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Abstract

Survival analysis aims at modeling time to event data
which occurs ubiquitously in many biomedical and
healthcare applications. One of the critical challenges
with modeling such survival data is the presence of cen-
sored outcomes which cannot be handled by standard
regression models. In this paper, we propose a regular-
ized linear regression model with weighted least-squares
to handle the survival prediction in the presence of cen-
sored instances. We also employ the elastic net penalty
term for inducing sparsity into the linear model for effec-
tively handling high-dimensional data. As opposed to
the existing censored linear models, the parameter esti-
mation of our model does not need any prior estimation
of survival times of censored instances. In addition, we
propose a self-training framework which is able to im-
prove the prediction performance of our proposed linear
model. We demonstrate the performance of the pro-
posed model using several real-world high-dimensional
biomedical benchmark datasets and our experimental
results indicate that our model outperforms other re-
lated competing methods and attains very competitive
performance on different datasets.
Keywords: survival analysis; linear regression; cen-
sored data; self-training; sparse methods; least squares;
high-dimensional data.

1 Introduction

Survival analysis aims at modeling data in longitudi-
nal studies where the observations are monitored over
period of time [1]. The monitoring continues until the
occurrence of a certain event of interest. However, the
event of interest may not always be observed during
the study period which gives rise to censoring in the
dataset. Censoring makes survival analysis more chal-
lenging compared to the standard regression setting,
and for such instances the last observed time is known
as censored time. The most common form of censor-
ing that occurs in real-world scenarios is right censoring
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where the survival time is known to be longer than or
equal to censored time, but its precise value is unknown.
In the rest of the paper, we refer to right censored data
as censored data, unless otherwise specified.
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Figure 1: Relationship between estimated survival time and

censored time for a right censored observation.

Figure 1 shows three timelines to demonstrate the
relationship between the estimated survival time and
the censored time. Based on the definition of right
censoring, the timeline can be separated into two parts,
the range of impossible survival time and the range of
possible survival time using the censored time (Figure
1(a)). Hence, there are two cases that can arise.
Case 1: once the estimated survival time is lesser
than the censored time, then it falls into the range of
impossible survival time and the real difference between
the estimated survival time and the actual survival
time is definitely greater than the difference between
the estimated survival time and observed censored time
(Figure 1(b)). Thus, the model should give more
emphasis to this case with assigning more weight for this
case in the loss function to reduce such an occurrence.
Case 2: If the estimated survival time is greater than
the censored time, then it falls into the range of possible
survival time (Figure 1(c)), and hence, in the loss
function, the model should assign less weight for this
case.

Motivated by this observation, in this paper,
we propose a Regularized Weighted Residual Sum-



of-Squares (RWRSS) algorithm which imposes more
penalty to the first case and less penalty to the second
case. Thus, the proposed RWRSS is able to effectively
handle the censored instances. Additionally, we also
employ the elastic net as penalty to sparsify the learned
coefficients, so that the RWRSS is able to avoid over-
fitting and will be able to deal with high-dimensional
datasets. We propose a linear model because it is sim-
ple, effective and scalable. In survival analysis, linear
regression for data analysis with censored observations
is an alternative research direction that has attracted
broad attention in the fields of data mining and bio-
statistics [2, 3, 4].

Some linear models such as Tobit regression [5]
and Buckley-James (BJ) regression [2] were proposed
to handle censored observations. These methods em-
ploy the Kaplan-Meier (K-M) estimator [6] (in the case
of BJ) and the Gaussian distribution (in the case of To-
bit regression) to approximate the survival times of cen-
sored instances for satisfying the least-squares principle.
However, these approximation methods will induce bias
into the final model since the actual survival times of
censored instances cannot be observed. It induces bias
because the KM estimation cannot accurately estimate
the survival time of censored instances, and this esti-
mated inaccurate survival time will be used to train the
model. This makes the prediction problem more com-
plex because the survival time of censored instances are
calculated using the integral of the KM estimator.

In contrast to these existing methods, we do not
approximate the survival times of censored instances.
RWRSS aims at directly minimizing the difference be-
tween the estimated survival time and actual survival
time of uncensored instances and ensures that the es-
timated survival time of censored instances is longer
than the censored times. Thus, comparing to the ex-
isting linear censored regression models, our proposed
model simplifies the prediction problem. In this pa-
per, we demonstrate that such a simplification improves
the prediction performance of the proposed model. The
concordance index (C-index) [7] is the most commonly
used performance metric in survival analysis which mea-
sures the concordance between the orderings of the sur-
vival times and predicted marker values. Because the
actual survival time of censored instances are unknown,
it is infeasible to calculate the concordance between a
pair of censored instances. Hence, an accurate estima-
tion of the survival time of censored instances is not
possible or needed.

From the viewpoint of traditional data mining,
survival analysis can also be viewed as a semi-supervised
learning problem, where the uncensored instances can
be viewed as labeled data and the censored instances

can be viewed as unlabeled data. However, different
from most of the existing semi-supervised algorithms
which are focused on classification, survival analysis is
a regression problem. Motivated by self-training [8],
which uses the confidence estimated labels of unlabeled
data in the next training round, we develop a framework
which uses the proposed RWRSS model to infer the
survival time of censored instances.

However, different from the traditional self-training
approaches, in the first training round RWRSS is
trained from both labeled (uncensored) and unlabeled
(censored) instances. In the right censoring scenario,
for certain censored instances, the censored time should
be equal to or less than the survival time. Thus,
once the estimated survival time is greater than the
censored time, we will use the estimation to approxi-
mate the survival time of censored instances and train
a new model based on the updated training instances
in the next training round. Experimental results over
high-dimensional biomedical datasets indicate that our
model outperforms other related competing methods
and attains very competitive C-index values on high-
dimensional datasets.

The main contributions of this paper can be sum-
marized as follows:

• Propose a novel weighted linear regression method
for prediction problems with censored observations
which avoids the use of approximate survival time of
censored data during the training phase.

• Develop a self-training framework which involves both
uncensored and censored instances in each training
round and is able to improve the prediction perfor-
mance of the proposed RWRSS model.

• Demonstrate the performance of the proposed cen-
sored regression method using real-world high-
dimensional cancer gene expression survival datasets
and compare it with several existing survival estima-
tion methods.

The rest of the paper is organized as follows. In Section
2, the related data mining approaches for survival
analysis are discussed. Our proposed approaches are
explained in detail in Section 3. Section 4 demonstrates
our experimental results on several real-world datasets
while Section 5 concludes our discussion.

2 Related Work

In this section, we present the related work in the area of
data mining methods for survival analysis and highlight
the differences and relationships between our proposed
model and other existing works.

Cox proportional hazards model [9] is one of the
earliest and most widely used survival analysis method



which has garnered significant interest from researchers
in both statistics and data mining communities. To
deal with high-dimensional data some regularization
methods have been integrated with it. These methods
include LASSO-COX [10] which introduces the L1 norm
penalty in the Cox log-likelihood loss function, Elastic-
Net Cox (EN-COX) [11] which uses the elastic net
penalty term and the kernel elastic net penalized Cox
regression [12, 13].

The linear regression model, together with the least-
squares estimator, is one of the fundamental models in
data analysis. One of its main drawbacks is that it can
not be directly used in survival analysis because the
actual survival times of censored instances are missing
for censored instances. The Tobit model [5] is the
earliest attempt to extend the linear regression for data
analysis with censored observations. Then, in the late
1970s and early 1980s, a number of works [14, 2, 15] have
extended the least-squares principle to handle censored
observations. The estimator of Miller [14] requires that
the censoring time satisfy the same regression model
as the survival time, while the estimator of Koul et al.
[15] requires that the censoring time be independent of
covariates. Miller and Halpern’s study [16] have shown
that the Buckley-James (BJ) estimator [2] is robust
compared to the other methods. Wang et al. applied the
elastic net penalty to the BJ regression (EN-BJ) [3] to
handle the high-dimensional survival data. Accelerated
failure time (AFT) model [17] can also be viewed as
an extension of linear model which assumes that the
relationship of the logarithm of survival time T and the
covariates is linear in nature [1].

In this paper, we propose the RWRSS algorithm to
handle the survival prediction with censored instances
in high-dimensional data. Different from the Tobit re-
gression, we solve the prediction problem by optimizing
the desired objective function directly rather than do-
ing a maximum likelihood estimation. The loss func-
tion that is optimized is regularized using the elastic
net penalty which can induce the required sparsity and
efficiently handle the high-dimensionality. Comparing
with the BJ and EN-BJ methods, our model does not
need to compute the K-M estimator to approximate the
survival time of censored instances during the training
process. In addition, we also propose a framework moti-
vated by the idea of self-training which can improve the
prediction performance of our proposed linear model.

3 Regularized Weighted Linear Regression for
Survival Analysis

In this section, we will explain the details of the pro-
posed regularized weighted linear regression model for
predicting survival times. We will first discuss the pro-

posed weighted loss function along with its main intu-
ition. Later, the regularized weighted linear regression
and the optimization procedure will be explained in de-
tails. Finally, a self-training framework for handling
survival data with right censored instances will be dis-
cussed. This self-training framework is used with our
regularized weighted linear regression as the base learn-
ing algorithm. In survival analysis, one can either ob-
serve the survival time (Ti) or the censored time (Ui) for
ith instance but not both of them. The dataset is consid-
ered to be right censored if only if yi = min(Ti, Ui) can
be observed during the study. An instance in the sur-
vival data is usually represented by a triplet (Xi, yi, δi),
where Xi is 1 × p feature vector, δi is the censored in-
dicator; δi = 1 for a uncensored instance and δi = 0 for
a censored instance [18]. The observed time yi is equal
to the survival time Ti for uncensored instances and Ui
otherwise.

(3.1) yi =

{
Ti if δi = 1
Ui if δi = 0

3.1 Objective Function For censored observations,
the exact difference between the estimated outcome
and the actual target value cannot be measured. The
estimated survival time for a right censored instance
should be either equal to or larger than its censored
time. For the ith instance, if δi = 1, then the estimated
survival time of the proposed model should be as close as
possible to yi, and hence the standard squared residual
can be used as loss function for uncensored instances;
however, if δi = 0, the estimated survival time should
be greater than yi, and hence in the loss function, we
should give more weight to the censored instances whose
estimated survival time is lesser than censored time and
less weight to the censored instances whose estimated
survival time is greater than censored time. Thus, we
propose the following weighted residual sum-of-squares
(WRSS) as the objective function to minimize.

(3.2) WRSS =

N∑
i=1

(yi −Xiβ)2wi

where weight wi is defined as follows:

(3.3) wi =

 1 if δi = 1
τ if δi = 0 and yi ≥ Xiβ
0 if δi = 0 and yi < Xiβ

From Eqs.(3.2) and (3.3), we can see that the WRSS
calculates the standard residual value (yi − Xiβ) for
uncensored observations (δi = 1). However, for cen-
sored observations, it ignores the difference between the
estimated output and the censored time when the esti-
mated output is greater than the censored time. For the
right censored observations, we know that the actual



survival time is equal to or greater than the censored
time; therefore, when the estimated output is lesser than
the censored time, then the difference between the ac-
tual survival time and the estimated survival time is
indeed greater than (yi −Xiβ). Hence, τ is a constant
which should be greater than 1 and is a parameter of the
model that needs to be empirically determined because
it is infeasible to measure the true difference between
the estimated output and the actual survival time of
the corresponding censored instance.
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Figure 2: wi is a step function for censored instances.

In our proposed model, the elastic net [19] is used
as the penalty term. The corresponding optimization
problem is formulated below:
(3.4)

argmin
β

1

N

N∑
i=1

(yi−Xiβ)2wi+λ

(
α‖β‖1 +

1− α
2
‖β‖22

)
where λ ≥ 0 is the regularization parameter, and 0 ≤
α ≤ 1 is used to adjust the weights of the L1 and L2

norm penalties.

3.2 Optimization From Eq. (3.3), we can see that
wi is a constant when δi = 1 and it is a step function
when δi = 0 (see Figure 2). To handle this discontinuity
in Eq. (3.4) due to the presence of the step function,
we propose an iterative optimization method based
on coordinate descent method. Coordinate descent
minimizes a multi-variate function by minimizing it
along only one direction at a time. Let us suppose,
except βk, all other β̃l (l = 1, 2, 3, · · · , p and l 6= k)
have already been estimated and we would like to
partially optimize with respect to βk. The coordinate-
wise updating [20] is done as follows:

(3.5) β̃k ←
S( 1

N

∑N
i=1 wixik(yi − ỹik̄), λα)

1
N

∑N
i=1 wix

2
ik + λ(1− α)

where ỹik̄ =
∑
l 6=k xilβ̃l is the fitted value excluding the

contribution from xik, S(Z, γ) = sign(Z) · (|Z| − γ)+

is the soft-thresholding operation; in addition, sign(·)
is the signum function, and (|Z| − γ)+ refers to the
positive part, which is |Z| − γ if (|Z| − γ) > 0 and
0 otherwise. This update is simply the univariate
regression coefficient of the partial residual sum of
squares (yi− ỹik̄) on the kth variable. In each iteration,

all of the p coefficient variables are repeatedly updated
until convergence.

Now, one of the problems that arise during this op-
timization is the determination of wi for each observa-
tion in each iteration. From Eq. (3.3), we can see that
the value of wi is determined by δi, yi, and Xiβ, where
for a particular ith observation, δi, yi, and Xi will not
change during the coordinate decent process, but each
element of β will be updated one by one based on the
coordinate-wise method. In the optimization process,
we use the latest updated coefficient vector to approx-
imate β; thus, in the dth iteration before updating the
coefficient of kth feature, the latest updated βd,k−1 can
be represented by

β(d,k−1) = {βd1 , . . . , βd(k−1), β
d−1
k , βd−1

(k+1), . . . , β
d−1
p }

and we have

Xiβ ≈ Xiβ
(d,k−1)

= Xiβ
(d,k−2) +Xi,k−1 · βd(k−1) −Xi,k−1 · βd−1

(k−1)(3.6)

Algorithm 1 outlines the basic learning methodol-
ogy for the proposed RWRSS model. In line 1, we ini-
tialize the estimator of the parameter β̂ to be the zero
vector. In lines 4-7, we calculate the updated wi for
each training instance, and each element of the coeffi-
cient vector is updated using the coordinate-wise update
in line 8. Eq.(3.6) can be updated in O(1) based on the
previous result; thus, for N instances, a complete cy-
cle costs O(Np) operations where p is the number of
features. Hence, the overall time complexity of the pro-
posed model is O(Np).

Algorithm 1: Regularized weighted residual
sum-of-squares (RWRSS)

Input: Training data (X, δ, y), Regularization
parameter λ, Adjustment Weight α

Output: β̂

1 Initialize: β̂ ← 0;
2 repeat
3 for k = 1 to p do
4 for i = 1 to N do
5 Calculate Xiβ using Eq.(3.6);
6 Update wi using Eq.(3.3);

7 end

8 β̃k ←
S( 1

N

∑N
i=1 wixik(yi−ỹik̄), λα)

1
N

∑N
i=1 wix2

ik+λ(1−α)
;

9 end

10 β̂ ← β̃;

11 until Convergence of β;



3.3 Theoretical Analysis We will now provide the
convergence analysis of Algorithm 1. Since wi is up-
dated iteratively based on the approximation made in
Eq.(3.6) (line 6 of Algorithm 1), the proposed objec-
tive function is an iteratively re-weighted least squares
(IRLS) which is different from the standard weighted
update of coordinate descent. Thus, the analysis of the
descent property is needed to ensure that the proposed
RWRSS algorithm indeed converges.

Lemma 3.1. The optimum value of Eq.(3.4) with itera-
tively updated wi is upper bounded by the optimum value

of Eq.(3.4) with constant initial wi (denote by w
(0)
i ).

Proof. Since β is initialized by a zero vector, we have
Xiβ = 0 ≤ yi for all i. Then based on Eq.(3.3), we have

w
(0)
i =

{
1 if δi = 1
τ if δi = 0

Let w
(f)
i denote the final updated weight of ith instance,

then we have

(3.7) w
(0)
i ≥ w

(f)
i for all i

Let L(w
(0)
i , β̂(0)) be the optimum value of Eq.(3.4) with

constant initial wi, where β̂(0) is the corresponding

learned coefficient. Similarly, let L(w
(f)
i , β̂(f)) be the

optimum value of Eq.(3.4) with iteratively updated

wi, where β̂(f) is the corresponding learned coefficient.
Thus, we have

L(w
(0)
i , β̂(0)) ≥ L(w

(f)
i , β̂(0)) ≥ L(w

(f)
i , β̂(f))

where the first inequality is based on Eq.(3.7), and the

second inequality is because β̂(f) is the learned optimal

coefficient with respect to w
(f)
i . Therefore, the optimum

value of Eq.(3.4) with iteratively updated wi is upper
bounded.

Theorem 3.1. The objective function given in Eq.
(3.4) converges during the learning process.

Proof. In the dth iteration of coordinate descent, the kth

coefficient is updated by
(3.8)

βdk ← min
βk

L(w
(d,k−1)
i , βd1 , . . . , β

d
(k−1), βk, β

d−1
(k+1), . . . , β

d−1
p )

where w
(d,k−1)
i is the latest updated weight of ith

instances based on β(d,k−1). Similarly, as discussed in

Lemma (3.1) we have w
(0)
i ≥ w

(d,k−1)
i , and

L(w
(0)
i , βd1 , . . . , β

d
(k−1), β

d(0)
k , βd−1

(k+1), . . . , β
d−1
p )

≥ L(w
(d,k−1)
i , βd1 , . . . , β

d
(k−1), β

d(0)
k , βd−1

(k+1), . . . , β
d−1
p )

≥ L(w
(d,k−1)
i , βd1 , . . . , β

d
(k−1), β

d
k , β

d−1
(k+1), . . . , β

d−1
p )

where β
d(0)
k is the optimal value of the kth coefficient in

dth iteration if the weight of the instances is initialized as

w
(0)
i . Thus, we can say that in each step of the learning

process, the value of the objective function is upper

bounded by the constant weighted (w
(0)
i ) objective

function. Based on the convergence of coordinate
descent we know that the constant weighted objective
function has converged during the learning process.
Therefore, we can conclude that the objective function
converges during the learning process.

3.4 Self-training Framework for Right Cen-
sored data As pointed in the previous sections, mining
from dataset with censored observations is closely re-
lated to semi-supervised learning. The censored obser-
vations can be considered as unlabeled instances since
the event of interest can take place in the future. Most
of the existing semi-supervised learning methods focus
on classification rather than regression, and unlabeled
observations do not contain any labeling information at
all. However, in survival analysis, for each censored in-
stance we can observe a lower bound of the target value.
In this section, we propose a self-training framework for
right censored data (STC). The goal of this framework
is to infer the correct event labels for the given censored
instances. In our proposed framework, we employ the
RWRSS as our base learning method and label the cen-
sored instances based on both the prediction and the
corresponding censored time.

Train a RWRSS 
model

Estimate survival 
time

Approximate the 
survival time of 

censored instances

Update the training 
dataset

Stop the training round when 
the number of uncensored 

instances does not increase

Figure 3: A self-training framework for right censored data.

Figure 3 shows the diagram of the proposed STC
framework. In survival data, it is evident that the ac-
tual (unobserved) survival time of any right censored
instance should be no less than the observed censored
time. Thus, in the tth self-training learning round of the
STC framework, if the estimated survival time of a cen-
sored instance is greater than or equal to the censored
time, it will fall into the range of possible survival time
and it will be viewed as a correct prediction. Then in
the t+ 1th learning round, this instance will be viewed
as an uncensored object whose survival time will be the
estimated output in the tth round and its corresponding
censored indicator will be changed from 0 to 1. Hereby,
in the t+ 1th learning round, the updated training data



will contain more uncensored instances than the train-
ing data in the tth round, and hence a robust model can
be learned in the t+ 1th learning round.

Algorithm 2 describes the STC framework for right
censored data. In line 3, we estimate the coefficients
based on the proposed RWRSS algorithm. In lines 4-
11, the objective values and the δ values for censored
instances in the training dataset will be updated based
on the predicted and the observed time. The training
rounds will stop when the status (δ) and observed time
(y) of the training data is not updated any further.

Algorithm 2: Self-Training framework for right
Censored Data (STC)

Input: Training data (X, δ, y), Regularization
parameter λ, Adjustment weight α

Output: β

1 Initialize: c← 0, β̂ ← 0;
2 repeat

3 β̂ = RWRSS (X, y, δ, λ, α);
4 for i = 1 to N do
5 if δi == 0 then

6 ŷi = Xiβ̂;
7 if ŷi > yi then
8 yi = ŷi; δi = 1;
9 end

10 end

11 end

12 until δ and y are not updated ;

4 Experimental Results

In this section, we will first describe the datasets used in
our evaluation and then provide the performance results
along with the implementation details.

4.1 Dataset Description For our evaluation, we
used several publicly available high-dimensional gene
expression cancer survival benchmark datasets which
can be downloaded from 1. Here are the list of datasets
that are used in our experiments.

• Norway/Stanford Breast Cancer Data (NSBCD).

• Van de Vijver’s Microarray breast cancer (VDV).

• Lung adenocarcinoma (Lung).

• Mantle Cell Lymphoma (MCL) 2.

• The Dutch Breast Cancer Data (DBCD).

• Diffuse Large B-Cell Lymphoma (DLBCL).

1http://user.it.uu.se/~liuya610/download.html
2http://llmpp.nih.gov/MCL/

All these datasets measure cancer survival using gene
expression levels. Table 1 provides the details of the
datasets that are being used. In this table, the column
titled “# Censored” corresponds to the number of
censored instances in each dataset. We used 5-fold cross
validation when the number of instances is greater than
150 and 3-fold cross validation otherwise.

Table 1: Details of the datasets used in this paper.

Dataset # Instances # Features # Censored
NSBCD 115 549 77
VDV 78 4705 44
Lung 86 7129 62
MCL 92 8810 28
DBCD 295 4919 216
DLBCL 240 7399 102

4.2 Evaluation Metrics Concordance index (C-
index) or the concordance probability, is used to measure
the performance of prediction models in survival analy-
sis [7]. Let us consider a pair of bivariate observations
(y1, ŷ1) and (y2, ŷ2), where yi is the actual observation,
and ŷi is the predicted one. The concordance probabil-
ity is defined as:

(4.9) c = Pr(ŷ1 > ŷ2|y1 ≥ y2)

By definition, the C-index has the same scale as the area
under the ROC (AUC) in binary classification, and if
yi is binary, then the C-index is same as the AUC. In
the hazards ratio based regression models, the instances
with a low hazard rate should survive longer, and the
C-index will be calculated as follows:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I[Xiβ̂ > Xj β̂](4.10)

where num denotes the number of comparable pairs
and I[·] is the indicator function. The C-index in other
censored regression methods, which directly target the
survival time, should be calculated as:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I[S(ŷj |Xj) > S(ŷi|Xi)]

(4.11)

where S(ŷi|Xi) is the predicted target value for Xi.

4.3 Implementation Details All of the seven
methods used for comparisons are implemented in R.
The Cox and Tobit regression models are obtained from
the survival package [21]. In the survival package, the
coxph function is employed to train the cox model and



Table 2: Performance comparison of the proposed method and seven other existing related methods using C-index
values (along with their standard deviation).

DataSet COX LASSO-COX EN-COX BoostCI OLS Tobit EN-BJ RWRSS STC(RWRSS)

NSBCD
0.4411 0.5910 0.6046 0.6263 0.6333 0.3733 0.6215 0.6766 0.7149

(0.0589) (0.1086) (0.1000) (0.0831) (0.1108) (0.0214) (0.0924) (0.1277) (0.0836)

VDV
0.5947 0.6428 0.6384 0.6641 0.5315 0.5112 0.6077 0.7207 0.7445

(0.0997) (0.0254) (0.0603) (0.0560) (0.0086) (0.1491) (0.0648) (0.0705) (0.0195)

Lung
0.5139 0.6684 0.6639 0.5708 0.5716 0.4695 0.6634 0.6969 0.7316

(0.1372) (0.0867) (0.0661) (0.0883) (0.0610) (0.1321) (0.1284) (0.0430) (0.0313)

MCL
0.5715 0.6742 0.6594 0.6895 0.4881 0.4914 0.7023 0.7118 0.7118

(0.0446) (0.0688) (0.0655) (0.0897) (0.0414) (0.0875) (0.1038) (0.0737) (0.0737)

DBCD
0.5294 0.6850 0.7188 0.7045 0.5599 0.4869 0.7175 0.7216 0.7404

(0.0634) (0.0417) (0.0304) (0.0380) (0.0717) (0.0784) (0.0396) (0.0446) (0.0475)

DLBCL
0.5097 0.6242 0.6372 0.5954 0.5052 0.4917 0.6228 0.6265 0.6265

(0.0293) (0.0416) (0.0359) (0.0170) (0.0891) (0.0524) (0.0611) (0.0657) (0.0657)

the Efron’s method [22] is used to handle the tied ob-
servations. The Tobit regression methods are trained
using the survreg function with Gaussian distributions.
Three sparse regression methods, namely, LASSO-COX,
EN-COX, and EN-BJ, which are penalized versions us-
ing lasso and elastic net penalty terms are also used for
our comparisons. LASSO-COX and EN-COX are built
using the cocktail function in the fastcox package [23],
while EN-BJ is implemented using the bujar package [4].
Boosting concordance index (BoostCI) [24] for survival
data is an approach where the concordance index metric
is modified to an equivalent smoothed criterion using
the sigmoid function. In addition to the above men-
tioned six survival analysis methods, we also compared
with the ordinary least squares (OLS) linear regression
which has a similar form to the proposed methods. Note
that, the OLS is only learned using the uncensored in-
stances rather than the entire set of training instances
since it cannot handle the censored instances, while the
other methods are trained based on both uncensored
and censored instances. The proposed model is imple-
mented using C++ and the code will be made publicly
available upon the acceptance of this paper.

In the experiments we use the C-index of the
training dataset as a training error rate to monitor
the training round of STC framework and terminate
the learning round when the C-index decreases. In
this scenario, the output of STC(RWRSS) is the model
learned in the penultimate learning round.

4.4 Results and Discussion Table 2 provides the
C-index values obtained with various censored re-
gressions and OLS methods on the real-world high-
dimensional cancer microarray datasets. The results

show that our proposed model obtains higher C-index in
most of the datasets and the STC framework is able to
improve the prediction performance of RWRSS in some
of the cases.

Figure 4 provides the histogram plots of the AUC
values for each dataset at four different splits which is
chosen corresponding to the time points when the 25%,
50%, 75%, and 100% of events occurred in each dataset.
In other words, to show the time-dependent prediction
capability of various survival analysis methods, the
original regression problem has been reformulated into
four classification problems which indicate whether a
patient can survive at each time point or not and the
prediction performance of each classifier is evaluated
using AUC [25]; we exclude OLS in the plots since
it is not a censored regression method. The AUC
values for our proposed models are higher than or
close to those of the other existing survival analysis
methods indicating that the time-dependent prediction
capability of our proposed models is higher than or
as good as that of the other six survival prediction
methods. It should be noted that the AUC values of the
original RWRSS and the STC version of it are same for
MCL and DLBCL datasets because the STC framework
did not improve the discriminative power of RWRSS
for these two datasets and hence the learning process
is terminated after the second round. The AUC values
of our proposed model on five datasets (NSBCD, VDV,
Lung, MCL, and DBCD) are higher than or around 0.8,
which indicates our proposed model is able to predict
the binary problem (survival or death) at different time
points effectively. This is efficient because there is no
need to re-train new model for estimating whether a
patient has survived or not at various time points.
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Figure 4: AUC values for different survival regression methods at different points of survival time. For each
plot, T1, T2, T3, and T4 are the time points corresponding to the 25%, 50%, 75%, and 100% of events occurred,
respectively.

Figure 5 presents the C-index values of the proposed
RWRSS by varying the parameter τ from 1 to 3. We can
see that the C-index values of all six datasets do not vary
much when τ is greater than 1.6, and this phenomenon
demonstrates that the RWRSS is not sensitive to the
choice of τ that is chosen for parameter selection. Note
that the RWRSS does not reduce to the standard OLS

model when τ equals to 1 because the weight of some
censored instances is 0 according to Eq.(3.3).

5 Conclusion

In this paper, we developed a novel regularized weighted
linear regression method for high-dimensional (right)
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Figure 5: The effect of τ in the RWRSS alorithm on C-index.

censored data. Using the notion that the latent sur-
vival time of censored instances should be no earlier
than censored time, we proposed a weighted scheme
which induces more penalty for the incorrectly pre-
dicted censored instances. The elastic net penalty is
used to induce sparseness into the resulting coefficients
thus avoiding over-fitting the data especially in high-
dimensional datasets. In addition, we also developed
a self-training framework for censored regression based
on this linear model. We compared the performance of
the proposed methods with several state-of-the-art cen-
sored regression methods using various publicly avail-
able benchmark datasets which contain microarray gene
expressions for the diseased patients. We plan to ex-
tend this work using other semi-supervised learning ap-
proaches such as label propagation in the context of
survival analysis.
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