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What is Big Data?
A collection of large and complex data sets which are difficult 
to process using common  database management tools or 
traditional data processing applications. 

Big data is not just about size. 
• Finds insights from complex, 

noisy, heterogeneous, 
streaming, longitudinal, and 
voluminous data.

• It aims to answer questions 
that were previously 
unanswered. 

The challenges include capture, 
storage, search, sharing & 
analysis.The four dimensions (V’s) of Big Data
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Data Accumulation !!!
Data is being collected at rapid pace due to the 
advancements in sensing technologies.

Storage has become extremely cheap and hence no one 
wants to throw away the data. The assumption here is that 
they will be using it in the future.

Estimates show that the amount of digital data accumulated 
until 2010 has been gathered within the next two years. This 
shows the growth in the digital world.

Analytics is still lagging behind compared to sensing and 
storage developments.



Why Should YOU CARE ?
JOBS !!

- The U.S. could face a shortage by 2018 of 140,000 to 
190,000 people with "deep analytical talent" and of 1.5 
million people capable of analyzing data in ways that 
enable business decisions. (McKinsey & Co)

- Big Data industry is worth more than $100 billion
- Growing at almost 10% a year (roughly twice as fast as 

the software business)

Digital World is the future !!
- The world will become more and more digital and hence 

big data is only going to get BIGGER !!
- This is an era of big data



Why we need more Powerful Platforms ?
The choice of hardware/software platform plays a 
crucial role to achieve one’s required goals.
To analyze this voluminous and complex data, scaling 
up is imminent.
In many applications, analysis tasks need to produce 
results in real-time and/or for large volumes of data.
It is no longer possible to do real-time analysis on such 
big datasets using a single machine running commodity 
hardware.
Continuous research in this area has led to the 
development of many different algorithms and big data 
platforms.



THINGS TO THINK ABOUT !!!!

Application/Algorithm-level requirements…  
How quickly do we need to get the results? 
How big is the data to be processed? 
Does the model building require several iterations or a single 
iteration?

Systems/Platform-level requirements…
Will there be a need for more data processing capability in the 
future? 
Is the rate of data transfer critical for this application? 
Is there a need for handling hardware failures within the 
application?
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Scaling
Scaling is the ability of the system to adapt to 
increased demands in terms of processing 
Two types of scaling :

Horizontal Scaling
Involves distributing work load across many 
servers
Multiple machines are added together to 
improve the processing capability
Involves multiple instances of an operating 
system on different machines

Vertical Scaling
Involves installing more processors, more 
memory and faster hardware typically within 
a single server
Involves single instance of an operating 
system



Scaling Advantages Drawbacks
Horizontal 
Scaling

 Increases performance in 
small steps as needed

 Financial investment to 
upgrade is relatively less

 Can scale out the system 
as much as needed 

 Software has to handle all the data 
distribution and parallel 
processing complexities

 Limited number of software are 
available that can take advantage 
of horizontal scaling

Vertical 
Scaling

Most of the software can 
easily take advantage of 
vertical scaling 

 Easy to manage and 
install hardware within a 
single machine  

 Requires substantial financial 
investment 

 System has to be more powerful 
to handle future workloads and 
initially the additional 
performance goes to waste

 It is not possible to scale up 
vertically after a certain limit

Horizontal vs Vertical Scaling

Dilpreet Singh and Chandan K. Reddy, "A Survey on Platforms for Big Data Analytics", 
Journal of Big Data, Vol.2, No.8, pp.1-20, October 2014.



Horizontal Scaling Platforms  
Some prominent horizontal scaling platforms:

Peer to Peer Networks

Apache Hadoop

Apache Spark 



Vertical Scaling Platforms 
Most prominent vertical scaling platforms:

High Performance Computing Clusters (HPC)

Multicore Processors

Graphics Processing Unit (GPU)

Field Programmable Gate Arrays (FPGA)
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Peer to Peer Networks

Typically involves millions of machines connected in a network
Decentralized and distributed network architecture
Message Passing Interface (MPI) is the communication scheme 
used
Each node capable of storing and processing data
Scale is practically unlimited (can be millions of nodes)

Main Drawbacks
Communication is the major bottleneck
Broadcasting messages is cheaper but 
aggregation of results/data is costly
Poor Fault tolerance mechanism



Apache Hadoop

Open source framework for storing and processing large datasets
High fault tolerance and designed to be used with commodity hardware

Consists of two important components:

HDFS (Hadoop Distributed File System)
Used to store data across cluster of commodity machines while 
providing high availability and fault tolerance 

Hadoop YARN
Resource management layer 
Schedules jobs across the cluster



Hadoop Architecture



Hadoop MapReduce

Basic data processing scheme used in Hadoop

Includes breaking the entire scheme into mappers and reducers
Mappers read data from HDFS, process it and generate some 
intermediate results
Reducers aggregate the intermediate results to generate the final 
output and write it to the HDFS 

Typical Hadoop job involves running several mappers and reducers 
across the cluster 



Divide and Conquer Strategy

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine



MapReduce Wrappers
Provide better control over MapReduce code
Aid in code development
Popular map reduce wrappers include:

Apache Pig
SQL like environment developed at Yahoo
Used by many organizations including Twitter, AOL, LinkedIn 
and more

Hive
Developed by Facebook

Both these wrappers are intended to make code development easier 
without having to deal with the complexities of MapReduce coding



Spark 

Next generation paradigm for big data processing
Developed by researchers at University of California, Berkeley
Used as an alternative to Hadoop
Designed to overcome disk I/O and improve performance of earlier 
systems
Allows data to be cached in memory eliminating the disk overhead 
of earlier systems
Supports Java, Scala and Python
Can yield upto 100x faster than Hadoop MapReduce
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High Performance Computing (HPC) Clusters
Also known as Blades or supercomputers with thousands of processing 
cores
Can have different variety of disk organization and communication 
mechanisms
Contains well-built powerful hardware optimized for speed and 
throughput
Fault tolerance is not critical because of top quality high-end hardware
Not as scalable as Hadoop or Spark but can handle terabytes of data
High initial cost of deployment
Cost of scaling up is high
MPI is typically the communication scheme used



Multicore CPU

One machine having dozens of processing cores
Number of cores per chip and number of operations a core can 
perform has increased significantly
Newer breed of motherboards allow multiple CPUs within a single 
machine
Parallelism achieved through multithreading
Task has to be broken into threads



Graphics Processing Unit

Specialized hardware with massively parallel architecture
Recent developments in GPU hardware and programming 
frameworks has given rise to GPGPU (general purpose computing 
on graphics processing units) 
Has large number of processing cores (typically around 2500+ 
currently)
Has it’s own DDR5 memory which is many times faster than typical 
DDR3 system memory
Nvidia CUDA is the programming framework to      
which simplifies GPU programming
Using CUDA, one doesn’t have to deal with 
low-level hardware details



CPU vs GPU Architecture 



CPU vs GPU 
Development in CPU is rather slow as compared with GPU
Number of cores in CPU is still in double digits while a GPU can 
have 2500+ cores
Processing power of a current generation CPU is close to 10 
Gflops while GPU can have close to 1000 Gflops of computing 
power
CPU primarily relies on system memory which is slower than the 
GPU memory
While GPU is an appealing option for parallel computing, the 
number of softwares and applications that take advantage of the 
GPU is rather limited 
CPU has been around for many years and huge number of 
software are available which use multicore CPUs



Field Programmable Gate Arrays (FPGA)

Highly specialized hardware units
Custom built for specific applications
Can be highly optimized for speed
Due to customized hardware, development cost is much higher
Coding has to be done in HDL (Hardware Description Language) 
with low level knowledge of hardware
Greater algorithm development cost
Suited for only certain set of applications
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Comparison of Different Platforms
Following characteristics are used for comparison:

System/Platform dependent
Scalability
Data I/O performance
Fault tolerance

Application/Algorithm dependent
Real-time processing
Data size support
Support for iterative tasks

Comparison is done using the star ratings 
5 stars correspond to highest possible rating 
1 star is the lowest possible rating



Comparison of Big Data Platforms
Platforms

(Communication
Scheme)

System/Platform	 Application/Algorithm	

Scalability Data	I/O
Performance

Fault
Tolerance

Real‐Time
Processing

Data	Size
Supported

Iterative	
Task	Support

Peer	to	Peer
(TCP/IP)

     

Virtual	Clusters
(MapRedce/MPI)

     

Virtual	Clusters
(Spark)

     

HPC	Clusters
(MPI/Mapreduce)

     

Multicore
(Multithreading)

     

GPU
(CUDA)

     

FPGA
(HDL)

     

Dilpreet Singh and Chandan K. Reddy, "A Survey on Platforms for Big Data Analytics", 
Journal of Big Data, Vol.2, No.8, pp.1-20, October 2014.



Scalability

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)



Virtual	Clusters
(MapRedce/MPI)



Virtual	Clusters
(Spark)



HPC	Clusters
(MPI/Mapreduce)



Multicore
(Multithreading)



GPU
(CUDA)



FPGA
(HDL)



Ability of the system to handle growing amount of work load in a capable manner or to be 
enlarged to accommodate that growth. 
It is the ability to add more hardware to improve the performance and capacity of the system

Highly scalable and it is relatively easy to add 
machines and extend them to any extent

Can only scale up to a certain extent 

Once deployed, scaling up becomes costly

Limited number of GPUs and CPUs in a single 
machine  



Data I/O Performance

Platforms
(Communication

Scheme)

System/Platform	

Data I/O

Peer	to	Peer
(TCP/IP)



Virtual	Clusters
(MapRedce/MPI)



Virtual	Clusters
(Spark)



HPC	Clusters
(MPI/Mapreduce)



Multicore
(Multithreading)



GPU
(CUDA)



FPGA
(HDL)



The rate at which the data is transferred to/from a peripheral device. In the context of big 
data analytics, this can be viewed as the rate at which the data is read and written to the 
memory (or disk) or the data transfer rate between the nodes in a cluster.

Disk access and slow network communication

Slower disk access 

Uses system memory; minimizes disk access

Uses system memory; usually within a single 
machine

Use DDR5 memory which is faster than 
system memory



Fault Tolerance

Platforms
(Communication

Scheme)

System/Platform	

Fault	Tolerance

Peer	to	Peer
(TCP/IP)



Virtual	Clusters
(MapRedce/MPI)



Virtual	Clusters
(Spark)



HPC	Clusters
(MPI/Mapreduce)



Multicore
(Multithreading)



GPU
(CUDA)



FPGA
(HDL)



The characteristic of a system to continue operating properly in the event of a failure of 
one or more components

Have no fault tolerance mechanism and use of 
commodity hardware makes them highly 
susceptible to system failures

Have in-built efficient fault tolerance mechanism

Although these platforms do not have state-of-
the-art fault tolerance mechanisms, these 
have most reliable and well-built hardware 
which makes hardware failure an extremely 
rare event 



Real‐Time Processing

Platforms
(Communication

Scheme)

System/Platform	

Real‐Time

Peer	to	Peer
(TCP/IP)



Virtual	Clusters
(MapRedce/MPI)



Virtual	Clusters
(Spark)



HPC	Clusters
(MPI/Mapreduce)



Multicore
(Multithreading)



GPU
(CUDA)



FPGA
(HDL)



The system’s ability to process the data and produce the results strictly within certain 
time constraints

Slow for real-time data processing because of 
network overhead and commodity hardware

Slow in terms of data I/O and do not contain 
optimized and powerful hardware

Have reasonable real-time processing 
capabilities. They have many processing 
cores and high memory bandwidth

Well suited for real-time processing with 
thousands of processing cores and very high 
speed memory



Data Size Supported 

Platforms
(Communication

Scheme)

System/Platform	

Data	Size

Peer	to	Peer
(TCP/IP)



Virtual	Clusters
(MapRedce/MPI)



Virtual	Clusters
(Spark)



HPC	Clusters
(MPI/Mapreduce)



Multicore
(Multithreading)



GPU
(CUDA)



FPGA
(HDL)



The size of the dataset that a system can process and handle efficiently

Can handle Petabytes of data and can scale out 
to unlimited number of nodes

Can handle around several Terabytes of data 

Not suited for large-scale datasets. Multicore 
relies on system memory which can only be up 
to few hundred Gigabytes. Similarly, GPU has 
limited on-board memory.



Iterative Task Support

Platforms
(Communication

Scheme)

System/Platform	

Iterative	Tasks

Peer	to	Peer
(TCP/IP)



Virtual	Clusters
(MapRedce/MPI)



Virtual	Clusters
(Spark)



HPC	Clusters
(MPI/Mapreduce)



Multicore
(Multithreading)



GPU
(CUDA)



FPGA
(HDL)



This is the ability of a system to efficiently support iterative tasks. Since many of the data 
analysis tasks and algorithms are iterative in nature, it is an important metric to compare 
different platforms, especially in the context of big data analytics

P2P has huge network communication 
overhead; MapReduce has disk I/O overhead 

Reduces the disk I/O overhead

All these other platforms are suited for iterative 
processing. All the iterative algorithms cannot 
be easily modified for each of these platforms
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K‐Means and K‐NN Algorithms

Implementations Available at

http://dmkd.cs.wayne.edu/TUTORIAL/Bigdata/



K‐MEANS CLUSTERING ALGORITHM



Basic K‐Means Algorithm



Basic K‐Means Clustering Algorithm

Starts by initializing the cluster centroids
Each data point is associated with the nearest centroid in the step 2
In Step 3, centroids are recalculated
Step 2 and Step 3 are repeated until the centroids converge or  till predefined 
number of iterations

Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Initialize	random	k	training	data	points	as	centroids
2:	Do
3:					Compute	the	distance	between	each	point	in	D	and	each	point	in	centroids
4:					Sort	distances	for	each	data	point
5:					Associate	data	points	to	the	nearest	centroid
6:					Recompute the	centroids
7:	While	No	changes	in	cluster	membership



Data Clustering: Algorithms & Applications

Feature Selection for Clustering
Probabilistic Models for Clustering
Partitional/Hierarchical Clustering
Density Based Clustering
Grid-based Clustering
NMF for Clustering
Spectral Clustering
Clustering High Dimensional Data
Data Stream Clustering 
Big Data Clustering
Clustering Categorical Data

Document Clustering
Clustering Multimedia Data
Time Series Data Clustering
Clustering Biological Data
Network Clustering 
Uncertain Data Clustering
Visual & Interactive Clustering 
Semi-Supervised Clustering 
Alternative Clustering
Cluster Ensembles
Clustering Validation

Covers recent advances in Data Clustering
Survey Chapters from prominent researchers



K‐Means Clustering on Different Platforms

Most popular and widely used clustering algorithm
Contains critical elements that can demonstrate the ability 
of various platforms
Characteristics include:

Iterative nature of the algorithm wherein the current 
iteration results are needed before proceeding to the 
next iteration
Compute-intensive task of calculating the centroids 
from a set of data points
Aggregation of the local results to obtain a global 
solution when the algorithm is parallelized



K‐Means GPU Pseudocode
Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Initialize	first k	data	points	as	centroids
2:	For	iteration =	1	to	MaxIterations do
3:					Copy	D	and	centroids	to	GPU	shared	memory.	Split	D	into	threads
4:					Kernel	process:	Compute	distance	between	point	in	D	and	each	point	in	
centroids
5:					Send	the	distances	to	CPU
6:					CPU	process:	Sort	distances	for	each	data	point
7:					CPU	process:	Associate	each	data	point	to	closest	centroid
8:					CPU	process:	Recompute the	centroids
9:	end	For	



K‐Means on GPU

Step 1: Initialize	first k	data	points	as	centroidsStep 3: Copy	D	and	centroids	to	GPU	shared	memory.	Split	D	into	
threads
Step 4: Kernel	process:	Compute	distance	between	point	in	D	
and	each	point	in	centroids
Step 5: Send	the	distances	to	CPUStep 6: CPU	process:	Sort	distances	for	each	data	point
Step 7: CPU	process:	Associate	each	data	point	to	closest	centroid
Step 8: CPU	process:	Recompute the	centroids



K‐Means Multicore CPU Pseudocode
Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Initialize	first k	data	points	as	centroids
2:	For	iteration =	1	to	MaxIterations do
3:					Split	D	into	multiple	cores
4:					Compute	distance	between	each	point	in	D	and	each	point	in	centroids
5:					Send	distances	to	central	core
6:					Sort	distances	for	each	data	point
7:					Associate	each	data	point	in	D	with	the	nearest	centroid
8:					Recompute the	centroids
9:	end	For	



K‐Means on Multicore CPU

Step 1: Initialize	first k	data	points	as	centroidsStep 3: Split	D	into	multiple	coresStep 4: Compute	distance	between	each	point	in	D	and	
each	point	in	centroids
Step 5: Send	distances	to	central	coreStep 6: Sort	distances	for	each	data	point
Step 7: Associate	each	data	point	in	D	with	the	nearest	centroid
Step 8: Recompute the	centroids



K‐Means Mapreduce Pseudocode
Input:	Dataset	D,	centroids
Output: Data	points	with	cluster	memberships
1:	For	iteration =	1	to	MaxIterations do
2:					Mapper:	Read	D and	centroids from	HDFS
3:					Mapper:	Compute	the	distance	between	each	point	in	D and	each	point	in	centroids
4:					Mapper	Output:	Key‐value	pairs	with	key	as	centroid	id	and	value	as	data	point	id	
and	distance	between	them
5:					Shuffle	and	Sort:	Aggregate	for	each	key	(centroid)
6:					Reducer:	Sort	distances	and	associate	data	points	to	the	nearest	centroid
7:					Reducer:	Recompute the	centroids
8:					Reducer	Output:	Write	centroids to	HDFS
9:	end	For	

Mapper reads the data and centroid from the disk
Mappers assign data instances to clusters and compute new local centroids and cluster 
sizes
Reducers aggregate the local centroids and write the data to the disk for the next iteration
This shows the disk I/O bottle neck for MapReduce in case of iterative tasks



K‐Means on MapReduce

Step 2: Mapper:	Read	D and	centroids from	HDFSStep 3: Mapper:	Compute	the	distance	between	each	point	in	D and	
each	point	in	centroids
Step 4: Mapper	Output:	Key‐value	pairs	with	key	as	centroid	id	and	
value	as	data	point	id	and	distance	between	them
Step 5: Aggregate	for	each	key	(centroid)Step 6: Reducer:	Sort	distances	and	associate	data	points	to	the	
nearest	centroid
Step 7:		Reducer:	Recompute the	centroids

Step 8: Reducer	Output:	Write	centroids to	HDFS



K‐Means Spark Pseudocode
Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Read	D	from	HDFS	as	RDD
2:	Initialize	first	k	data	points	as	centroids
3:	For	iteration =	1	to	MaxIterations do
4:					Compute	distance	between	each	point	in	D	and	each	point	in	centroids
5:					For	each	data	point	group	distances
6:					Associate	data	points	to	their	closest	centroid
7:					Recompute the	centroids
8:	end	For	

K-Means implementation on Spark is similar to K-Means 
implementation on MapReduce
Only difference being instead of writing the global centroids to the 
disk, they are written to the system memory instead
Data points are also loaded in the system memory for faster access



K‐Means on Spark

Step 1: Read	D	from	HDFS	as	RDD
Step 2: Initialize	first	k	data	points	as	centroids
Step 4: Compute	distance	between	each	point	in	D	and	each	point	in	
centroids
Step 5: For	each	data	point	group	distances
Step 6: Associate	data	points	to	their	closest	centroid	
Step 7: Recompute the	centroids



K‐NEAREST NEIGHBOR ALGORITHM



Basic K‐NN Algorithm

Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Compute	the	distance	between	each	di ∈ D and	each	xj ∈ X
2:	For	each	test	instance	sort	the	distances
3:	Take	first	k train	data	points	as	nearest	neighbors
4:	Assign	the	most	frequent	class	label	from	nearest	neighbors	as	predicted	
class	label



K‐NN GPU Pseudocode

Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Copy	D	and	X	to	the	GPU	shared	memory.	Split	D	into	threads
2:	Kernel	1:	Compute	the	distance	between	each	di ∈ D and	each	xj ∈ X
3:	Send	the	distances	to	CPU
4:	Copy	distances	to	GPU	shared	memory,	split	into	threads
5:	Kernel	2:	Sort	distances	for	each	test	instance
6:	Send	indices	of	k nearest	neighbors	to	CPU
7:	CPU	Process:	Assign	most	frequent	class	label	from	nearest	neighbors	as	
predicted	class	label



K‐NN on GPU

Step 1: Copy	D	and	X	to	the	GPU	shared	memory.	Split	D	into	threadsStep 2: Kernel	1:	Compute	the	distance	between	each	di ∈ D and	each	
xj ∈ X
Step 3: Send	the	distances	to	CPUStep 4: Copy	distances	to	GPU	shared	memory,	split	into	threadsStep 5: Kernel	2:	Sort	distances	for	each	test	instanceStep 6: Send	indices	of	k nearest	neighbors	to	CPUStep 7: CPU	Process:	Assign	most	frequent	class	label	from	nearest	
neighbors	as	predicted	class	label



K‐NN MultiCore CPU Pseudocode

Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Split	D into	multiple	cores
2:	Calculate	the	distance	between	each	di ∈ D and	each	xj ∈ X
3:	Send	distances	to	central	core
4:	Split	the	distances	into	multiple	cores
5:	For	each	test	instance	sort	the	distances
6:	Send	indices	of	k nearest	neighbors	to	central	core
7:	Assign	most	frequent	class	label	from	nearest	neighbors	as	predicted	class



K‐NN on MultiCore CPU

Step 1: Split	D into	multiple	coresStep 2: Calculate	the	distance	between	each	di ∈ D and	each	xj ∈ XStep 3: Send	distances	to	central	coreStep 4: Split	the	distances	into	multiple	coresStep 5: For	each	test	instance	sort	the	distancesStep 6: Send	indices	of	k nearest	neighbors	to	central	coreStep 7: Assign	most	frequent	class	label	from	nearest	neighbors	as	
predicted	class	label



K‐NN MapReduce Pseudocode
Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Mapper:	Read	D	and	X	from	HDFS
2:	Compute	the	distance	between	each	di ∈ D and	each	xj ∈ X
3:	Mapper	Output:	Key‐value	pairs	with	key	as	test	instance	Id	and	value	as	
train	instance	ID	and	the	distance	between	them
4:	Shuffle	and	Sort:	Aggregate	for	each	key	(test	instance)
5:	Reducer:	Sort	the	distances	and	take	first	k	train	instances	as	nearest	
neighbors
6:	Reducer:	Take	majority	voting	of	class	labels	of	nearest	neighbors
7:	Reducer	Output:	Class	labels	of	test	instances



K‐NN on MapReduce

Step 1: Mapper:	Read	D	and	X	from	HDFSStep 2: Compute	the	distance	between	each	test	and	each	train	
instances
Step 3: Mapper	Output:	Key‐value	pairs	with	key	as	test	instance	Id	
and	value	as	train	instance	ID	and	the	distance	between	them
Step 4: Shuffle	and	Sort:	Aggregate	for	each	key	(test	instance)Step 5: Reducer:	Sort	the	distances	and	take	first	k	train	
instances	as	nearest	neighbors
Step 6: Reducer:	Take	majority	voting	of	class	labels	of	nearest	
neighbors

Step 7: Reducer	Output:	Class	labels	of	test	instances



K‐NN Spark Pseudocode
Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Read	X	as	RDDX and	D from	HDFS
2:	Broadcast	D to	all	the	worker	nodes
3:	Calculate	the	distance	between	each	point	in	RDDX and	D as	RDDdistance
4:	Find	the	indices	of	k smallest	distances	as	nearest	neighbours
5:	Assign	most	frequent	class	label	from	nearest	neighbours as	predicted	class	
label
6:	Write	predicted	class	labels	to	HDFS



K‐NN on Spark

Step 2: Broadcast	D to	all	the	worker	nodes
Step 3: Calculate	the	distance	between	each	point	in	RDDX and	D as	
RDDdistance
Step 4: Find	the	indices	of	k smallest	distances	as	nearest	neighbours
Step 5: Assign	most	frequent	class	label	from	nearest	neighbours as	
predicted	class	label
Step 6: Write	predicted	class	labels	to	HDFS



Amazon Web Services



Amazon EC2
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that 
provides resizable compute capacity in the cloud. 
Designed to make web-scale computing easier for developers.
Simple web service interface allows you to obtain and configure capacity 
with minimal friction.
Provides you with complete control of your computing resources and lets 
you run on Amazon’s proven computing environment. 
Reduces the time required to obtain and boot new server instances to 
minutes, allowing you to quickly scale capacity, both up and down, as your 
computing requirements change. 
Changes the economics of computing by allowing you to pay only for 
capacity that you actually use.
Provides developers the tools to build failure resilient applications and 
isolate themselves from common failure scenarios.



Benefits
Elastic Web-Scale Computing

Enables you to increase or decrease capacity within minutes.
You can commission thousands of server instances simultaneously. 
Applications can automatically scale itself up and down depending on its needs.

Completely Controlled
You have root access to each instance
You can stop your instance while retaining the data.
Instances can be rebooted remotely using web service APIs.
You also have access to console output of your instances.

Flexible Cloud Hosting Services
You have the choice of multiple instance types, operating systems, and software packages. 
It allows you to select a configuration of memory, CPU, instance storage, and the boot 
partition size that is optimal for your choice of operating system and application.

Reliable
The service runs within Amazon’s proven network infrastructure and data centers. 
The Amazon EC2 Service Level Agreement commitment is 99.95% availability for each 
Amazon EC2 Region.



Benefits
Secure

Amazon EC2 works in conjunction with Amazon VPC to provide security and robust networking 
functionality
Instances are located in a Virtual Private Cloud (VPC) with an IP range that you specify.
You decide which instances are exposed to the Internet and which remain private.
Security Groups and networks ACLs allow you to control inbound and outbound network 
access.
You can provision your EC2 resources as Dedicated Instances. Dedicated Instances are 
Amazon EC2 Instances that run on hardware dedicated to a single customer for additional 
isolation.

Inexpensive
Pay only for what is used, without up-front or long-term commitments
On-Demand Instances let you pay for compute capacity by the hour with no long-term 
commitments. 
Reserved Instances give you the option to make a low, one-time payment for each instance 
and in turn receive a significant discount on the hourly charge for that instance.
Spot Instances allow customers to bid on unused Amazon EC2 capacity and run those 
instances for as long as their bid exceeds the current Spot Price.

Easy to Start
Choosing preconfigured software on Amazon Machine Images (AMIs), you can quickly deploy 
softwares to EC2 via 1-Click launch or with the EC2 console.



Using EC2 Services
Instances are priced depending upon the configurations

Instance
Type

Usage Use cases Price range

T2 General
Purpose

Development environments, build servers, code 
repositories, low-traffic web applications, early product 
experiments, small databases. 

$0.013 - $0.520
per hour

M3 General 
Purpose

Small and mid-size databases, backend servers for SAP, 
Microsoft SharePoint

$0.070 - $0.560
per hour

C3 Compute 
Optimized

High performance front-end fleets, web-servers, on-
demand batch processing, distributed analytics, high 
performance science and engineering applications, ad 
serving, batch processing and distributed analytics.

$0.105 - $1.680
per hour

R3 Memory 
Optimized

High performance databases, distributed memory caches, 
in-memory analytics, genome assembly and analysis, 
larger deployments of SAP, Microsoft SharePoint, and 
other enterprise applications.

$0.175 - $2.800
per hour

G2 GPU Game streaming, video encoding, 3D application 
streaming, GPGPU, and other server-side graphics 
workloads.

$0.650 per hour

I2 Storage 
Optimized

NoSQL databases, scale out transactional databases, 
data warehousing and cluster file systems.

$0.853 - $6.820
per hour



EC2 Best Practices
Make sure you choose the correct instance type, depending upon your use case

Make sure you choose the correct OS and the appropriate amount of storage for 

your use case

For Development purposes, choose the configurations which are provided for 

free. AWS provides a free tier for 750 hours each month for some configurations

While using On-demand instances, make sure to stop the instances if not in use 

and restart them later as required

Terminate the instances which you won’t be needing anymore to avoid being 

charged.



Big Data Platform Instance 
Configurations for AWS



AWS GPU Instance
Type : g2.2xlarge (GPU)
Instances used: 1
Processor: Intel Xeon-E5-2670 (Sandy Bridge)
CPU cores: 8
Memory : 15 GiB
GPU: NVIDIA (Kepler GK104) with 1,536 CUDA cores and 4 Gb of 
video memory
Instance storage: 60GB SSD
Cost per hour: $0.65  



AWS Multicore Instance
Type : c3.4xlarge (Compute optimized)
Instances used: 1
Processor: Intel Xeon E5-2666 v3 (”Haswell”)
CPU cores: 16
Memory: 30 GiB
Instance storage: 320 GB SSD
Cost per hour: $0.84



AWS Hadoop Instances
Type : m3.large
Instances used: 5
Processor: Intel Xeon E5-2670 v2 (Ivy Bridge)
CPU cores: 2
Memory: 7.5 GiB
Instance storage: 32 GB SSD
Cost per hour: $0.65



AWS Spark Instances
Type : r3.large
Instances used: 4
Processor: Intel Xeon E5-2670 v2 (Ivy Bridge)
CPU cores: 2
Memory : 15 GiB
Instance storage: 32 GB SSD
Cost per hour: $0.7 



Comparison Result: K‐Means
Runtime Comparison of K-means algorithm on four big data 
platforms and naïve single core implementation for k=10 with data 
dimension varying from 30K to 130K.



Comparison Result: K‐Means
Runtime comparison of K-means algorithm on four big data 
platforms and single core machine varying number of clusters k with 
data dimension 70K.



Comparison Result: Scalability
Scalability test of the platforms with large data (1.3 million features, 
20K rows) having size 50.4 Gigabytes. Only Hadoop and Spark 
were able to process such big data. 



Comparison Result: K‐NN
Runtime comparison of K-NN algorithm on big data platforms. 

Vertical scaling platforms perform better than horizontal scaling 
platforms. Single core implementation takes the highest amount of 
time as expected. 



Comparison Summary

We observe vertical scaling platforms such as GPU and MultiCore CPU 
are faster than horizontal scaling platforms such as Hadoop and Spark.
We also observed Horizontal scaling methods are more scalable. For 
example vertical scaling platform GPU cannot scale with a data bigger 
than 90K features and MultiCore CPU cannot handle more than 70K 
features. Hadoop and Spark was able to process a data with 1.3 million 
features.
We find that GPU outperforms MultiCore CPU by spawning very high 
number of threads.
We observe that, for both iterative and non-iterative scenarios, Spark 
yields better timing than Hadoop. We see that for iterative scenarios (for 
e.g. K-means), the slowness of Hadoop is due to unavoidable file I/O 
operations in each iteration. 



Map‐Reduce Workflow for Classification

D1 D2 …… Dm

map() map() map()……

reduce()

User Program

Reduce task –
Generates the merged 
classifier and find its weight

Builds the final classifier from Reducer output

Map task –
Runs AdaBoost on its data and 
return the sorted list of weak 
classifiers

Indranil Palit and Chandan K. Reddy, "Scalable and Parallel Boosting with 
MapReduce", IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol.24, 
No.10, pp.1904-1916, October 2012.



AdaBoost.PL Algorithm

AdaBoost

h1(1) α1(1)

h1(2) α1(2) 

... …
h1(T) α1(T)

AdaBoost AdaBoost……

h2(1) α2(1)

h2(2) α2(2) 

... …
h2(T) α2(T)

hM(1)αM(1)

hM(2)αM(2) 

... …
hM(T)αM(T)

h1*(1)α1*(1)

h1*(2)α1*(2) 

... …
h1*(T) α1*(T)

h2*(1)α2*(1)

h2*(2)α2*(2) 

... …
h2*(T) α2*(T)

hM*(1) αM*(1)

hM*(2) αM*(2) 

... …
hM*(T) αM*(T)

……

D1 D2 …… Dm



Primary Advantages of Parallelization

Scalability: Less resource intensive than serial version, 
since we are distributing the workload across different 
machines rather than learning on the entire dataset on a 
single machine.

Speed: Runs significantly faster than serial version, since 
we are simultaneously learning from N data subsets 
rather than learning a single large data set.

Privacy Preserving: Preserves privacy by learning each 
data subset in a local node without sharing any of its data 
outside the node.



Speedup Performance

Speedup is defined as the ratio of the execution time on 
a single processor to the execution time for an identical 
data set on p processors.



Scaleup Performance
Scaleup is the ratio of the time taken on a single processor by the 
problem to the time taken on p processors when the problem size is 
scaled by p.

Study scaleup behavior by keeping the problem size per processor 
fixed while increasing the number of available processors.
For a fixed data set, speedup captures the decrease in runtime when 
we increase the number of available cores. Scaleup is designed to 
capture the scalability performance of the parallel algorithm to handle 
large data sets when more cores are available.



Distributed Privacy Preserving Model
Hospital 1 Hospital 2 Hospital 3 Hospital M

Model 1 Model 2 Model 3 Model M

Central Agent

Integrated Model

Hospital 1 Hospital 2 Hospital 3 Hospital M

. . .

. . .
Yan Li, Changxin Bai, and Chandan K. Reddy, "A Distributed Ensemble Approach for Mining 
Healthcare Data under Privacy Constraints", Information Sciences, Vol.330, pp.245-259, February 2016.



Linear Regression using Least Squares

Solution: Given m examples: (x1, y1), (x2, y2), …, (xm, ym), Matrix X will 
have with x1, …, xm as rows, and row vector Y=(y1, y2, …ym).  Then the 
solution is

Parallel computation:

•

•

Cut to 
m/num_processor
pieces

Develop a general and exact technique for parallel 
programming of a large class of ML algorithms for 
multicore processors

Goal:
Model: xy T
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Complexity with MapReduce

Chu, Cheng, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng, and 
Kunle Olukotun. "Map-reduce for machine learning on multicore“, Advances in neural 
information processing systems 19: 281, 2007.



Conclusion
Big Data is not about handling a particular challenge, 
rather it is a field in itself.
Big data can provide potentially revolutionary solutions to 
the problems where there are no answers yet.
It can directly impact various disciplines especially in the 
way the data is currently being handled in those 
disciplines.

Different platforms have different strengths and the choice 
of platforms can play a critical role in the eventual 
success of the application and/or algorithm used.
Algorithms for Big Data Analytics are still at their infancy.



Healthcare Data Analytics

Electronic Health Records
Biomedical Image Analysis 
Sensor Data 
Biomedical Signal Analysis
Genomic Data 
Clinical Text Mining
Biomedical Literature
Social Media Analytics
Clinical Prediction Models
Temporal Pattern Mining

Visual Analytics
Clinico-Genomic Data Integration
Information retrieval
Privacy-Preserving Data Sharing
Pervasive Healthcare
Fraud Detection
Pharmaceutical Data Analysis
Clinical Decision Support Systems 
Computer Aided Imaging Systems
Mobile Imaging

Covers recent advances in Healthcare analytics
Survey Chapters from prominent researchers

KDD 2013 Tutorial on Big Data Analytics on Healthcare. Slides available at 
http://dmkd.cs.wayne.edu/TUTORIAL/Healthcare/. Sample chapters on Clinical Prediction, Decision Support, 
and EHR are available at http://www.cs.wayne.edu/~reddy/
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Thank You
Questions and Comments

Feel free to email questions or suggestions to
reddy@cs.wayne.edu

http://www.cs.wayne.edu/~reddy/


