,F15} and data are randomly
generated noise points. The plot in Fig. 4(a) shows the
strong correlation between the IRS feature sets {F1,F2,F3},
{F4,F5,F6} and {F7,F8,F9} over their respective regions.
There were 10 distinct subspace clusters (SC1,...,SC10)
identified and were reduced to 3 IRS’s {IRS1,IRS2,IRS3}.
The algorithm was able to identify all the IRS’s suitably and
represent their sine correlation in the final representation
(see Fig 4(a)). As shown in Fig 4(b), dimensionality
reduction methods like PCA cannot provide any information
about the embedded subspace trends.

Synthetic dataset 2 : This dataset consists of 3602 data
points {DP1,...,DP3602} spanning 164 features {F1,...,F164}.
There is one IRS present in the subset {DP1,...,DP1081}
across features {F1,F2,F3} as shown in Fig 5(a). The un-
derlying structure of this IRS is that of two intersecting sine
waves and we created this dataset to test the ability of the
algorithm to separate the two underlying subspace trends
as two distinct sine waves from the same IRS. The plot in
Fig. 5(a) shows the strong correlation between {F1,F2,F3}
over the IRS {DP1,...,DP1081}. Our algorithm was able to
identify the IRS and separate the embedded subspace trends,
as shown in Fig 5(b,c). Fig 5(d,e) shows the results of the tra-
ditional dimensionality reduction methods such as PCA and
Laplacian Eigenmap which do not provide any hints about
the subspace correlation.

5.2 Real-world Data sets We also evaluated the per-
formance of the proposed algorithm on three real-world
datasets. We obtained promising results that demonstrate the



(a) (b)

Figure 4: Results on Synthetic dataset 1. Results of (a) the proposed algorithm (b) PCA.

(a)

(b) (c)

(d) (e)

Figure 5: (a) Correlation matrix and subspace trends in synthetic dataset 2. Results on Synthetic dataset 2 - (b,c) Embedded
subspace trends identified by the proposed algorithm. Results of (d) PCA and (e) Laplacian Eigenmap.



(a) (b)

(c) (d)

Figure 6: Results on the Wages dataset (a) IRS with merged subspace clusters (b) Subspace trends obtained using the
proposed algorithm. Result of (c) PCA (d) Laplacian Eigenmap.

ability to offer some useful insights about information-rich
subspace trends.

(1) Wages dataset :
The wages dataset contains the statistics of the determinants
of Wages from the 1985 Current Population Survey. It
contains 534 observations on 11 features sampled from
the original Current Population Survey of 1985 and can be
downloaded from StatLib Data archive2. Out of these 11
features, 4 are numerical [EDUCATION: Number of years
of education, EXPERIENCE: Number of years of work
experience, WAGE: Wage (dollars per hour) and AGE: Age
(years)]. The other 7 are categorical which are converted to
the corresponding numerical values. Our algorithm gave 14
subspace clusters {SC1,...,SC14} spanning various feature
subsets. We were able to obtain one prominent IRS spanning
the features {F4,F6,F7} (Experience, Wage and Age) and 2
subspace clusters |SC1| = 54 and |SC2| = 63. The IRS and the
‘subspace trend’ identified in that is shown in Figs 6(a,b).
One can see the inherent linear structure to the subset of
the data. In Fig 6(c,d), we can see that the dimensionality
reduction methods like PCA and Laplacian Eigenmap do
not provide any information about these subspace trends.

2http://lib.stat.cmu.edu/datasets/CPS 85 Wages

(2) Breast Cancer Dataset :
We also tested our algorithm on the Wisconsin Diagnostic
Breast Cancer (WDBC) dataset3 from the UCI Machine
Learning Repository. In this dataset, there were 32 features
computed from a digitized image describing the character-
istics of the cell nuclei present in the image with 569 data
points. Excluding patient ID and diagnosis (class label)
columns, we used only 30 features for our analysis. Five
distinct subspace clusters were identified out of which we
were able to identify one IRS with strong correlation. This
IRS is composed of 2 different subspace clusters |SC1| =
290 and |SC2| = 203 over features [F4, F24] This is shown
in Fig. 7(a). As we can see from the figure, merging the
two subspace clusters enhances the IRS and makes it more
suitable for identifying informative trends. Individually,
both these subspace clusters would provide very weak
trends and hence it is important to identify a collective
Information-Rich Subset of data when looking for subspace
trends. We were able to identify a prominent ‘subspace
trend’ over the IRS identified as shown in Fig. 7(b). The
Isomap and PCA results shown in Figs. 7(c,d) clearly show
that the traditional dimensionality reduction methods cannot
identify these inherent subspace trends.

3http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)



(a) (b)

(c) (d)

Figure 7: Results on UCI Breast Cancer dataset. (a) IRS with merged subspace clusters (b) Subspace trends obtained by the
proposed algorithm. Results of (c) Isomap (d) PCA.

(a) (b)

(c) (d)

Figure 8: Results on Yeast Cell Gene expression data. (a) IRS with merged subspace clusters (b) Subspace trends obtained
by the proposed algorithm. Result of (c) Isomap (d) PCA.



(3) Yeast Expression Dataset :
The Yeast Expression dataset4 describes the systematic
determination of genetic network architecture’s dataset
of yeast cells and contains 8224 samples (genes) and 17
features (expression levels). Out of all the subspace clusters
found, we are able to identify a distinct IRS with strong
correlation. This IRS is composed of 2 different subspace
clusters |SC1| = 642 and |SC2| = 1164 over features {F11,F12}
which are experimental conditions, as shown in Fig. 8(a).
The IRS spans over 1675 data points and features {F11,F12}.
We were able to identify a ‘subspace trend’ in the IRS and
as in Fig. 8(b). Figs. 8(c,d) shows the results of Isomap and
PCA on this dataset and one can see that these embedded
trends are not identified using the traditional methods.

5.3 Discussion In the previous section, we have shown the
results in terms of visual plots that clearly highlight the sub-
space trends identified by the proposed algorithm. For some
applications, it is important to go beyond these measures
and quantify the results by modeling them using continuous
functions such as principal curves [13]. Since the concept
of subspace trends is novel and is not previously available
in the literature, we compared our results quantitatively with
that of the subspace clustering results. We know that clusters
are groupings of data points based on a similarity criteria and
can be represented by their centroids. The centroids are the
single point summarizations of these subspace clusters. In
order to compare the measure of summarization, we calcu-
lated the error measures for the clusters as Sum of Errors
(SE) and Sum Square Error (SSE) [19]. For a data point xi
in a subspace cluster SC containing nc data points and with
centroid m, SE and SSE are calculated as follows:

(5.3) SE =
nc

∑
i=1
|m− xi|

(5.4) SSE =

√
nc

∑
i=1

(m− xi)2

Though subspace cluster centroids are considered to be
representative points, they provide very limited information
in terms of the correlations. Since, we are able to extract
these data points that follow a trend, we can take advantage
of continuous modeling using principal curves to model such
data. Hence, we will compare the effectiveness of clusterings
with that of using principal curves [20]. Principal curves are
the one-dimensional representation of the data that defines
a line which passes through the most dense regions of the
dataset. Each data point has a corresponding projection

4http://cheng.ececs.uc.edu/biclustering/yeast.matrix

point on the principal curve and this projection distance can
be used as the error measure for summarization [11]. The
subspace trends that we identify in a reduced feature and
data space can use principal curves to give a one dimensional
representation and thus the principal curves will provide
a mathematical formalization of trends which can model
the data in terms of the subspace (linear or non-linear)
correlations of the attributes. This gives rise to an effective
measure to evaluate the best fit curve using the distance
between the data points and the principal curve. For each
data point xi, j, let p(xi, j) be the projection onto the principal
curve. The L1 and L2 error measure is defined as follows:

(5.5) L1 =
m

∑
i=1

n

∑
j=1
|xi, j− p(xi, j)|

(5.6) L2 =

√
m

∑
i=1

n

∑
j=1

(xi, j− p(xi, j))
2

All these error measures for the three real-world datasets
are calculated and shown in Table 2. One can see the effec-
tiveness of using these principal curves for the continuous
representation of the subspaces rather than using the clus-
tering itself. For examples, the correlation between the at-
tributes in the wages dataset is non-linear and principal curve
will provide a mathematical framework for modeling these
correlations.

Table 2: Comparison results for trends and clusters on
various real-world datasets in terms of L1 and L2 evaluation
measures.

L1 Measure L2 Measure
Dataset SE Trend SSE Trend
Wages 657 4.4 403.7 11.7

Breast Cancer 55000 43.1 39300 7210.4
Yeast Gene 167000 19.3 119000 787.1

6 Conclusion and Future Research
In spite of the vast literature in high-dimensional data analy-
sis, not many efforts were made in identifying information-
rich subsets and creating an order-preserving representation
of such subsets. In this paper, we developed a new algorithm
that takes advantage of different subspace clusters and iden-
tifies an information-revealing representation for subsets of
data and features that may contain local patterns. Our ap-
proach is transparent to the underlying subspace clustering
algorithms used and will enhance the understanding of these
subspaces by providing an integrated framework that defines
the notion of trends in these subspaces. Analyzing such ‘sub-
space trends’ can provide very useful insights for domain



experts to further analyze such high-dimensional datasets for
understanding the local linear and non-linear correlations oc-
curring in these subspaces. One of the main future research
directions of this work is to extend the algorithm to opti-
mize for the feature subsets and the trends simultaneously.
One can also evaluate the effectiveness of our algorithm us-
ing different subspace clustering algorithms.
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