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Abstract—Identification of travelers’ transportationmodes is a fundamental step for various problems that arise in the domain of

transportation such as travel demand analysis, transport planning, and trafficmanagement. In this paper, we aim to identify travelers’

transportationmodes purely based on their GPS trajectories. First, a segmentation process is developed to partition a user’s trip into

GPS segments with only one transportationmode. Amajority of studies have proposedmode inferencemodels based on hand-crafted

features, whichmight be vulnerable to traffic and environmental conditions. Furthermore, the classification task in almost all models

have been performed in a supervised fashion while a large amount of unlabeled GPS trajectories has remained unused. Accordingly,

we propose a deepSEmi-SupervisedConvolutionalAutoencoder (SECA) architecture that can not only automatically extract relevant

features fromGPS segments but also exploit useful information in unlabeled data. The SECA integrates a convolutional-deconvolutional

autoencoder and a convolutional neural network into a unified framework to concurrently perform supervised and unsupervised learning.

The two components are simultaneously trained using both labeled and unlabeledGPS segments, which have already been converted

into an efficient representation for the convolutional operation. An optimum schedule for varying the balancing parameters between

reconstruction and classification errors are also implemented. The performance of the proposed SECAmodel, trip segmentation, the

method for converting a raw trajectory into a new representation, the hyperparameter schedule, and themodel configuration are

evaluated by comparing to several baselines and alternatives for various amounts of labeled and unlabeled data. Our experimental

results demonstrate the superiority of the proposedmodel over the state-of-the-art semi-supervised and supervisedmethods with

respect to metrics such as accuracy and F-measure.

Index Terms—Deep learning, semi-supervised learning, convolutional neural network, convolutional autoencoder, GPS trajectory data,

trip segmentation, transportation mode identification
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1 INTRODUCTION

THE mode of transportation for traveling between two
points of a transportation network is an important

aspect of users’ mobility behavior. Identifying users’ trans-
portation modes is a key step towards many transportation
related problems including (but not limited to) transport
planning, transit demand analysis, auto ownership, and
transportation emissions analysis. Traditionally, the infor-
mation for modeling the mode choice behavior was obtained
through travel surveys. High cost, low-response rate, time-
consuming manual data collection, and misreporting are the
main demerits of the survey-based approaches [1]. With the
rapid growth of ubiquitous GPS-enabled devices (e.g.,
smartphones), a constant stream of users’ trajectory data can
be recorded. A user’s GPS trajectory is constructed by

connecting GPS points of their GPS-enabled device. A GPS
point contains the information of the device geographic loca-
tion at a particular moment. Mining trajectory data, which
contain rich spatio-temporal information regarding human
activities, provokes several transport-domain applications
such as incident detection, mobility pattern extraction, and
transport mode inference [2]. In this study, we aim to predict
a user’s transportation mode purely based on their GPS
trajectories.

A majority of models for learning transportation modes
from GPS tracks consists of two steps: (1) extracting features
from GPS logs, (2) feeding features to a supervised learning
method for the classification task. Unlike many other data
sources, the GPS-based trajectory does not contain explicit
features for inferring transportation modes, which calls for
feature engineering. Much of the current literature has gen-
erated hand-crafted features using the descriptive statistics
of motion characteristics such as maximum velocity and
acceleration [3], [4], [5]. After creating a pool of manual
attributes, a wide range of traditional supervised mining
algorithms has been used for performing the classification
task including rule-based methods, fuzzy logic, decision
tree, Bayesian belief network, multi-layer perceptron, and
support vector machine [1].

However, the feature engineering not only requires
expert knowledge but also involves biased engineering

� S. Dabiri is with the Department of Civil Engineering and the Department
of Computer Science, Virginia Tech, Blacksburg, VA 24061.
E-mail: sina@vt.edu.

� C-T. Lu and C. K. Reddy are with the Department of Computer Science,
Virginia Tech, Blacksburg, VA 24061.
E-mail: ctlu@vt.edu, reddy@cs.vt.edu.

� K. Heaslip is with the Department of Civil Engineering, Virginia Tech,
Blacksburg, VA 24061. E-mail: kheaslip@vt.edu.

Manuscript received 17 June 2018; revised 15 Jan. 2019; accepted 28 Jan.
2019. Date of publication 1 Feb. 2019; date of current version 1 Apr. 2020.
(Corresponding author: Sina Dabiri.)
Recommended for acceptance by M. A. Cheema.
Digital Object Identifier no. 10.1109/TKDE.2019.2896985

1010 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 5, MAY 2020

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 01,2020 at 18:45:48 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4404-5449
https://orcid.org/0000-0003-4404-5449
https://orcid.org/0000-0003-4404-5449
https://orcid.org/0000-0003-4404-5449
https://orcid.org/0000-0003-4404-5449
https://orcid.org/0000-0002-3393-2627
https://orcid.org/0000-0002-3393-2627
https://orcid.org/0000-0002-3393-2627
https://orcid.org/0000-0002-3393-2627
https://orcid.org/0000-0002-3393-2627
https://orcid.org/0000-0003-2839-3662
https://orcid.org/0000-0003-2839-3662
https://orcid.org/0000-0003-2839-3662
https://orcid.org/0000-0003-2839-3662
https://orcid.org/0000-0003-2839-3662
mailto:
mailto:
mailto:
mailto:


justification and vulnerability to traffic and environmental
conditions. For example, one may use the maximum speed
of a GPS trajectory as a discriminating feature. The immedi-
ate criticism is that the maximum velocity of a car might be
equal to bicycle and walk modes under a congested traffic
condition. The other expert may choose the top three veloci-
ties and accelerations of the user’s GPS trajectory as a poten-
tial solution for lack of information about traffic conditions.
Nonetheless, another specialist might critique this solution
by asking why not using the top four velocities or why not
the minimum instead of maximum? Automated feature
learning methods such as deep learning architectures is a
remedy to the above-mentioned shortcomings. Recently,
researchers have shown an increased interest in leveraging
deep learning algorithms for addressing challenging trans-
portation-related problems [6], [7], [8].

Fig. 1 depicts the overview of our framework for identi-
fying the transportation mode(s) of a GPS trajectory related
to a user’s trip. Since travelers might commute with more
than one transportation mode for making a single trip, the
first step is to partition the GPS trajectory of a trip into seg-
ments, in which every GPS segment contains only one trans-
portation mode. Next, features of each GPS segment is
automatically extracted using a deep learning framework
based on Convolutional Neural Network (CNN). Accord-
ingly, one of our main challenges is to convert the raw GPS
segment into an adaptable layout for CNN schemes. First
the basic motion characteristics of every GPS point in a seg-
ment including relative distance, speed, acceleration, and
jerk are computed [9]. This results in generating a sequence
of numerical features for every type of motion characteris-
tic. Next, the computed motion sequences are concatenated
to create a 4-channel tensor for every GPS segment, where
every sequence is equivalent to a channel in an RGB image.
Such a new representation not only yields a standard
arrangement for the CNN scheme but also describes the
kinematic motion of a transport mode. Furthermore, in con-
trast to the hand-designed approaches, our proposed repre-
sentation involves all GPS points of a user’s trajectory
rather than a small subset in the hand-designed approaches
such as GPS points with maximum velocity or acceleration.
Finally, the transportation mode of a GPS segment is
inferred by training a CNN-based deep learning architec-
ture on the converted GPS segments.

Moreover, almost all the current research work on travel
mode identification has built their models using only
labeled trajectories. Nonetheless, a significant portion of tra-
jectories in GPS data might not be annotated since the acqui-
sition of labeled data is a more expensive and labor-
intensive task in comparison with collecting unlabeled data.
Using the unlabeled data in addition to the labeled ones
allows us to capture more properties of the data distribu-
tion, which can potentially further improve the decision
boundaries and provide a better generalization on unseen
records [10]. Thus, our main objective in this paper is to
improve the CNN classifier by leveraging the power of
deep unsupervised learning algorithms such as Convolu-
tional AutoEncoder (Conv-AE). A deep SEmi-Supervised
Convolutional Autoencoder (SECA) architecture, that inte-
grates Conv-AE and CNN classifier, is proposed. Both com-
ponents are simultaneously trained by minimizing a cost

function that is a linear combination of unsupervised and
supervised losses. Tuning the hyperparameters that connect
these losses is the most challenging part of our training pro-
cedure. The key contributions of this work are summarized
as follows:

� Developing a two-step trip segmentation process. Due to
the inherent need of CNN-based models for having a
fixed-size input, the GPS trajectory of a trip is first uni-
formly partitioned into the GPS segments with a fixed
size. Afterward, for the first time in this domain, a dis-
crete optimization algorithm is deployed to detect the
points where the transportation mode changes. The
output of this step is a pool of GPS segments with only
one transportationmode.

� Designing an efficient representation for raw GPS trajecto-
ries. A new procedure is developed for converting a
raw GPS segment, which is a sequence of GPS points,
to an efficient and appropriate representation for
using in deep learning architectures. The proposed

Fig. 1. Overview of our framework for detecting transportation mode of
GPS trajectories. A raw GPS trajectory of a user’s trip is first partitioned
into a set of GPS segments with only one transportation mode. Next,
each GPS segment is converted to a 4-channel tensor. The created
labeled and unlabeled tensors are then used for training our proposed
SECA model. The trained SECA model is finally used for detecting the
transportation mode(s) of an unseen GPS trip.
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representation contains the information of all GPS
points in the GPS segment and allows the very
deep architecture and training algorithm to extract
discriminating and high-level features for the task-
at-hand.

� Developing a novel deep semi-supervised convoluti-
onal autoencoder (SECA) architecture. A deep semi-
supervised model is proposed to leverage both unla-
beled and labeled GPS trajectories for predicting
transportation modes. The model contains Conv-AE
and CNN classifier for unsupervised and supervised
learning, respectively.

� Building an effective schedule for tuning balancing
parameters. Since the main objective is to simulta-
neously training the unsupervised and supervised
components of the SECAmodel, a novel and efficient
schedule is proposed for varying the balancing
parameters that combine reconstruction and classifi-
cation losses.

� Conducting an extensive set of experiments for perfor-
mance evaluation and comparison. The results reveal
that our SECAmodel outperforms several supervised
and semi-supervised state-of-the-art baseline meth-
ods for various amounts of labeled GPS segments.
Furthermore, the performance results demonstrate
the superiority of the proposed trip segmentation
process, the designed representation for GPS seg-
ments, the schedule for varying hyperparameters,
and the model structure by comparing with several
alternatives.

The rest of this paper is organized as follows. Existing
works on both mode detection methods and deep semi-
supervised schemes are listed in Section 2. After providing
some preliminaries in Section 3, details of our mode detec-
tion framework are explained in Section 4. Our experimen-
tal results are reported in Section 5. Finally, the paper is
concluded in Section 6.

2 RELATED WORK

To date, several studies have deployed various data sources
(e.g., GPS, mobile phone accelerometers, and Geographic
Information System) or a combination of them for inferring
users’ transportation modes [7], [11]. In this section, we
review the studies that have utilized the GPS data for
designing a mode detection model since this is the primary
focus of this paper. A comprehensive and systematic review
of existing techniques for travel mode recognition based on
GPS data is available in [1]. The paper provides an excellent
comparison of various approaches in three categories
including GPS data preprocessing, trip/segmentation iden-
tification, and travel mode detection. After reviewing GPS-
based detection models, we will also briefly discuss various
semi-supervised deep learning architectures that have been
studied in the literature for different applications.

2.1 GPS-Based Mode Detection Models

As mentioned earlier, feature extraction and classification
are two major tasks in the GPS-based mode detection frame-
works. Since the classification is often performed by tradi-
tional supervised algorithms (e.g., support vector machines,

decision trees, etc.), the feature-extraction design is the pri-
marily discerning factor among various mode detection
frameworks.

In two seminal studies by Zheng et al. [3], [4], a supervised
framework based on hand-crafted features was proposed.
Using the commonsense knowledge of the real world, a trip
is first partitioned into segments by detecting the walk seg-
ments. Then, a set of manual yet robust features were identi-
fied for every segments and fed into machine learning
algorithms (e.g., decision trees) for the classification task.
Features were divided into basic and robust groups. The
basic group primarily contains descriptive statistics of veloc-
ity and acceleration of all GPS points while the robust group
is composed of the heading change rate, stop rate, and the
velocity change rate. They demonstrated that the robust fea-
tures are less vulnerable to traffic conditions; however, using
a combination of basic and robust features results in higher
accuracy. Xiao et al. [5] generated new features by comput-
ing more descriptive statistics such as mode and percentile.
The number of features were further augmented by intro-
ducing local features through profile decomposition algo-
rithms. Menp et al. [12] found that spectral features of speed
and acceleration are significantly effective based on statisti-
cal tests while auto- and cross-correlations, kurtoses, and
skewnesses of speed and acceleration were not useful. Nev-
ertheless, research on semi-supervised mode inference is
really scarce, Rezaie et al. [13] performed a semi-supervised
label propagation method, yet based on a limited number of
hand-crafted features including speed, duration and length
of a trip, aswell as the proximity of a trip start and end points
to the transit network.

A small body of literature has sought to integrate hand-
crafted and automated features that are extracted using
deep neural networks [9], [14], [15]. After converting a raw
GPS trajectory into a matrix with the image format, a type
of deep learning algorithm is employed to obtain high-level
representations for the classification task. Nonetheless, to
the best of our knowledge, none of the deep learning
approaches for mode detection has been built upon simulta-
neously using both labeled and unlabeled trajectories. Fur-
thermore, no optimization technique has been exploited for
trip segmentation.

2.2 Semi-Supervised Deep Learning Approaches

Semi-supervised frameworks based on deep learning algo-
rithms (e.g., recurrent and convolutional neural networks,
and autoencoders) have been exploited for a variety of
tasks, mainly in computer vision and natural language
processing fields [16], [17]. Existing literature on semi-
supervised deep-learning architectures falls into two major
groups: (1) Two-step process, in which the network is first
trained in an unsupervised fashion as the pre-training step,
and then the supervised component of the model is tuned
using the labeled data. (2) Joint process, in which both the
unsupervised and supervised components (i.e., the entire
network) are concurrently trained.

One technique for the pre-training phase is to sequen-
tially train the network layers [18]. Each layer is pre-trained
with an unsupervised learning algorithm such as autoen-
coders and Restricted Boltzman Machine as a separated
block while its input is the output of the previous layer.
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Indeed, the layer-wise unsupervised training strategy helps
optimization by finding a good initial set of weights near a
good local minimum, which sets the stage for a final train-
ing phase [19]. In the next stage, the deep architecture is
fine-tuned by performing a local search from a reasonable
starting point. Another pre-training strategy is to train the
network in its entirety, rather than greedy layer-wise train-
ing, and then fine-tune the model using weights obtained
from the first phase as an initialization. Using the obtained
weights in the first step as a starting point for the supervised
learning gives rise to a better stabilization and generaliza-
tion of the model.

As mentioned earlier, one of the main objectives in the
pre-training step is to prepare a good initialization for
the supervised training and avoid a poor generalization of
the model. However, with advances in initialization and reg-
ularization schemes for deep learning architectures [20],
[21], pre-training strategies are getting replaced with joint
training strategies. The fundamental idea of joint strategies is
to optimize a hybrid loss function, that is a combination of
unsupervised and supervised components, with the goal of
simultaneously preserving reconstruction and discrimina-
tion abilities. While a type of classifier (e.g., multi-layer per-
ceptron or softmax function) forms the supervised part,
variants of autoencoders have been widely utilized for per-
forming the unsupervised task. Variational autoencoders
[10], convolutional-deconvolutional autoencoders [22], auto-
encoders based on a Ladder network [16], and recursive
autoencoders [23] are typical examples of autoencoders that
have been used in deep semi-supervised networks. A substi-
tute for autoencoders is to add an entropy regularization
upon unlabeled data into the supervised loss function. At
each training step, the unlabeled data are annotated using
the updated weights in the previous iteration [24]. A balanc-
ing parameter can be used in the hybrid loss function to trade
off the supervised and unsupervised parts of the objective
function [22], [23]. In Section 5, the effect of balancing param-
eter(s) in the ultimate performance of joint training strategies
is examined.

In addition to be designed for a new application with a
unique model configuration, our SECA model is trained
using a new schedule for tuning balancing parameters.
Unlike similar approaches in literature, the proposed sched-
ule considers a separate balancing parameter for each of
unsupervised and supervised components.

3 PRELIMINARIES

This section introduces the preliminaries required to com-
prehend the proposed framework in Section 4. First, the trip
segmentation and mode detection problems are described
and then, we show how to compute the motion characteris-
tics of each GPS point. The motion features of GPS points
are then used for both creating an input layer in our SECA
model and hand-crafted features in the standard machine
learning algorithms.

3.1 Definitions and Problem Statements

Before describing the formal statements of the two prob-
lems, the notions of GPS trajectory and GPS segment are
defined.

Definition 1 (GPS Trajectory). A user’s raw GPS trajectory
T is defined as a sequence of time-stamped GPS points p 2 T ,
T ¼ ½p1; . . . ; pN �. Each GPS point p is a tuple of latitude, longi-
tude, and time, p ¼ ½lat; lon; t�, which identifies the geographic
location of point p at time t.

T is divided into trips if the time interval between two
consecutive GPS points exceeds a pre-defined threshold
(e.g., 20 minutes) [3]. Also, the user might commute with
more than one transport mode in a single trip. For instance,
one may travel to work by first driving to a parking lot, then
taking a bus, and finally walking toward their workplace.
As a result, a trip is partitioned into multiple GPS segments
when the transportation mode changes.

Definition 2 (Change Point). A change point, denoted as CP ,
is defined as the place in a trip in which users change their
transportation mode. A trip may contain zero, one, or multiple
change points.

Definition 3 (GPS Segment). A GPS segment is a sub-
division of a user’s trip, which is traveled by only one tran-
sportation mode y 2 Y , where Y is a set of transportation
modes (such as bike and car). A GPS segment is denoted as
SE ¼ ½p1; . . . ; pM �, where M is the number of GPS points that
forms SE.

Accordingly, the trip segmentation problem is defined as
follows:

Problem 1 (Trip Segmentation). The trip segmentation prob-
lem is defined as detecting the change points CP in the GPS
trajectory of a user’s single trip. GPS segments SEs with a
unique transportation mode are the output this problem.

The mode detection is a multi-class classification prob-
lem that seeks for predicting the correct transportation
mode for a given SE. However, the raw SE needs to be
transferred to an appropriate format before feeding into a
machine learning algorithm. Either a set of hand-crafted fea-
tures (for traditional machine learning algorithms) or a
proper layout (for deep learning architectures), represented
as X, will need to be designed. The first step for generating
X is to compute the motion characteristics of GPS points in
each SE, which is described in the next section.

Problem 2 (Mode Detection). Given the training data
fðXi; yiÞgni¼1 for n samples of SEi, the mode detection problem
is defined as building the optimal classifier for estimating the
transportation mode of a user’s SE based on its featuresX.

The trained model is then deployed to estimate users’
transport modes while traveling in transportation networks.
For an unseen trip, a trip is first segmented into a set of SEs
using the proposed trip segmentation technique. Then, the
mode for each SE is estimated. Consecutive segments with
the same detected modes are concatenated together.

3.2 Motion Characteristics of GPS Points

Several motion features can be computed for every GPS
point based on their geographic coordinates and time-
stamps. The relative distance between two consecutive GPS
points in a SE (e.g., p1 and p2), can be computed using
the widely-used Vincenty’s formula [25]. The Vincenty’s
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formula is a common and accurate method for computing
the geographical distance between two points on the surface
of a spheroid. The time interval between two successive
GPS points is another motion quantity that can be simply
computed. Having the relative distance and time interval,
other fundamental kinematic motions including speed,
acceleration, and jerk are computed to provide more infor-
mation about a user’s motion. Speed is the rate of change in
distance that shows how fast a user is traveling. Accelera-
tion is the rate of change in speed that shows how fast a
user is changing their speed. Jerk, the rate of change in
acceleration, is a significant factor in safety issues such as
critical driver maneuvers and passengers’ balance in public
transportation vehicles [26]. Jerk has been used in mode
detection models for the first time in [9]. These motion fea-
tures for a GPS point p1 are calculated based on the follow-
ing equations:

RDp1 ¼ Vincenty
�
p1½lat; lon�; p2½lat; lon�

�
(1)

Dtp1 ¼ p2½t� � p1½t� (2)

Sp1 ¼
RDp1

Dtp1
(3)

Ap1 ¼
Sp2 � Sp1

Dtp1
(4)

Jp1 ¼
Ap2 �Ap1

Dtp1
; (5)

where RDp1 , Dtp1 , Sp1 ,Ap1 , and Jp1 represent the relative dis-
tance, time interval, speed, acceleration/deceleration, and
jerk of the point p1, respectively. Analogously, the above-
mentioned formulae are used to calculate the motion fea-
tures of other GPS points in a SE.

The rate of change in the heading direction of different
transportation modes varies. For example, cars and buses
have to move only alongside existing streets while people
with walk or bike modes alter their directions more fre-
quently [4]. Bearing rate is a motion attribute for quantify-
ing the heading change among modes. As depicted in
Fig. 2, bearing measures the angle between the line connect-
ing two successive points and a reference (e.g., the magnetic
or true north). The bearing rate, which can be used as
another motion feature, is the absolute difference between
the bearings of two consecutive points.

4 THE PROPOSED FRAMEWORK

In this section, first, a two-step process is proposed to divide
the GPS trajectory of a user’s trip into the segments with
only one transportation mode. Next, an efficient representa-
tion for each GPS segment is designed. The overall architec-
ture of our semi-supervised framework is also explained in
detail. Finally, an effective strategy for training our network
is proposed.

4.1 Two-Step Trip Segmentation

Our proposed method for partitioning a user’s trip into seg-
ments with a unique transportation mode consists of two

parts. Considering the basic CNN requirement for having
all input samples with a fixed size, all GPS trajectories need
to be either truncated or padded to a fixed size for both off-
line learning and online inference at the end. Accordingly,
we flip this requirement into the first step of our trip seg-
mentation. Thus, a GPS trip is first uniformly partitioned
into segments with a fixed number of GPS points, denoted
as M. Our observation indicates that a majority of GPS seg-
ments contains one or two transportation modes after this
uniform-size segmentation, which dramatically improves
the performance of the overall segmentation process. In the
online mode detection, consecutive segments with the same
predicted transportation mode are merged together.

However, the uniform-size segmentation in the first step
does not guarantee that every fixed-size GPS segment con-
tains only one transportation, which calls for the second
segmentation step. Assuming the fixed-size GPS segment
SE ¼ ½p1; . . . ; pM � as a signal, we aim to detect a number of
change points,K, with their positions,CP ¼ ½CP1; . . . ; CPK �,
where the statistical properties of the signal change. Note
that every change point belongs to SE ¼ ½p1; . . . ; pM �. To this
end, SE is first converted into a multivariate time series
fYtg 2 RðM�dÞ, where d is the number of motion features
introduced in Section 3.2. Our observation indicates using
only speed and acceleration features for creating fYtg results
in a better performance.

A common approach for detecting the change points from
a time-series signal is to solve an optimization problem with
a cost function that measures the goodness-of-fit of the sub-
signals [27]. Unlike the pattern-matching techniques [28],
an optimization-based model does not require a set of pre-
defined pattern templates. Furthermore, an optimization-
based model can be formalized without any assumption on
how the signal has been generated, unlike the model-based
approaches that rely on several assumptions including
independent observations and a specific probability distri-
bution (e.g., multivariate normal) on the signal. Note that
the model-based approaches (e.g., Bayesian and Markov
Random Field approaches) form another important track in
the literature of change point detection.

Thus, the second step of our trip segmentation process is
formalized as solving the following objective function:

Fig. 2. Bearing between two consecutive GPS points. lat and lon repre-
sents the latitude and longitude of a GPS point.

1014 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 5, MAY 2020

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 01,2020 at 18:45:48 UTC from IEEE Xplore.  Restrictions apply. 



CðCPÞ ¼
XKþ1

i¼1

½cðYCPi�1þ1:CPiÞ� þ gfðKÞ; (6)

where CP0 ¼ 0 and CPKþ1 ¼ M. c is a cost function that
measures the homogeneity in the sub-segments. We choose
the mean-shift model, as one of the most studied cost func-
tion used in the change point detection literature [27]. For a
GPS sub-segment fYtgI on a time interval I between two
consecutive change points, the mean-shifts is defined as fol-
lows:

cðYIÞ ¼
X
t2I

jjYt � �Yjj22; (7)

where �Y is the mean of fYtgt2I .
Since the number of change points K is unknown in our

problem (i.e., a trip might be performed with various num-
ber of transportation modes), a penalty function fðKÞ is
used in Eq. (6) to constrain the number of change points.
We choose a linear penalty function as gK. The penalty
level g makes a balance between the decrease in the cost
function when more change points are allowed. Accord-
ingly, solving the optimization problem in Eq. (6) is depen-
dent on the choice of the penalty level g, not a pre-defined
number of change points.

A wide range of search algorithms have been proposed
to solve the discrete change point detection optimization
problem, formulated in Eq. (6) [27]. Our choice of the search
algorithm is the Pruned Exact Linear Time (PELT) method,
which has been recently proposed in [29]. PELT leverages the
advantages of alternative search algorithms (e.g., binary seg-
mentation and dynamic programming),which are exact solu-
tion and low computational complexity achieved through a
combination of optimal partitioning and pruning. Under the
assumption that change points are spread throughout the sig-
nal rather than confined to one portion, the PELT algorithm
discards many points along the signal through its pruning
step. This results in dramatically reducing the computational
cost to on average OðnÞ while keeping the ability to detect
the optimal segmentation. The detailed algorithm can be
found in [29].

If PELT finds a change point in a GPS SE, the SE is parti-
tioned into two or more sub-segments. After converting
each SE into a 4-channel tensor, as described in the follow-
ing section, all short sub-segments are padded with zero
values to have a fixed-size M before feeding into our SECA
model.

4.2 New Representation for Raw GPS Segments

Since the core component of our proposed framework is a
convolutional network, we will need to first convert GPS
segments into a format that is not only compatible with
CNN architectures but is also efficient in representing the
fundamental motion characteristics of a moving object. As
explained earlier, the motion features utilized in this study
are relative distance (RD), speed (S), acceleration (A), and
jerk (J). For every type of motion feature, a sequence can be
created by placing the corresponding value for every GPS
point of a SE in chronological order, where the feature
value is computed using Eqs. (1), (2), (3) , (4), and (5). Such a
sequence can be seen as a 1-d channel. Stacking these chan-
nels turns a raw GPS SE into a 4-channel tensor. In
Section 5, we demonstrate the superiority of such a configu-
ration compared to other possible feature combinations.

By padding the short segments with zero values, all GPS
SEs are mapped into a 4-channel tensor with the shape of
ð1�M � 4Þ. We select M as the median size of all GPS seg-
ments obtained based on the true change points, which results
in the best final performance. Fig. 3 illustrates the 4-channel
arrangement for a GPS SE. Note that our proposed layout uti-
lizes the information of all GPS points and allows the very
algorithm to extract the efficient features for the mode detec-
tion. This is in contrast to the feature-engineering methods
that leverage the information of a limited subset of the GPS
segment such as pointswith themaximum speed and acceler-
ation. Finally, values of each channel are individually scaled
into the range [0,1] using themin-max normalization.

4.3 Semi-Supervised Convolutional Autoencoder
(SECA) Model

As can be seen in Fig. 4, our semi-supervised architecture com-
bines twomain components: (1) a CNN classifier, which takes
in only the labeled trajectories, denoted asXl 2 Rð1�M�4Þ, and
(2) Convolutional-deconvolutional AutoEncoder (Conv-AE),
which takes in both labeled and unlabeled trajectories,
denoted as Xcomb ¼ ðXl þXuÞ 2 Rð1�M�4Þ. Xl and Xu corre-
spond to the 4-channel tensors of labeled and unlabeled GPS
segments, respectively, which are created based on the proce-
dure described in the previous section.

Fig. 3. A 4-channel representation for a GPS segment with a shape of
ð1�M � 4Þ.

Fig. 4. The architecture of our semi-supervised framework, which con-
sists of the convolutional-deconvolutional autoencoder and CNN classi-
fier. The layers’ parameters are represented by “(filter size)-(number of
filters)” for Conv. and Deconv. layers, and “(pooling size)” for pooling
and unpooling layers. The “Output shape” denotes the output size of the
corresponding layer, which is shown only when the output size changes.
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4.3.1 Convolutional-Deconvolutional AutoEncoder

Autoendocer is an unsupervised learning technique that
aims to learn an efficient latent representation by recon-
structing the input at the output layer. Autoencoder consists
of two parts: (1) the encoder function that maps the input
data into the latent representation h ¼ fðXÞ, and (2) the
decoder function that reconstructs the original data from
the latent representation X̂ ¼ gðhÞ. The latent representation
h often contains more useful properties than the original
input data X [30]. In our framework, the functions f and g
are deep convolutional and deconvolutional networks,
respectively.

As shown in Fig. 4, the encoder function f consists of
two sets of layers, where each set has two convolutional
layers followed by a max pooling layer. The input to the
encoder is Xcomb. Since the spatial size of Xcomb is small in
our application, a small filter size ð1� 3Þ is used for all
convolutional layers while stride is equal to 1. The num-
ber of filters starts from 32 in the first set of convolutional
layers, and then increase by a factor of 2 (i.e., 64) for the
second set. The padding setting of convolutional layers is
configured so as to preserve the spatial dimension after
each convolution operation. The filter size of the max-
pooling layer is ð1� 2Þ with the stride 2. According to the
mentioned settings, the spatial size reduces by a half size
of the previous layer only after max-pooling layers and
remains unchanged after convolutional layers. The con-
volved neurons are activated by the Rectified Linear Unit
(ReLU) function. The tensor h is the output of the last
layer in the encoder part. Note that we do not use a fully-
connected layer as the last layer to force the latent repre-
sentation h into a vector form. Based on our experimental
observation, collapsing the latent representation h with 3
dimensions into a 1-dimension vector deteriorates the
performance of the model. The tensor h in Fig. 4, for

instance, has the shape size h 2 Rð1 � 62 � 64Þ.
The decoder function g has the same number of layers as

the encoder and performs the inverse operations (i.e.,
unpooling and deconvolutional) so as to generate an output
with the same size of the input in the corresponding layer in

the encoder part. For example, in Fig. 4, the tensor

h 2 Rð1 � 62 � 64Þ is first passed into the unpooling layer,
which generates a tensor with the size ð1� 124� 64Þ. After-
wards, the output feature map from the unpooling layer is
fed into a deconvolutional layer, which results in a tensor
with the same shape ð1� 124� 64Þ. Except for the last layer,
the activation function for all deconvolutional layers is
ReLU . Proceeding with the same operations, the last decon-
volutional layer produces an output with the same shape of

the original input, denoted as X̂comb 2 Rð1�M�4Þ. Since the
input layer Xcomb has been normalized into the range ½0; 1�,
the sigmoid function is deployed as the activation function
of the last deconvolutional layer.

As Xcomb and X̂comb are composed of continuous-valued
features, we use the squared euclidean distance as the loss
function for the Conv-AE. Accordingly, the reconstruction
error for every SE is computed as follows:

lConv�AE ¼
X
i

ðx̂i � xiÞ2; (8)

where x̂i and xi are the corresponding elements of the
matrices X̂comb and Xcomb, respectively. The above error is
averaged across the training batch in each iteration.

4.3.2 CNN-based Classifier

Our CNN classifier contains a stack of convolutional layers
with one fully-connected layer. The convolutional part is
exactly the same as the encoder function, yet receives Xl as
the input layer. Therefore, the flattened latent representa-
tion h is directly fed into a softmax layer to generate a prob-
ability distribution over the transportation labels for the
GPS segment Xl, denoted as Pl ¼ fpl;1; . . . ; pl;Kg, where K is
the number of transportation modes. Note that using some
fully connected layers between the last convolutional layer
and the softmax layer (i.e., deploying a multi-layer percep-
tron) does not improve the performance of our network.
The widely accepted categorical cross-entropy is used as the
loss function for the CNN classifier. The loss function for
every labeled SE is formulated as follows:

llabeled�classifier ¼ �
XK
i¼1

yl;i log ðpl;iÞ; (9)

where yl;i 2 Yl is a binary indicator which is equal to 1 if the
class i is the true transportation label for the sample Xl and
0, otherwise. Yl is the true label for Xl, represented as one-
hot encoding. Analogous to the Conv-AE, the cross entropy
loss is averaged across the training batch in each iteration.

4.3.3 Model Training

Our main training strategy is to simultaneously train the
Conv-AE and CNN classifier. The rationale behind this joint
training strategy is to extract useful information from the
underlying distribution of the input data through the Conv-
AE, meanwhile enhancing the discrimination ability of
the architecture using the classifier. As shown in Fig. 5, the
encoder part of Conv-AE and the convolutional part of
the CNN classifier, which have the same structure, need to
share the same weights. As a consequence, in every weights

Fig. 5. Flow for jointly training the supervised and unsupervised compo-
nents of the proposed SECA model, depicted in Fig. 4.
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update, the latent representation matrix h obtained by the
encoder function is equivalent to the output of the last pool-
ing layer in the classifier. The unsupervised and supervised
components of our proposed network are jointly learned by
minimizing the following total loss function, which is a lin-
ear combination of Eqs. (8) and (9):

lsemi�aeþcls ¼ alConv�AE þ bllabeled�classifier; (10)

where a and b are the model hyperparameters that make a
balance between the relative importance of the two losses in
Eqs. (8) and (9). The appropriate schedule for varying val-
ues of a and b over training epochs is an integral part of our
model learning. Details for tuning these two hyperpara-
meters are elaborated in the next section. Note that we use
Adam optimizer as the optimization technique [31], Glorot
uniform initializer for initializing the layers weights [20],
and a dropout regularization with the dropout ratio 0.5
before the softmax layer to overcome the overfitting prob-
lem [21].

4.4 Parameter Tuning and Scheduling

Our proposed training procedure for scheduling a and b

over training epochs consists of two steps:

� Setting a ¼ 1 and b ¼ 1: At the first step, both the
Conv-AE and CNN classifier are simultaneously
trained while they have the same weights. Training
continues through several epochs until the valida-
tion score drops down. Training in this step is
stopped after two epochs with no further improve-
ment. Indeed, the main goal in the first step is to
obtain the best possible performance without mak-
ing any trade-off between reconstruction and cross-
entropy errors. The weights with the best validation
score are restored for the next step.

� Setting a 2 ½1; 1:5� and b ¼ 0:1: No further improve-
ment is achieved by the previous setting, which
mainly stems from the overfitting problem and/or
getting stuck in local minima. Dramatically reducing
the effect of the supervised component can act like a
sharp perturbation and take the optimization out of
local minima. The unsupervised weight can be kept
fixed or marginally increased. In our application,
increasing a up to 1.5 yields nearly the same perfor-
mance. Continuing training with the new setting
gives another chance to the optimization so as to
move towards better local minima. The same as the
first step, the training is stopped when the validation
score is not improved after two consecutive epochs.
The optimal weights are restored for classifying
the test set.

In addition to implementing two steps for training, our
proposed schedule for varying balancing parameters differs
from similar joint training strategies in the following three
main aspects.

� Neither fixed values nor annealing strategies are used
over training epochs. In the annealing strategy, the
value of a (or b) gradually decreases during the train-
ing to transit the focus towards the supervised (or
unsupervised) task in the last training iterations [22].

� Unlike other studies [22], [23], the effect of super-
vised task, rather than unsupervised component, is
significantly reduced in the last training iterations.

� Unlike other semi-supervised systems with joint
training schemes [22], [23], [32], balancing parame-
ters are considered for both unsupervised and super-
vised components.

5 EXPERIMENTAL RESULTS

In this section, we will evaluate the performance of our two-
step trip segmentation and SECA model on large-scale GPS
trajectory data. First the dataset along with the data cleaning
and preparation steps are discussed. Then, various super-
vised and semi-supervised baseline models that are used
for performance comparison are described. The prediction
performance of our model is evaluated using widely-used
classification metrics. The proposed training strategy and
the overall model architecture are also evaluated against
several alternative approaches.

5.1 Experimental Setup

5.1.1 Dataset Description and Data Pre-Processing

The proposed model is examined and validated on the GPS
trajectories collected by 182 users in the GeoLife project.
The raw dataset contains 17,621 trajectories with a total dis-
tance of 1,292,951 kilometers and a total duration of 50,176
hours [33]. To the best of our knowledge, this is the only
public dataset with GPS trajectories that have also been
annotated with transportation modes. 69 users have labeled
their trajectories with transportation modes while the
remaining users left their trajectories unlabeled. It is worth
noting that not all trajectories of those 69 users were anno-
tated, and the trajectories for which the annotation was
missing were considered to be unlabeled data. Although
many kinds of transport modes have been labeled by the
users, only transport modes that constitute significant por-
tion of the dataset are considered for our analysis. Our
transportation mode list is Y = {walk, bike, bus, driving,
train}. The time-interval threshold for dividing a user’s GPS
trajectory T into trips and the maximum number of GPS
points in a SE (i.e., M) are set to 20 minutes and 248,
respectively.

Furthermore, we identify and remove erroneous GPS
points that have been generated due to errors in sources
such as satellite or receiver clocks. Every GPS SE is filtered
by the following data processing steps:

� A GPS point with the timestamp greater than its next
GPS point is identified and discarded.

� For labeled trajectories, a GPS point whose speed
and/or acceleration do not fall within a certain and
realistic range of its transportation mode, provided
in Table 1, is identified and discarded.

� For unlabeled trajectories, due to lack of knowledge
on transport modes, any GPS point of a segment that
its speed and/or acceleration fall 1.5 times (or more)
the interquartile range either above the third quartile
or below the first quartile is identified and discarded.

� After removing the unrealistic GPS points, a segment
with (1) the number of GPS points, (2) the total
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distance, or (3) total duration less than specified
thresholds are identified and discarded. In this
study, these thresholds are set to 20, 150 meters and
1 minute, respectively.

The maximum allowable speed and acceleration pertain-
ing to each mode are provided in Table 1, which have been
defined using several reliable online sources and the engi-
neering justification (e.g., existing speed limits, current vehi-
cle/human’s power).

Using the above-mentioned settings and the true change
points, the distribution of the 4-channel labeled SE among
various modes and the number of 4-channel unlabeled SE
are listed in Table 1.

5.1.2 Baseline Methods

We compare the performance of the proposed model with
two sets of baseline methods: (1) supervised algorithms,
and (2) semi-supervised algorithms.

With respect to the supervised group, widely used standard
supervised algorithms in the literature of transportation
mode detection are deployed for comparison, including
K-Nearest Neighbors (KNN), RBF-based Support Vector
Machine (SVM), Decision Tree (DT), and Multilayer Percep-
tron (MLP). The hand-crafted features introduced in [3], [4]
are passed into these supervised algorithms, as the most
acceptable manual GPS trajectories’ attributes available in the
literature. These features include the GPS segment’s total dis-
tance, mean speed, expectation of speed, variance of speed,
top three speeds, top three accelerations, heading change rate,
stop rate, and speed change rate. After calculating motion
features of every p 2 SE using Eqs. (1), (2), (3), (4), and (5),
these manual-designed features can be simply computed for
a GPS SE using the definitions provided in [3], [4].

In addition, two supervised deep learning models are
also used as baselines: (1) CNN classifier with the same set-
tings as in the proposed model, (2) Recurrent Neural Net-
works (RNN) with the long short-term memory (LSTM)
module. The number of repeating modules is equal to the
length of the 4-channel tensor (i.e., M) while the current
input for each module is a feature vector corresponding to
every GPS point p, where the feature vector contains RDp,
Sp, Ap, and Jp. According to the hyperparameter tuning
analysis, the combination of one LSTM layer with 50 units
in each LSTM module yields the best RNN performance.
RNN is an important baseline since it has widely been used
for modeling trajectory data in recent years [6], [34].

With regards to the semi-supervised group, two distinct
baselines are used: Semi-Two-Steps and Semi-Pseudo-
Label, which are categorized as two-step and joint training
techniques, respectively, as described in Section 2.

� Semi-Two-Steps: First, the Conv-AE is trained on both
labeled and unlabeled trajectories. Then, the labeled
data are transformed to the latent representation using
the encoder part. In the second step, the transformed
data are trained using a standard supervised algorithm,
which is a logistic regression (i.e., the softmax layer) in
our case. The loss functions for the Conv-AE and logis-
tic regression are given in Eqs. (8) and (9), respectively.

� Semi-Pseudo-Label: TwoCNN classifiers with the same
structures and shared layers are simultaneously
trained in a supervised fashion, one on labeled and
the other on unlabeled data. Pseudo label, Yul, is the
predicted probability distribution over labels for an
unlabeled sample Xul, using the updated weights
from the previous training iteration. The overall loss
function for this strategy is defined as follows:

lsemi�pseudo ¼ alpseudo�classifier þ bllabeled�classifier

lpseudo�classifier ¼ �
XK
i¼1

yul;i log ðpul;iÞ;
(11)

where yul;i 2 Y ul and pul;i 2 Pul are the predicted
probability for the class i based on the updated
weights in the previous and current training itera-
tion, respectively. Analogous to our SECA model, a
and b are the balancing parameters. Further details
about this approach is available in [24].

5.1.3 Performance Evaluation

The performance of our proposed trip segmentation is mea-
sured using precision and recall metrics, which are defined
as below in the context of change point detection:

Precision ¼ TP

j cCP j
and Recall ¼ TP

jCP j ;

where j cCP j and jCP j are the number of predicted and true
change points related to a GPS SE. TP is the number of true
positives. A true change point is considered as a true posi-
tive if a predicted change point is found within a certain
margin from the true change point. We set the margin to 20
GPS points, which is the same as the minimum of number
allowed GPS points in a SE.

The performance of our proposed model is measured
using two common classification metrics:

� Accuracy - it is computed as the fraction of SEs in the
test set that are correctly classified.

� Weighted F-measure - F-measure for every transporta-
tion mode is defined as the harmonic average of its
precision and recall in the test set, as shown below:

F �measure ¼ 2� Precision�Recall

PrecisionþRecall
;

Weighted F-measure is the weighted average of
F-measure for eachmode, in which the corresponding

TABLE 1
Number of Labeled GPS SE for Each Transportation Mode,

Number of Unlabeled GPS SE, as Well as the Maximum Speed
and Acceleration Associated with Each Transportation Mode

Mode No. of SE Max. Sðm=sÞ Max. Aðm=s2Þ
Walk 6640 7 3
Bike 3808 12 3
Bus 6051 34 2
Driving 4323 50 10
Train 3287 34 3
Total Labeled 24109 NA NA
Unlabeled 72506 NA NA

NA: Not Applicable.
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weight for each mode is the proportion of SE from
that mode in the test set. For each transportation
mode y, precision shows the fraction of the true SEs
with the label y among all SEs that are classified as y,
while recall implies the ability of the model to cor-
rectly identify SEs with the true label y.

In all our experiments, models are trained and tested using
stratified 5-fold cross-validation and average values (along
with the standard deviations) of the results on all 5-folds
are reported. Note that the stratified 5-fold cross-validation is
only applied to labeled data. However, unless stated, the
entire unlabeled data are used for training in semi-supervised
models. Using stratified sampling, 10 percent of the labeled
training data in each fold is selected as the validation set for
the early-stopping procedure used within the deep learning-
based models. All the described data processing and models
are implemented within Python programming environment
using ruptures for the trip segmentation, TensorFlow for
deep learning models, and scikit-learn for classical
supervised algorithms. All experiments are run on a com-
puter with a single GPU. The source codes related to all data
processing and models utilized in this study are available
at https://github.com/sinadabiri/Deep-Semi-Supervised-
GPS-Transport-Mode

5.2 Performance Comparison Results

First, the performance of our SECA model is assessed with-
out taking the segmentation process into account. In other

words, the labeled GPS SEs are created based on the true
change points rather than the predicted ones. Next, our pro-
posed trip segmentation is evaluated. Finally, the impact of
the segmentation process on the overall performance is
evaluated.

5.2.1 SECA Evaluation

Tables 2 and 3 provide the performance results of our SECA
model and baseline methods in terms of accuracy and
weighted F-measure, respectively. Every model is trained
using various amounts of labeled data so as to investigate
the effectiveness of the models when different amounts of
labeled data is used.

Table 2 clearly shows the superiority of our SECA model
and its training strategy in comparison with other baselines.
Except for 10 percent labeled data that DT works better,
our semi-supervised model consistently outperforms other
methods for all percentages of labeled data. With respect to
supervised algorithms, it is apparent that only CNN and DT
are competitive as the test accuracy for other traditional
learning methods are considerably low. What is interesting
about the result is the low-quality of MLP and RNN, which
also indicates that employing deep learning architectures
does not always result in a better performance compared to
shallow structures. Comparison between CNN and RNN
clearly shows that capturing the local correlation between
adjacent GPS points by the convolution operation generates
more efficient features in comparison with the attempt to

TABLE 2
Comparison of Accuracy Values for Different Supervised and Semi-Supervised Models with Varying Amounts of Labeled Data

Proportion of labeled SE in the training data

Model 10% 25% 50% 75% 100%

Supervised-KNN 0.469 (�0:015) 0.508 (�0:012) 0.549 (�0:014) 0.567 (�0:015) 0.579 (�0:015)
Supervised-SVM 0.417 (�0:006) 0.460 (�0:005) 0.470 (�0:006) 0.517 (�0:009) 0.532 (�0:010)
Supervised-DT 0.661 (�0:0140:014) 0.672 (�0:013) 0.678 (�0:017) 0.689 (�0:012) 0.694 (�0:014)
Supervised-MLP 0.274 (�0:093) 0.309 (�0:107) 0.331 (�0:036) 0.347 (�0:069) 0.354 (�0:084)
Supervised-CNN 0.568 (�0:044) 0.617 (�0:042) 0.687 (�0:021) 0.719 (�0:019) 0.741 (�0:024)
Supervised-RNN 0.425 (�0:032) 0.428(�0:028) 0.431 (�0:027) 0.458 (�0:027) 0.461 (�0:039)
Semi-Two-Steps 0.544 (�0:019) 0.562 (�0:035) 0.588 (�0:016) 0.600 (�0:012) 0.605 (�0:015)
Semi-Pseudo-Label 0.589 (�0:020) 0.663 (�0:023) 0.707 (�0:021) 0.733 (�0:021) 0.754 (�0:018)
SECA (ours) 0.629 (�0:010) 0.693 (�0:0190:019) 0.732 (�0:0170:017) 0.750 (�0:0160:016) 0.768 (�0:0160:016)

All unlabeled data are used for training.

TABLE 3
Comparison of Weighted F-Measure Values for Various Supervised and Semi-Supervised Models

with Varying Amounts of Labeled Data

Proportion of labeled SE in the training data

Model 10% 25% 50% 75% 100%

Supervised-KNN 0.440 (�0:017) 0.488 (�0:017) 0.531 (�0:017) 0.551 (�0:017) 0.564 (�0:017)
Supervised-SVM 0.337 (�0:003) 0.385 (�0:008) 0.429 (�0:013) 0.455 (�0:017) 0.476 (�0:018)
Supervised-DT 0.662 (�0:0140:014) 0.672 (�0:014) 0.678 (�0:017) 0.689 (�0:012) 0.695 (�0:014)
Supervised-MLP 0.194 (�0:090) 0.227 (�0:129) 0.269 (�0:043) 0.252 (�0:064) 0.266 (�0:094)
Supervised-CNN 0.533 (�0:063) 0.560 (�0:044) 0.678 (�0:022) 0.710 (�0:020) 0.734 (�0:026)
Supervised-RNN 0.318 (�0:044) 0.325 (�0:039) 0.336 (�0:032) 0.358 (�0:034) 0.369 (�0:032)
Semi-Two-Steps 0.512 (�0:026) 0.541 (�0:038) 0.574 (�0:016) 0.584 (�0:014) 0.589 (�0:019)
Semi-Pseudo-Label 0.582 (�0:020) 0.654 (�0:025) 0.701 (�0:022) 0.728 (�0:021) 0.749 (�0:019)
SECA (ours) 0.615 (�0:011) 0.683 (�0:0190:019) 0.725 (�0:0170:017) 0.745 (�0:0170:017) 0.764 (�0:0170:017)

All unlabeled data are used for training.
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learn the long-term dependency between all GPS points.
In comparison between supervised and semi-supervised
algorithms, the results indicate that semi-supervised techni-
ques perform better than their supervised counterparts.
Indeed, modeling the distribution of input data through
unsupervised learning techniqueswith the help of unlabeled
data can potentially ameliorate the generalization ability of
the supervised task. Focusing on only semi-supervised
algorithms, it is obvious that the prediction quality of joint
training strategies (i.e., SECA and Semi-Pseudo-Label) are
significantly higher than the Semi-Two-Steps. Such evidence
confirms that, with aid of efficient initialization techniques,
simultaneously training the reconstruction and classification
abilities of a semi-supervised model yields a better per-
formance compared to disjoint training strategies. For an
overall comparison, our SECA model achieves on average
6.2 percent higher accuracy compared to other methods
over different amounts labeled data, excluding the super-
vised algorithms (i.e., KNN, SVM, MLP, and RNN), which
have not obtained competitive results in our problem.

Achieving high accuracy is only a positive starting point
for having a reliable classifier. An effective and unambigu-
ous way for evaluating the performance of a classifier is to
use other measures such as precision, recall, and F-measure.
As can be seen in Table 3, weighted F-measure for our
SECA model is also superior to all other algorithms. This
evidently confirms our findings and reasoning based on
results in Table 2.

5.2.2 Trip Segmentation Evaluation

Fig. 6 shows the performance of our two-step trip segmenta-
tion process in terms of precision and recall for different

values of the penalty level g. The results clearly indicate the
effectiveness of our proposed approach by achieving the very
high values of 0.99 and 0.93 for precision and recall, respec-
tively. As expected, absence of the penalty function in Eq. (6)
causes overfitting since it allows the search algorithm choos-
ingmore andmore change points in order to decrease the first
component in the right side of Eq. (6). Predicting a high num-
ber of false change points results in a low precision value.
This issue can be controlled by increasing the value of g in
order to constrain the number of predicted change points.
Interestingly, while the precision value is dramatically
improving (i.e., almost closing to 1) by raising the g value, the
recall value is dropping down very slightly. The rationale
behind such a behavior is that the number of true change
points in eachGPS SE is very low after implementing the first
step of the trip segmentation process. Our analysis indicates
that more than 99 percent of the GPS SE contains less than 2
change points after the first step segmentation, which also
implies the importance of the first step. Therefore, using
larger values of g forces the search algorithm to predict a few
yet correct number of change points, which in turn results in
high value of both precision and recall.

5.2.3 Overall Performance Evaluation

Table 4 shows the accuracy and F-measure results of our
SECA model for three trip segmentation scenarios: (1) Trips
are segmented based on the true change points. In other
words, we assume the change points are already known,
which leads to have the same result as in Tables 2 and 3, (2)
Trips are uniformly partitioned into segments with the mini-
mum number of GPS points, which is 20 in our setting. This
scenario guarantees that all GPS SEs have only one transpor-
tation as SEs contains only the minimum allowed GPS
points, (3) Trips are partitioned based on our proposed two-
step trip segmentation process, which represents our whole
mode detection framework (i.e., the SECA model followed
by the results of the two-step trip segmentation). As can be
seen from Table 4, the overall performance of our proposed
framework is degraded by only 4 percent (on-average) com-
pared to when the true change points are known. This
implicitly indicates the acceptable performance of our trip
segmentation. However, naively partitioning trips into uni-
form-size segments with the minimum number of GPS
points (i.e., the second scenario) leads to lose many GPS
information in a segment and in turnmakingmode detection
more difficult for the SECAmodel. The performance metrics
for the second scenario decreases by on average 10 percent
compared to the first scenario, which is 6 percent less than
the overall performance of our proposed framework.

Fig. 6. Precision and recall values for the proposed trip segmentation
process with different values of the penalty level g.

TABLE 4
Comparison of Accuracy (Acc.) and F-Measure (F1) for our SECA Model while Different Trip Segmentation Scenarios Are Applied

Proportion of labeled SE in the training data

10% 25% 50% 75% 100%

Trip Segmentation Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

True Change Points 0.629 0.615 0.693 0.683 0.732 0.725 0.750 0.745 0.768 0.764
Uniform Size 0.536 0.514 0.584 0.572 0.630 0.623 0.646 0.637 0.671 0.664
Two-step Segmentation (ours) 0.600 0.589 0.650 0.641 0.680 0.673 0.704 0.700 0.721 0.717
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5.3 Analysis and Discussion

In this section, we assess the quality of our proposed frame-
work in several other aspects including the hyperparameter
schedule, the data structure for GPS SEs, the SECA archi-
tecture, and the prediction capability for every transporta-
tion mode.

5.3.1 Balancing Parameters Schedule

We will now discuss the proposed schedule for tuning the
balancing parameters a and b. Table 5 presents the test
accuracy of the SECA model, according to several schedules
for tuning hyperparameters in the loss function. In the
schedule #1, the hyperparameter a gradually decreases
from 1 to the minimum value 0.1 while the hyperparameter
b is fixed to 1 during training. In fact, this schedule gradu-
ally shifts the focus solely on the supervised component
over the training iterations. Schedule #2 is analogous to the
schedule #1, yet with keeping the focus on the unsupervised
task. Schedule #3 maintains the balancing parameters equal
to 1 during the entire training process. Note that the sched-
ules #1, #2, and #3 have only one stage and the training is
stopped when no further improvement is achieved after
two consecutive epochs. Schedules #4 and #5 have two
stages. In the first stage, only one component (i.e., either
supervised or unsupervised component) is trained until the
early stopping criterion terminates the training process.
Then, in the second stage, the training continues by revers-
ing the focus to the part that has not been trained in the first
stage. Training at this stage is stopped until no further
improvement is achieved after two consecutive epochs.
From Table 5, it can be seen that our proposed schedule for
tuning balancing parameters improves the model perfor-
mance more than other alternatives. The results reveal that
deploying an effective tuning schedule can simply increase
the model accuracy. It is worth noting that the schedules #1-
#5 are the best examples with the highest accuracy among
many other possible schedules.

Furthermore, the performance measures of Semi-Pseudo
Label in Tables 2 and 3 supports the effectiveness of our pro-
posed hyperparameter schedule. Note that Semi-Pseudo-
Label is the most competitive technique to our approach and
is jointly trained by varying its balancing parameters accord-
ing to our proposed schedule.

5.3.2 Feature Analysis for GPS SE Representation

The quality of our proposed layout for representing motion
features of a SE, shown in Fig. 3, is rigorously evaluated by
tracking the effectiveness of various motion-feature combi-
nations. Table 6 summarizes the performance comparisons
when the input tensor is created using a single or a combi-
nation of features, as described in Section 3.2. The number
of motion features determines the number of channels in
the tensor. For example, an input tensor with only S infor-
mation contains one channel rather than four. First, each
feature type is independently examined in order to detect
the most salient feature types, which in turn helps in con-
structing better feature combinations. As observed in
Table 6, speed (S), relative distance (RD), and acceleration
(A) are the most effective features when used in a stand-
alone setting. The information obtained from tensors with
single features leads to examine more reliable feature
combinations. The combinations of the first two, the first
three, and the first four important features (i.e., RDþ S,
RDþ S þA, RDþ Dtþ S þA, respectively) are the most
reasonable initial selections. A 6-channel tensor with all fea-
ture types is another selection in Table 6. Nonetheless, our
configuration, that fuses relative distance, speed, accelera-
tion, and jerk, attains the best performance compared to
other potential good configurations. We also replace the
jerk with bearing rate (i.e., RDþ S þAþBR) so as to inte-
grate the heading direction with kinematic information, but
no further improvement is achieved. It is worth noting that
Table 6 encapsulates the information for a few yet potential
combinations that have attained the highest accuracy.

TABLE 5
Comparison of Accuracy Values for Different Hyperparameter Schedules Along with Different Sizes of Labeled Data

Schedule for a and b Proportion of labeled data in the training set

# stage 1 stage 2 10% 25% 50% 75% 100%

1 a : 1 ! 0:1 b : 1 NA 0.603 (�0:018) 0.675 (�0:015) 0.709 (�0:008) 0.712 (�0:020) 0.747 (�0:022)
2 a : 1 b : 1 ! 0:1 NA 0.618 (�0:017) 0.670 (�0:024) 0.715 (�0:015) 0.721 (�0:017) 0.741 (�0:012)
3 a : 1 b : 1 NA 0.625 (�0:018) 0.667 (�0:016) 0.716 (�0:015) 0.734 (�0:019) 0.745 (�0:022)
4 a : 1 b : 0 a : 1 b : 1 0.551 (�0:021) 0.564 (�0:214) 0.703 (�0:028) 0.715 (�0:023) 0.739 (�0:024)
5 a : 0 b : 1 a : 1 b : 1 0.590 (�0:023) 0.671 (�0:022) 0.711 (�0:025) 0.732 (�0:023) 0.755 (�0:022)
6 (ours) a : 1 b : 1 a : 1 b : 0:1 0.629 (�0:0100:010) 0.693 (�0:0190:019) 0.732 (�0:0170:017) 0.750 (�0:0160:016) 0.768 (�0:0160:016)

1 ! 0:1: Gradually decreasing from 1 to 0.1 over training iterations.

TABLE 6
Comparison of Accuracy and Weighted F-Measure for Various Feature Combinations

Single Feature Accuracy F-measure Feature Combination Accuracy F-measure

RD 0.529 (�0:119) 0.492 (�0:119) RDþ S 0.702 (�0:022) 0.691 (�0:023)
Dt 0.375 (�0:054) 0.352 (�0:087) RDþ S þA 0.763 (�0:016) 0.758 (�0:016)
S 0.702 (�0:021) 0.691 (�0:022) RDþ Dtþ S þA 0.755 (�0:018) 0.750 (�0:022)
A 0.481 (�0:169) 0.415 (�0:022) RDþ Dtþ S þAþ J þBR 0.752 (�0:026) 0.748 (�0:026)
J 0.275 (�0:000) 0.119 (�0:000) RDþ S þAþBR 0.752 (�0:018) 0.741 (�0:018)
BR 0.295 (�0:019) 0.178 (�0:056) RDþ S þAþ J 0.768 (�0:0160:016) 0.764 (�0:0170:017)
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5.3.3 Analysis of Model Architecture

The depth of neural networks is a key hyperparameter in
deep architectures. Thus, the structure of our SECAmodel is
evaluated in terms of depth by steadily increasing its depth
through adding convolutional layers. Analogous to the
SECA structure, depicted in Fig. 4, the number of filters starts
with 32 for the first two convolutional layers and increases by
a factor of 2 after adding every two convolutional layers.
Every two convolutional layers are followed by a max-
pooling layer. Other parameters (e.g., filter size) are fixed
throughout the network. Table 7 shows the average accuracy
values in 5-fold cross-validation for our SECAmodel with 2,
4, 6, and 8 convolutional layers by varying amounts of
labeled SE. The last column is the average over all amounts
of labeled data. It can be seen that increasing the number of
layers up to the 4 layers enhances the model accuracy by
around 1 percent, whereas adding additional layers does not
result in a substantial improvement. Accordingly, we stop
at a model with 4 convolutional layers (i.e., our proposed
SECAmodel) so as to reduce the computation time.

5.3.4 Prediction Capability Per Transport Mode

As our last round of evaluation, we delve into the confusion
matrix to analyze the high-level prediction ability of our
SECA model for every transportation mode. Table 8 illus-
trates the confusion matrix, as well as precision and recall
pertaining to each transportation mode for a test set. As
expected, there is a high correlation between prediction
quality and the number of available SE for a mode in the
training set. As shown in Table 1, the walk and driving
modes constitute the largest and smallest portions of the
GPS SEs, which in turn results in the best and worst predic-
tion performance for walk and driving modes, respectively.
Nonetheless, the discriminating moving pattern of walk
compared to others is another principal reason in achieving
a perfect recall value for the walk mode. In addition to the
lack of labeled driving SEs, the poor performance of the
model in estimating the driving mode stems from several
other factors including the possibility for driving in alterna-
tive routes with different speed limits, the presence of vari-
ous types of drivers’ behavior, and the flexibility of drivers
in maneuvering. On the other hand, bus and train are the
transit modes that must adhere to pre-defined routes and
schedule, which leads to more predictable mobility behav-
ior. Another interesting yet reasonable finding is that a large
portion of false negative SEs for the driving mode is bus
since bus is the most identical mode to car and taxi. Analo-
gously, a majority of bike SEs has been falsely classified as

walk as the moving pattern of bike is closer to walk com-
pared to other modes. Such misclassifications calls for more
labeled training SE so as to improve the discrimination abil-
ity of our SECA model.

6 CONCLUSION

We proposed a two-step trip segmentation and semi-
supervised convolutional autoencoder (SECA) model for
identifying transportation modes from GPS trajectory data.
First, the raw GPS trajectory of a user’s trip was partitioned
into GPS segments with only one transportation mode.
Next, every GPS segment was converted into an efficient
4-channel tensor so as to utilize the convolutional operation
for automatically extracting high-level features rather than
using hand-crafted features. The unsupervised and super-
vised components of the SECA model were simultaneously
trained on both unlabeled and labeled GPS tensors while an
optimal schedule was deployed for varying the balancing
parameters between reconstruction and classification losses.
Our extensive experiments demonstrated the superiority
of the proposed trip segmentation process, the SECAmodel,
the hyperparameter schedule, the representation for GPS
trajectories, and the configuration of the model architecture
compared to several baselines and alternatives.

As a future research direction, an end-to-end deep learn-
ing architecture can be designed to not only learn GPS
representation from the raw GPS points using embedding
approaches but also perform the trip-segmentation task
through an initial layer of the deep learning model.
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