
Platforms and Algorithms
for Big Data Analytics

Chandan K. Reddy
Department of Computer Science

Wayne State University

http://www.cs.wayne.edu/~reddy/
http://dmkd.cs.wayne.edu/TUTORIAL/Bigdata/

What is Big Data?
A collection of large and complex data sets which are difficult
to process using common database management tools or
traditional data processing applications.

Big data is not just about size.
• Finds insights from complex,

noisy, heterogeneous,
streaming, longitudinal, and
voluminous data.

• It aims to answer questions
that were previously
unanswered.

The challenges include capture,
storage, search, sharing &
analysis.The four dimensions (V’s) of Big Data

BIG
DATA

Velocity

Veracity

Variety

Volume

Data Accumulation !!!
Data is being collected at rapid pace due to the
advancements in sensing technologies.

Storage has become extremely cheap and hence no one
wants to throw away the data. The assumption here is that
they will be using it in the future.

Estimates show that the amount of digital data accumulated
until 2010 has been gathered within the next two years. This
shows the growth in the digital world.

Analytics is still lagging behind compared to sensing and
storage developments.

Why Should YOU CARE ?
JOBS !!

- The U.S. could face a shortage by 2018 of 140,000 to
190,000 people with "deep analytical talent" and of 1.5
million people capable of analyzing data in ways that
enable business decisions. (McKinsey & Co)

- Big Data industry is worth more than $100 billion

- Growing at almost 10% a year (roughly twice as fast as
the software business)

Digital World in the future !!
- The world will become more and more digital and hence

big data is only going to get BIGGER !!

- This is an era of big data

Why we need more Powerful Platforms ?
The choice of hardware/software platform plays a crucial
role to achieve one’s required goals.

To analyze this voluminous and complex data, scaling up
is imminent.

In many applications, analysis tasks need to produce
results in real-time and/or for large volumes of data.

It is no longer possible to do real-time analysis on such
big datasets using a single machine running commodity
hardware

Continuous research in this area has led to the
development of many different algorithms and big data
platforms

THINGS TO THINK ABOUT !!!!

Application/Algorithm level requirements…
How quickly do we need to get the results?

How big is the data to be processed?

Does the model building require several iterations or a single
iteration?

Systems/Platform-level requirements…
Will there be a need for more data processing capability in the
future?

Is the rate of data transfer critical for this application?

Is there a need for handling hardware failures within the
application?

Outline of this Tutorial
Introduction
Scaling
Horizontal Scaling Platforms

Peer to Peer
Hadoop
Spark

Vertical Scaling Platforms
High Performance Computing (HPC) Clusters
Multicore
Graphical Processing Unit (GPU)
Field Programmable Gate Array (FPGA)

Comparison of Different Platforms
Big Data Analytics on Amazon EC2 Clusters

Outline
Introduction

Scaling

Horizontal Scaling Platforms

Peer to Peer

Hadoop

Spark

Vertical Scaling Platforms

High Performance Computing (HPC) clusters

Multicore

Graphical Processing Unit (GPU)

Field Programmable Gate Array (FPGA)

Comparison of Different Platforms

Big Data Analytics on Amazon EC2 Clusters

Scaling
Scaling is the ability of the system to adapt to
increased demands in terms of processing

Two types of scaling :

Horizontal Scaling
Involves distributing work load across many
servers

Multiple machines are added together to
improve the processing capability

Involves multiple instances of an operating
system on different machines

Vertical Scaling
Involves installing more processors, more
memory and faster hardware typically within
a single server

Involves single instance of an operating
system

Scaling Advantages Drawbacks
Horizontal
Scaling

 Increases performance in
small steps as needed

 Financial investment to
upgrade is relatively less

 Can scale out the system
as much as needed

 Software has to handle all the data
distribution and parallel
processing complexities

 Limited number of software are
available that can take advantage
of horizontal scaling

Vertical
Scaling

Most of the Software can
easily take advantage
vertical scaling

 Easy to manage and
install hardware within a
single machine

 Requires substantial financial
investment

 System has to be more powerful
to handle future workloads and
initially the additional
performance goes to waste

 It is not possible to scale up
vertically after a certain limit

Horizontal vs Vertical Scaling

Horizontal Scaling Platforms
Some prominent horizontal scaling platforms:

Peer to Peer Networks

Apache Hadoop

Apache Spark

Vertical Scaling Platforms
Most prominent vertical scaling platforms:

High Performance Computing Clusters (HPC)

Multicore Processors

Graphics Processing Unit (GPU)

Field Programmable Gate Arrays (FPGA)

Outline
Introduction

Scaling

Horizontal Scaling Platforms

Peer to Peer

Hadoop

Spark

Vertical Scaling Platforms

High Performance Computing (HPC) clusters

Multicore

Graphical Processing Unit (GPU)

Field Programmable Gate Array (FPGA)

Comparison of Different Platforms

Big Data Analytics on Amazon EC2 Clusters

Peer to Peer Networks

Typically involves millions of machines connected in a network

Decentralized and distributed network architecture

Message Passing Interface (MPI) is the communication scheme
used

Each node capable of storing and processing data

Scale is practically unlimited (can be millions of nodes)

Main Drawbacks

Communication is the major bottleneck

Broadcasting messages is cheaper but
aggregation of results/data is costly

Poor Fault tolerance mechanism

Apache Hadoop

Open source framework for storing and processing large datasets

Highly fault tolerance and designed to be used with commodity hardware

Consists of two important components:

HDFS (Hadoop Distributed File System)

Used to store data across cluster of commodity machines while
providing high availability and fault tolerance

Hadoop YARN

Resource management layer

Schedules jobs across the cluster

Hadoop Architecture

Hadoop MapReduce

Basic data processing scheme used in Hadoop

Includes breaking the entire scheme into mappers and reducers

Mappers read data from HDFS, process it and generate some
intermediate results

Reducers aggregate the intermediate results to generate the final
output and write it to the HDFS

Typical Hadoop job involves running several mappers and reducers
across the cluster

Divide and Conquer Strategy

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

MapReduce Wrappers
Provide better control over MapReduce code

Aid in code development

Popular map reduce wrappers include:

Apache Pig

SQL like environment developed at Yahoo

Used by many organizations including Twitter, AOL, LinkedIn
and more

Hive

Developed by Facebook

Both these wrappers are intended to make code development easier
without having to deal with the complexities of MapReduce coding

Spark

Next generation paradigm for big data processing

Developed by researchers at University of California, Berkeley

Used as an alternative to Hadoop

Designed to overcome disk I/O and improve performance of earlier
systems

Allows data to be cached in memory eliminating the disk overhead
of earlier systems

Supports Java, Scala and Python

Tested upto 100x faster than Hadoop MapReduce

Outline
Introduction

Scaling

Horizontal Scaling Platforms

Hadoop

Peer to Peer

Spark

Vertical Scaling Platforms

High Performance Computing (HPC) clusters

Multicore

Graphical Processing Unit (GPU)

Field Programmable Gate Array (FPGA)

Comparison of Different Platforms

Big Data Analytics on Amazon EC2 Clusters

High Performance Computing (HPC) Clusters
Also known as Blades or supercomputers with thousands of processing
cores

Can have different variety of disk organization and communication
mechanisms

Contains well built powerful hardware optimized for speed and
throughput

Fault tolerance is not critical because of top quality high end hardware

Not as scalable as Hadoop or Spark but can handle terabytes of data

High initial cost of deployment

Cost of scaling up is high

MPI is typically the communication scheme used

Multicore CPU

One machine having dozens of processing cores

Number of cores per chip and number of operations a core can
perform has increased significantly

Newer breed of motherboards allow multiple CPUs within a single
machine

Parallelism achieved through multithreading

Task has to be broken into threads

Graphics Processing Unit

Specialized hardware with massively parallel architecture

Recent developments in GPU hardware and programming
frameworks has given rise to GPUGPU (general purpose computing
on graphics processing units)

Has large number of processing cores (typically around 2500+
currently)

Has it’s own DDR5 memory which is many times faster than typical
DDR3 system memory

Nvidia CUDA is the programming framework to
which simplifies GPU programming

Using CUDA, one doesn’t have to deal with
low-level hardware details

GPU vs CPU Architecture

CPU vs GPU
Development in CPU is rather slow as compared with GPU

Number of cores in CPU is still in double digits while a
GPU can have 2500+ cores

Processing power of a current generation CPU is close to
10 Gflops while GPU can have close to 1000 Gflops of
computing power

CPU primarily relies on system memory which is slower
than the GPU memory

While GPU is an appealing option for parallel computing,
the number of softwares and applications that take
advantage of the GPU is rather limited

CPU has been around for many years and huge number of
software are available which use multicore CPU’s

Field Programmable Gate Arrays (FPGA)

Highly specialized hardware units

Custom built for specific applications

Can be highly optimized for speed

Due to customized hardware, development cost is much higher

Coding has to be done in HDL (Hardware Description Language)
with low level knowledge of hardware

Greater algorithm development cost

Suited for only certain set of applications

Outline
Introduction

Scaling

Horizontal Scaling Platforms

Peer to Peer

Hadoop

Spark

Vertical Scaling Platforms

High Performance Computing (HPC) clusters

Multicore

Graphical Processing Unit (GPU)

Field Programmable Gate Array (FPGA)

Comparison of Different Platforms

Big Data Analytics on Amazon EC2 Clusters

Comparison of Different Platforms
Following characteristics are used for comparison:

System/Platform dependent

Scalability

Data I/O performance

Fault Tolerance

Application/Algorithm dependent

Real-time processing

Data size support

Support for iterative tasks

Comparison is done using the star ratings

5 stars correspond to highest possible rating

1 star is the lowest possible rating

Comparison of Platforms
Platforms

(Communication
Scheme)

System/Platform	 Application/Algorithm	

Scalability Data	I/O
Performance

Fault
Tolerance

Real‐Time
Processing

Data	Size
Supported

Iterative	
Task	Support

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

Scalability

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

Ability of the system to handle growing amount of work load in a capable manner or to be
enlarged to accommodate that growth.

It is the ability to add more hardware to improve the performance and capacity of the system

Highly scalable and it is relatively easy to add
machines and extend them to any extent

Can only scale up to a certain extent

Once deployed, scaling up becomes costly

Limited number of GPUs and CPUs in a single
machine

Data I/O Performance

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The rate at which the data is transferred to/from a peripheral device. In the context of big
data analytics, this can be viewed as the rate at which the data is read and written to the
memory (or disk) or the data transfer rate between the nodes in a cluster.

Disk access and slow network communication

Slower disk access

Uses system memory; minimizes disk access

Uses system memory; usually within a single
machine

Use DDR5 memory which is faster than
system memory

Fault Tolerance

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The characteristic of a system to continue operating properly in the event of a failure of
one or more components

Have no fault tolerance mechanism and use of
commodity hardware makes them highly
susceptible to system failures

Have in-built efficient fault tolerance mechanism

Although these platforms don’t have state-of-
the-art fault tolerance mechanisms, these
have most reliable and well-built hardware
which makes hardware failure an extremely
rare event

Real‐Time Processing

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The system’s ability to process the data and produce the results strictly within certain
time constraints

Slow for real-time data processing because of
network overhead and commodity hardware

Slow in terms of data I/O and do not contain
optimized and powerful hardware

Have reasonable real-time processing
capabilities. They have many processing
cores and high memory bandwidth

Well suited for real-time processing with
thousands of processing cores and very high
speed memory

Data Size Supported

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The size of the dataset that a system can process and handle efficiently

Can handle Petabytes of data and can scale out
to unlimited number of nodes

Can handle around several Terabytes of data

Not suited for large-scale datasets. Multicore
relies on system memory which can only be up
to few hundred Gigabytes. Similarly, GPU has
limited on board memory.

Iterative Task Support

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

This is the ability of a system to efficiently support iterative tasks. Since many of the data
analysis tasks and algorithms are iterative in nature, it is an important metric to compare
different platforms, especially in the context of big data analytics

P2P has huge network communication
overhead; MapReduce has disk I/O overhead

Reduces the disk I/O overhead

All the other platforms are suited for iterative
processing. All the iterative algorithms cannot
be easily modified for each of these platforms

Outline
Introduction

Scaling

Horizontal Scaling Platforms

Hadoop

Peer to Peer

Spark

Vertical Scaling Platforms

Graphical Processing Unit (GPU)

Multicore

High Performance Computing (HPC) clusters

Field Programmable Gate Array (FPGA)

Comparison of Different Platforms

Big Data Analytics on Amazon EC2 Clusters

K‐Means and KNN Algorithms

K‐MEANS CLUSTERING ALGORITHM

Basic K‐Means Clustering Algorithm
The k‐means Clustering Algorithm
Input : Data points D, Number of clusters k
Step 1: Initialize k centroids randomly
Step 2: Associate each data point in D with the nearest centroid. This will divide the data points into
k clusters.
Step 3: Recalculate the position of centroids.
Repeat steps 2 and 3 until there are no more changes in the membership of the data points
Output : Data points with cluster memberships

Starts by initializing the cluster centroids

Each data point is associated with the nearest centroid in the step 2

In Step 3, centroids are recalculated

Step 2 and Step 3 are repeated until the centroids converge or till predefined
number of iterations

K‐Means clustering on Different Platforms

Popular and widely used algorithm

Contains critical elements that can demonstrate the ability
of various platforms

Characteristics include:

Iterative nature of the algorithm wherein the current
iteration results are needed before proceeding to the
next iteration

Compute-intensive task of calculating the centroids
from a set of data points

Aggregation of the local results to obtain a global
solution when the algorithm is parallelized

K‐Means GPU Pseudo code
Input: Data points D, Number of clusters K
Step 1: Initialize K centroids randomly on CPU
Step 2: Send K and D to GPU. Copy K in GPU shared memory of

Multiprocessors.Divide and copy data points into memory of
each processor.

Step 3: Kernel process:
Each processor computes the distance of each point in D;
at a time with each centroid in K. Associate each data
point with it's nearest centroid.

Step 4: Send the association back to CPU
Step 5: Re-compute the centroids with the given association on CPU
Step 6: Send new K to GPU
Step 7: Repeat Step 3 to Step 6 until global converge
Output: Data points with cluster membership

K‐Means CPU‐GPU communication
1

5

2

4

6

3

Step 1: Initialize K centroids randomly on CPUStep 2: Send K and D to GPU. Copy K in GPU shared memory
of Multiprocessors. Divide and copy data points into
memory of each processor.

Step 3: Kernel process:
Each processor computes the distance of each point in
D; at a time with each centroid in K. Associate each
data point with it's nearest centroid.

Step 4: Send the association back to CPUStep 5: Re-compute the centroids with the given association on
CPU

Step 6: Send new K to GPUStep 7: Repeat Step 3 to Step 6 until global converge

K‐Means Multicore Pseudo code

Input: Data points D, Number of clusters k

Step 1: Initialize k centroids randomly

Step 2: Send the centroids and the split the D into multiple cores

Step 3: Associate each data point in D with the nearest centroid.
This will divide the data points into k clusters.

Step 4: Recalculate the position of centroids.

Step 5: Repeat steps 2 to 4 until there are no more changes in the
membership of the data points

Output: Data points with cluster memberships

K‐Means Multicore Communication

3

2

3 3

4

2,4
2 4

3

1

2

Step 1: Initialize k centroids randomlyStep 2: Send the centroids and the split the D into
multiple cores
Step 3: Associate each data point in D with the nearest

centroid. This will divide the data points into k
clusters.

Step 4: Recalculate the position of centroids.Step 5: Repeat steps 2 to 4 until there are no more
changes in the membership of the data points

K‐Means Mapreduce Pseudo code
Input: Data points D, Number of clusters K
Step 1: Copy K and D into memory. Initialize each centroid with 0 as data points.
Step 2: Mapper:

Each map task computes the distance of each point with the
centroid array. Assign data points to its nearest centroid.

Step 3: Mapper Output:
Output the key-value pair with key as centroid and value as the data
points array.

Step 4: Reducer:
Combine all the values for each key (centroid) and compute the
new centroid.

Step 5: Reducer Output:
Write the new centroids.

Step 6: Repeat steps 1 to 5 until the centroid converges
Step 7: Repeat steps 1 to 3 and write the mapper output.
Output: Data points with cluster membership.

K‐Means Mapper‐Reducer Communication

1

Disk Disk Disk

22 2

4 4 4

5 5 5

6 6 66

3

Step 1: Copy K and D into memory. Initialize each centroid with 0
as data points.
Step 2: Mapper:

Each map task computes the distance of each point with
the centroid array. Assign data points to its nearest
centroid.

Step 3: Mapper Output:
Output the key-value pair with key as centroid and
value as the data points array.

Step 4: Reducer:
Combine all the values for each key (centroid) and
compute the new centroid.

Step 5: Reducer Output:
Write the new centroids.

Step 6: Repeat steps 1 to 5 until the centroid convergesStep 7: Repeat steps 1 to 3 and write the mapper output.

K‐NEAREST NEIGHBOR ALGORITHM

KNN GPU Pseudo code
Input: Reference points R and Query points Q
Step 1: Send R and Q to GPU. Copy Q in the shared memory of the

multiprocessors.
Step 2: Kernel 1:

Compute the distance matrix m × n where m are the
query points and n are the points. Each processor
computes the distance of one query point and with R.

Step 3: Kernel 1:
Send m × n matrix to kernel 2

Step 3: Kernel 2:
Each row in m × n matrix is provided to individual
processor and is sorted parallelly using insertion sort.
Along with it, the indices of each column are also sorted.

Step 4: Send this m × n matrix back to CPU
Step 5: Compute the K nearest neighbors
Output: Query points with sorted distance to each reference point.

KNN CPU‐GPU Communication

1

2

3

4

Step 1: Send R and Q to GPU. Copy Q in the shared memory of the
multiprocessors.

Step 2: Kernel 1:
Compute the distance matrix m × n where m are the
query points and n are the points. Each processor
computes the distance of one query point and with R.

Step 3: Kernel 1:
Send m × n matrix to kernel 2

Step 3: Kernel 2:
Each row in m × n matrix is provided to individual
processor and is sorted parallelly using insertion sort.
Along with it, the indices of each column are also sorted.

Step 4: Send this m × n matrix back to CPU

5

Step 5: Compute the K nearest neighbors

KNN Multicore Pseudo code
Input: Reference points R, Query points Q

Step 1: Compute the distance of each point in Q with points in R.

Step 2: Create a Distance matrix m × n where m are the query
points and n are the reference points.

Step 3: Sort each row in the matrix

Step 4: Select the K nearest neighbors for each query point

Output: Query point with K nearest neighbors

KNN CPU‐Cores Communication

1,3

2

2,4

3

4

4

2

3 3

2

3,4

1

Step 1: Compute the distance of each point in Q with
points in R.

Step 2: Create a Distance matrix m × n where m are the query
points and n are the distance points.

Step 3: Sort each row in the matrixStep 4: Select the K nearest neighbors for each query point

KNN MapReduce Pseudo code
Input: Reference points R, Query points Q and Nearest neighbor K

Step 1: Copy Q and R into memory

Step 2: Mapper:

Each map task computes the distance of each point in
Q with each point in R

Step 3: Mapper Output:

Output the key-value pair with key as data point in Q
and value vector of distances. The value is
combination of reference point label and distance

Step 4: Reducer:

For each key, sort the value vector and find the K
elements with smallest distance

Step 5: Reducer Output:

Write the associations to disk

KNN Mapper‐Reducer Communication

1

Disk Disk Disk

22 2

4 4 4

5 5 5

3

Step 1: Copy Q and R into memory. Step 2: Mapper:
Each map task computes the distance of each point in
Q with each point in R.

Step 3: Mapper Output:
Output the key-value pair with key as data point in Q and
value vector of distances. The value is combination of
reference point label and distance

Step 4: Reducer:
For each key, sort the value vector and find the K elements
with smallest distance

Step 5: Reducer Output:
Write the associations to disk

Amazon Web Services

Amazon EC2
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable compute capacity in the cloud.

Designed to make web-scale computing easier for developers.

Simple web service interface allows you to obtain and configure capacity
with minimal friction.

Provides you with complete control of your computing resources and lets
you run on Amazon’s proven computing environment.

Reduces the time required to obtain and boot new server instances to
minutes, allowing you to quickly scale capacity, both up and down, as your
computing requirements change.

Changes the economics of computing by allowing you to pay only for
capacity that you actually use.

Provides developers the tools to build failure resilient applications and
isolate themselves from common failure scenarios.

Benefits
Elastic Web-Scale Computing

Enables you to increase or decrease capacity within minutes.

You can commission thousands of server instances simultaneously.

Applications can automatically scale itself up and down depending on its needs.

Completely Controlled
You have root access to each instance

You can stop your instance while retaining the data.

Instances can be rebooted remotely using web service APIs.

You also have access to console output of your instances.

Flexible Cloud Hosting Services
You have the choice of multiple instance types, operating systems, and software packages.

It allows you to select a configuration of memory, CPU, instance storage, and the boot
partition size that is optimal for your choice of operating system and application.

Reliable
The service runs within Amazon’s proven network infrastructure and data centers.

The Amazon EC2 Service Level Agreement commitment is 99.95% availability for each
Amazon EC2 Region.

Benefits
Secure

Amazon EC2 works in conjunction with Amazon VPC to provide security and robust networking
functionality

Instances are located in a Virtual Private Cloud (VPC) with an IP range that you specify.

You decide which instances are exposed to the Internet and which remain private.

Security Groups and networks ACLs allow you to control inbound and outbound network
access.

You can provision your EC2 resources as Dedicated Instances. Dedicated Instances are
Amazon EC2 Instances that run on hardware dedicated to a single customer for additional
isolation.

Inexpensive
Pay only for what is used, without up-front or long-term commitments

On-Demand Instances let you pay for compute capacity by the hour with no long-term
commitments.

Reserved Instances give you the option to make a low, one-time payment for each instance
and in turn receive a significant discount on the hourly charge for that instance.

Spot Instances allow customers to bid on unused Amazon EC2 capacity and run those
instances for as long as their bid exceeds the current Spot Price.

Easy to Start
Choosing preconfigured software on Amazon Machine Images (AMIs), you can quickly deploy
softwares to EC2 via 1-Click launch or with the EC2 console.

Using EC2 Services
Instances are priced depending upon the configurations

Instance
Type

Usage Use cases Price range

T2 General
Purpose

Development environments, build servers, code
repositories, low-traffic web applications, early product
experiments, small databases.

$0.013 - $0.520
per hour

M3 General
Purpose

Small and mid-size databases, backend servers for SAP,
Microsoft SharePoint

$0.070 - $0.560
per hour

C3 Compute
Optimized

High performance front-end fleets, web-servers, on-
demand batch processing, distributed analytics, high
performance science and engineering applications, ad
serving, batch processing and distributed analytics.

$0.105 - $1.680
per hour

R3 Memory
Optimized

High performance databases, distributed memory caches,
in-memory analytics, genome assembly and analysis,
larger deployments of SAP, Microsoft SharePoint, and
other enterprise applications.

$0.175 - $2.800
per hour

G2 GPU Game streaming, video encoding, 3D application
streaming, GPGPU, and other server-side graphics
workloads.

$0.650 per hour

I2 Storage
Optimized

NoSQL databases, scale out transactional databases,
data warehousing and cluster file systems.

$0.853 - $6.820
per hour

EC2 Best Practices
Make sure you choose the correct instance type, depending upon your use case

Make sure you choose the correct OS and the appropriate amount of storage for

your use case

For Development purposes, choose the configurations which are provided for

free. AWS provides a free tier for 750 hours each month for some configurations

While using On-demand instances, make sure to stop the instances if not in use

and restart them later as required

Terminate the instances which you won’t be needing anymore to avoid being

charged.

Big Data Platform Instance
Configurations for AWS

AWS GPU Instance
Type : g2.2xlarge (GPU)

Instances used: 1

Processor: Intel Xeon-E5-2670 (Sandy Bridge)

CPU cores: 8

Memory : 15 Gb

GPU: NVIDIA with 1,536 CUDA cores and 4 Gb of video memory

Instance storage: 60Gb SSD

AWS Multicore Instance
Type : c3.2xlarge (Compute optimized)

Instances used: 1

Processor: Intel Xeon E5-2680 v2 (Ivy Bridge)

CPU cores: 8

Memory: 15 Gb

Instance storage: 2 x 80Gb SSD

AWS Hadoop Instances
Type : c3.xlarge (Compute Optimized)

Instances used: 3

Processor: Intel Xeon E5-2680 v2 (Ivy Bridge)

CPU cores: 4

Memory: 7.5 Gb

Instance storage: 2 x 40Gb SSD

AWS Spark Instance
Type : m3.large

Instances used: 4

Processor: Intel Xeon E5-2670 v2 (Ivy Bridge)

CPU cores: 2

Memory : 7.5 Gb

Instance storage: 1 x 32Gb SSD

LAB SESSION

Conclusion
Big Data is not about handling a particular challenge,
rather it’s a field in itself.

Big data can provide potentially revolutionary solutions to
the problems where there are no answers yet.

It can directly impact various disciplines especially in the
way the data is currently being handled in those
disciplines.

Different platforms have different strengths and the choice
of platforms can play a critical role in the eventual
success of the application and/or algorithm used.

Algorithms for Big Data Analytics are still at their infancy.

Thank You
Questions and Comments

Feel free to email questions or suggestions to

reddy@cs.wayne.edu

http://www.cs.wayne.edu/~reddy/

