
Platforms and Algorithms
for Big Data Analytics

Chandan K. Reddy
Department of Computer Science

Wayne State University

http://www.cs.wayne.edu/~reddy/
http://dmkd.cs.wayne.edu/TUTORIAL/Bigdata/

What is Big Data?
A collection of large and complex data sets which are difficult
to process using common database management tools or
traditional data processing applications.

Big data is not just about size.
• Finds insights from complex,

noisy, heterogeneous,
streaming, longitudinal, and
voluminous data.

• It aims to answer questions
that were previously
unanswered.

The challenges include capture,
storage, search, sharing &
analysis.The four dimensions (V’s) of Big Data

BIG
DATA

Velocity

Veracity

Variety

Volume

Data Accumulation !!!
Data is being collected at rapid pace due to the
advancements in sensing technologies.

Storage has become extremely cheap and hence no one
wants to throw away the data. The assumption here is that
they will be using it in the future.

Estimates show that the amount of digital data accumulated
until 2010 has been gathered within the next two years. This
shows the growth in the digital world.

Analytics is still lagging behind compared to sensing and
storage developments.

Why Should YOU CARE ?
JOBS !!

- The U.S. could face a shortage by 2018 of 140,000 to
190,000 people with "deep analytical talent" and of 1.5
million people capable of analyzing data in ways that
enable business decisions. (McKinsey & Co)

- Big Data industry is worth more than $100 billion
- Growing at almost 10% a year (roughly twice as fast as

the software business)

Digital World is the future !!
- The world will become more and more digital and hence

big data is only going to get BIGGER !!
- This is an era of big data

Why we need more Powerful Platforms ?
The choice of hardware/software platform plays a
crucial role to achieve one’s required goals.
To analyze this voluminous and complex data, scaling
up is imminent.
In many applications, analysis tasks need to produce
results in real-time and/or for large volumes of data.
It is no longer possible to do real-time analysis on such
big datasets using a single machine running commodity
hardware.
Continuous research in this area has led to the
development of many different algorithms and big data
platforms.

THINGS TO THINK ABOUT !!!!

Application/Algorithm-level requirements…
How quickly do we need to get the results?
How big is the data to be processed?
Does the model building require several iterations or a single
iteration?

Systems/Platform-level requirements…
Will there be a need for more data processing capability in the
future?
Is the rate of data transfer critical for this application?
Is there a need for handling hardware failures within the
application?

Outline of this Tutorial
Introduction
Scaling
Horizontal Scaling Platforms

Peer to Peer
Hadoop
Spark

Vertical Scaling Platforms
High Performance Computing (HPC) Clusters
Multicore
Graphical Processing Unit (GPU)
Field Programmable Gate Array (FPGA)

Comparison of Different Platforms
Big Data Analytics and Amazon EC2 Clusters

Dilpreet Singh and Chandan K. Reddy,
"A Survey on Platforms for Big Data
Analytics", Journal of Big Data, Vol.2,
No.8, pp.1-20, October 2014.

Outline
Introduction
Scaling
Horizontal Scaling Platforms

Peer to Peer
Hadoop
Spark

Vertical Scaling Platforms
High Performance Computing (HPC) clusters
Multicore
Graphical Processing Unit (GPU)
Field Programmable Gate Array (FPGA)

Comparison of Different Platforms
Big Data Analytics and Amazon EC2 Clusters

Scaling
Scaling is the ability of the system to adapt to
increased demands in terms of processing
Two types of scaling :

Horizontal Scaling
Involves distributing work load across many
servers
Multiple machines are added together to
improve the processing capability
Involves multiple instances of an operating
system on different machines

Vertical Scaling
Involves installing more processors, more
memory and faster hardware typically within
a single server
Involves single instance of an operating
system

Scaling Advantages Drawbacks
Horizontal
Scaling

 Increases performance in
small steps as needed

 Financial investment to
upgrade is relatively less

 Can scale out the system
as much as needed

 Software has to handle all the data
distribution and parallel
processing complexities

 Limited number of software are
available that can take advantage
of horizontal scaling

Vertical
Scaling

Most of the software can
easily take advantage of
vertical scaling

 Easy to manage and
install hardware within a
single machine

 Requires substantial financial
investment

 System has to be more powerful
to handle future workloads and
initially the additional
performance goes to waste

 It is not possible to scale up
vertically after a certain limit

Horizontal vs Vertical Scaling

Dilpreet Singh and Chandan K. Reddy, "A Survey on Platforms for Big Data Analytics",
Journal of Big Data, Vol.2, No.8, pp.1-20, October 2014.

Horizontal Scaling Platforms
Some prominent horizontal scaling platforms:

Peer to Peer Networks

Apache Hadoop

Apache Spark

Vertical Scaling Platforms
Most prominent vertical scaling platforms:

High Performance Computing Clusters (HPC)

Multicore Processors

Graphics Processing Unit (GPU)

Field Programmable Gate Arrays (FPGA)

Outline
Introduction
Scaling
Horizontal Scaling Platforms

Peer to Peer
Hadoop
Spark

Vertical Scaling Platforms
High Performance Computing (HPC) clusters
Multicore
Graphical Processing Unit (GPU)
Field Programmable Gate Array (FPGA)

Comparison of Different Platforms
Big Data Analytics on Amazon EC2 Clusters

Peer to Peer Networks

Typically involves millions of machines connected in a network
Decentralized and distributed network architecture
Message Passing Interface (MPI) is the communication scheme
used
Each node capable of storing and processing data
Scale is practically unlimited (can be millions of nodes)

Main Drawbacks
Communication is the major bottleneck
Broadcasting messages is cheaper but
aggregation of results/data is costly
Poor Fault tolerance mechanism

Apache Hadoop

Open source framework for storing and processing large datasets
High fault tolerance and designed to be used with commodity hardware

Consists of two important components:

HDFS (Hadoop Distributed File System)
Used to store data across cluster of commodity machines while
providing high availability and fault tolerance

Hadoop YARN
Resource management layer
Schedules jobs across the cluster

Hadoop Architecture

Hadoop MapReduce

Basic data processing scheme used in Hadoop

Includes breaking the entire scheme into mappers and reducers
Mappers read data from HDFS, process it and generate some
intermediate results
Reducers aggregate the intermediate results to generate the final
output and write it to the HDFS

Typical Hadoop job involves running several mappers and reducers
across the cluster

Divide and Conquer Strategy

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

MapReduce Wrappers
Provide better control over MapReduce code
Aid in code development
Popular map reduce wrappers include:

Apache Pig
SQL like environment developed at Yahoo
Used by many organizations including Twitter, AOL, LinkedIn
and more

Hive
Developed by Facebook

Both these wrappers are intended to make code development easier
without having to deal with the complexities of MapReduce coding

Spark

Next generation paradigm for big data processing
Developed by researchers at University of California, Berkeley
Used as an alternative to Hadoop
Designed to overcome disk I/O and improve performance of earlier
systems
Allows data to be cached in memory eliminating the disk overhead
of earlier systems
Supports Java, Scala and Python
Can yield upto 100x faster than Hadoop MapReduce

Outline
Introduction
Scaling
Horizontal Scaling Platforms

Peer to Peer
Hadoop
Spark

Vertical Scaling Platforms
High Performance Computing (HPC) clusters
Multicore
Graphical Processing Unit (GPU)
Field Programmable Gate Array (FPGA)

Comparison of Different Platforms
Big Data Analytics and Amazon EC2 Clusters

High Performance Computing (HPC) Clusters
Also known as Blades or supercomputers with thousands of processing
cores
Can have different variety of disk organization and communication
mechanisms
Contains well-built powerful hardware optimized for speed and
throughput
Fault tolerance is not critical because of top quality high-end hardware
Not as scalable as Hadoop or Spark but can handle terabytes of data
High initial cost of deployment
Cost of scaling up is high
MPI is typically the communication scheme used

Multicore CPU

One machine having dozens of processing cores
Number of cores per chip and number of operations a core can
perform has increased significantly
Newer breed of motherboards allow multiple CPUs within a single
machine
Parallelism achieved through multithreading
Task has to be broken into threads

Graphics Processing Unit

Specialized hardware with massively parallel architecture
Recent developments in GPU hardware and programming
frameworks has given rise to GPGPU (general purpose computing
on graphics processing units)
Has large number of processing cores (typically around 2500+
currently)
Has it’s own DDR5 memory which is many times faster than typical
DDR3 system memory
Nvidia CUDA is the programming framework to
which simplifies GPU programming
Using CUDA, one doesn’t have to deal with
low-level hardware details

CPU vs GPU Architecture

CPU vs GPU
Development in CPU is rather slow as compared with GPU
Number of cores in CPU is still in double digits while a GPU can
have 2500+ cores
Processing power of a current generation CPU is close to 10
Gflops while GPU can have close to 1000 Gflops of computing
power
CPU primarily relies on system memory which is slower than the
GPU memory
While GPU is an appealing option for parallel computing, the
number of softwares and applications that take advantage of the
GPU is rather limited
CPU has been around for many years and huge number of
software are available which use multicore CPUs

Field Programmable Gate Arrays (FPGA)

Highly specialized hardware units
Custom built for specific applications
Can be highly optimized for speed
Due to customized hardware, development cost is much higher
Coding has to be done in HDL (Hardware Description Language)
with low level knowledge of hardware
Greater algorithm development cost
Suited for only certain set of applications

Outline
Introduction
Scaling
Horizontal Scaling Platforms

Peer to Peer
Hadoop
Spark

Vertical Scaling Platforms
High Performance Computing (HPC) clusters
Multicore
Graphical Processing Unit (GPU)
Field Programmable Gate Array (FPGA)

Comparison of Different Platforms
Big Data Analytics and Amazon EC2 Clusters

Comparison of Different Platforms
Following characteristics are used for comparison:

System/Platform dependent
Scalability
Data I/O performance
Fault tolerance

Application/Algorithm dependent
Real-time processing
Data size support
Support for iterative tasks

Comparison is done using the star ratings
5 stars correspond to highest possible rating
1 star is the lowest possible rating

Comparison of Big Data Platforms
Platforms

(Communication
Scheme)

System/Platform	 Application/Algorithm	

Scalability Data	I/O
Performance

Fault
Tolerance

Real‐Time
Processing

Data	Size
Supported

Iterative	
Task	Support

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

Dilpreet Singh and Chandan K. Reddy, "A Survey on Platforms for Big Data Analytics",
Journal of Big Data, Vol.2, No.8, pp.1-20, October 2014.

Scalability

Platforms
(Communication

Scheme)

System/Platform	

Scalability

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

Ability of the system to handle growing amount of work load in a capable manner or to be
enlarged to accommodate that growth.
It is the ability to add more hardware to improve the performance and capacity of the system

Highly scalable and it is relatively easy to add
machines and extend them to any extent

Can only scale up to a certain extent

Once deployed, scaling up becomes costly

Limited number of GPUs and CPUs in a single
machine

Data I/O Performance

Platforms
(Communication

Scheme)

System/Platform	

Data I/O

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The rate at which the data is transferred to/from a peripheral device. In the context of big
data analytics, this can be viewed as the rate at which the data is read and written to the
memory (or disk) or the data transfer rate between the nodes in a cluster.

Disk access and slow network communication

Slower disk access

Uses system memory; minimizes disk access

Uses system memory; usually within a single
machine

Use DDR5 memory which is faster than
system memory

Fault Tolerance

Platforms
(Communication

Scheme)

System/Platform	

Fault	Tolerance

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The characteristic of a system to continue operating properly in the event of a failure of
one or more components

Have no fault tolerance mechanism and use of
commodity hardware makes them highly
susceptible to system failures

Have in-built efficient fault tolerance mechanism

Although these platforms do not have state-of-
the-art fault tolerance mechanisms, these
have most reliable and well-built hardware
which makes hardware failure an extremely
rare event

Real‐Time Processing

Platforms
(Communication

Scheme)

System/Platform	

Real‐Time

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The system’s ability to process the data and produce the results strictly within certain
time constraints

Slow for real-time data processing because of
network overhead and commodity hardware

Slow in terms of data I/O and do not contain
optimized and powerful hardware

Have reasonable real-time processing
capabilities. They have many processing
cores and high memory bandwidth

Well suited for real-time processing with
thousands of processing cores and very high
speed memory

Data Size Supported

Platforms
(Communication

Scheme)

System/Platform	

Data	Size

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

The size of the dataset that a system can process and handle efficiently

Can handle Petabytes of data and can scale out
to unlimited number of nodes

Can handle around several Terabytes of data

Not suited for large-scale datasets. Multicore
relies on system memory which can only be up
to few hundred Gigabytes. Similarly, GPU has
limited on-board memory.

Iterative Task Support

Platforms
(Communication

Scheme)

System/Platform	

Iterative	Tasks

Peer	to	Peer
(TCP/IP)

Virtual	Clusters
(MapRedce/MPI)

Virtual	Clusters
(Spark)

HPC	Clusters
(MPI/Mapreduce)

Multicore
(Multithreading)

GPU
(CUDA)

FPGA
(HDL)

This is the ability of a system to efficiently support iterative tasks. Since many of the data
analysis tasks and algorithms are iterative in nature, it is an important metric to compare
different platforms, especially in the context of big data analytics

P2P has huge network communication
overhead; MapReduce has disk I/O overhead

Reduces the disk I/O overhead

All these other platforms are suited for iterative
processing. All the iterative algorithms cannot
be easily modified for each of these platforms

Outline
Introduction
Scaling
Horizontal Scaling Platforms

Peer to Peer
Hadoop
Spark

Vertical Scaling Platforms
Graphical Processing Unit (GPU)
Multicore
High Performance Computing (HPC) clusters
Field Programmable Gate Array (FPGA)

Comparison of Different Platforms
Big Data Analytics and Amazon EC2 Clusters

K‐Means and K‐NN Algorithms

Implementations Available at

http://dmkd.cs.wayne.edu/TUTORIAL/Bigdata/

K‐MEANS CLUSTERING ALGORITHM

Basic K‐Means Algorithm

Basic K‐Means Clustering Algorithm

Starts by initializing the cluster centroids
Each data point is associated with the nearest centroid in the step 2
In Step 3, centroids are recalculated
Step 2 and Step 3 are repeated until the centroids converge or till predefined
number of iterations

Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Initialize	random	k	training	data	points	as	centroids
2:	Do
3:					Compute	the	distance	between	each	point	in	D	and	each	point	in	centroids
4:					Sort	distances	for	each	data	point
5:					Associate	data	points	to	the	nearest	centroid
6:					Recompute the	centroids
7:	While	No	changes	in	cluster	membership

Data Clustering: Algorithms & Applications

Feature Selection for Clustering
Probabilistic Models for Clustering
Partitional/Hierarchical Clustering
Density Based Clustering
Grid-based Clustering
NMF for Clustering
Spectral Clustering
Clustering High Dimensional Data
Data Stream Clustering
Big Data Clustering
Clustering Categorical Data

Document Clustering
Clustering Multimedia Data
Time Series Data Clustering
Clustering Biological Data
Network Clustering
Uncertain Data Clustering
Visual & Interactive Clustering
Semi-Supervised Clustering
Alternative Clustering
Cluster Ensembles
Clustering Validation

Covers recent advances in Data Clustering
Survey Chapters from prominent researchers

K‐Means Clustering on Different Platforms

Most popular and widely used clustering algorithm
Contains critical elements that can demonstrate the ability
of various platforms
Characteristics include:

Iterative nature of the algorithm wherein the current
iteration results are needed before proceeding to the
next iteration
Compute-intensive task of calculating the centroids
from a set of data points
Aggregation of the local results to obtain a global
solution when the algorithm is parallelized

K‐Means GPU Pseudocode
Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Initialize	first k	data	points	as	centroids
2:	For	iteration =	1	to	MaxIterations do
3:					Copy	D	and	centroids	to	GPU	shared	memory.	Split	D	into	threads
4:					Kernel	process:	Compute	distance	between	point	in	D	and	each	point	in	
centroids
5:					Send	the	distances	to	CPU
6:					CPU	process:	Sort	distances	for	each	data	point
7:					CPU	process:	Associate	each	data	point	to	closest	centroid
8:					CPU	process:	Recompute the	centroids
9:	end	For	

K‐Means on GPU

Step 1: Initialize	first k	data	points	as	centroidsStep 3: Copy	D	and	centroids	to	GPU	shared	memory.	Split	D	into	
threads
Step 4: Kernel	process:	Compute	distance	between	point	in	D	
and	each	point	in	centroids
Step 5: Send	the	distances	to	CPUStep 6: CPU	process:	Sort	distances	for	each	data	point
Step 7: CPU	process:	Associate	each	data	point	to	closest	centroid
Step 8: CPU	process:	Recompute the	centroids

K‐Means Multicore CPU Pseudocode
Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Initialize	first k	data	points	as	centroids
2:	For	iteration =	1	to	MaxIterations do
3:					Split	D	into	multiple	cores
4:					Compute	distance	between	each	point	in	D	and	each	point	in	centroids
5:					Send	distances	to	central	core
6:					Sort	distances	for	each	data	point
7:					Associate	each	data	point	in	D	with	the	nearest	centroid
8:					Recompute the	centroids
9:	end	For	

K‐Means on Multicore CPU

Step 1: Initialize	first k	data	points	as	centroidsStep 3: Split	D	into	multiple	coresStep 4: Compute	distance	between	each	point	in	D	and	
each	point	in	centroids
Step 5: Send	distances	to	central	coreStep 6: Sort	distances	for	each	data	point
Step 7: Associate	each	data	point	in	D	with	the	nearest	centroid
Step 8: Recompute the	centroids

K‐Means Mapreduce Pseudocode
Input:	Dataset	D,	centroids
Output: Data	points	with	cluster	memberships
1:	For	iteration =	1	to	MaxIterations do
2:					Mapper:	Read	D and	centroids from	HDFS
3:					Mapper:	Compute	the	distance	between	each	point	in	D and	each	point	in	centroids
4:					Mapper	Output:	Key‐value	pairs	with	key	as	centroid	id	and	value	as	data	point	id	
and	distance	between	them
5:					Shuffle	and	Sort:	Aggregate	for	each	key	(centroid)
6:					Reducer:	Sort	distances	and	associate	data	points	to	the	nearest	centroid
7:					Reducer:	Recompute the	centroids
8:					Reducer	Output:	Write	centroids to	HDFS
9:	end	For	

Mapper reads the data and centroid from the disk
Mappers assign data instances to clusters and compute new local centroids and cluster
sizes
Reducers aggregate the local centroids and write the data to the disk for the next iteration
This shows the disk I/O bottle neck for MapReduce in case of iterative tasks

K‐Means on MapReduce

Step 2: Mapper:	Read	D and	centroids from	HDFSStep 3: Mapper:	Compute	the	distance	between	each	point	in	D and	
each	point	in	centroids
Step 4: Mapper	Output:	Key‐value	pairs	with	key	as	centroid	id	and	
value	as	data	point	id	and	distance	between	them
Step 5: Aggregate	for	each	key	(centroid)Step 6: Reducer:	Sort	distances	and	associate	data	points	to	the	
nearest	centroid
Step 7:		Reducer:	Recompute the	centroids

Step 8: Reducer	Output:	Write	centroids to	HDFS

K‐Means Spark Pseudocode
Input:	Dataset	D,	Number	of	clusters	k
Output: Data	points	with	cluster	memberships
1:	Read	D	from	HDFS	as	RDD
2:	Initialize	first	k	data	points	as	centroids
3:	For	iteration =	1	to	MaxIterations do
4:					Compute	distance	between	each	point	in	D	and	each	point	in	centroids
5:					For	each	data	point	group	distances
6:					Associate	data	points	to	their	closest	centroid
7:					Recompute the	centroids
8:	end	For	

K-Means implementation on Spark is similar to K-Means
implementation on MapReduce
Only difference being instead of writing the global centroids to the
disk, they are written to the system memory instead
Data points are also loaded in the system memory for faster access

K‐Means on Spark

Step 1: Read	D	from	HDFS	as	RDD
Step 2: Initialize	first	k	data	points	as	centroids
Step 4: Compute	distance	between	each	point	in	D	and	each	point	in	
centroids
Step 5: For	each	data	point	group	distances
Step 6: Associate	data	points	to	their	closest	centroid	
Step 7: Recompute the	centroids

K‐NEAREST NEIGHBOR ALGORITHM

Basic K‐NN Algorithm

Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Compute	the	distance	between	each	di ∈ D and	each	xj ∈ X
2:	For	each	test	instance	sort	the	distances
3:	Take	first	k train	data	points	as	nearest	neighbors
4:	Assign	the	most	frequent	class	label	from	nearest	neighbors	as	predicted	
class	label

K‐NN GPU Pseudocode

Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Copy	D	and	X	to	the	GPU	shared	memory.	Split	D	into	threads
2:	Kernel	1:	Compute	the	distance	between	each	di ∈ D and	each	xj ∈ X
3:	Send	the	distances	to	CPU
4:	Copy	distances	to	GPU	shared	memory,	split	into	threads
5:	Kernel	2:	Sort	distances	for	each	test	instance
6:	Send	indices	of	k nearest	neighbors	to	CPU
7:	CPU	Process:	Assign	most	frequent	class	label	from	nearest	neighbors	as	
predicted	class	label

K‐NN on GPU

Step 1: Copy	D	and	X	to	the	GPU	shared	memory.	Split	D	into	threadsStep 2: Kernel	1:	Compute	the	distance	between	each	di ∈ D and	each	
xj ∈ X
Step 3: Send	the	distances	to	CPUStep 4: Copy	distances	to	GPU	shared	memory,	split	into	threadsStep 5: Kernel	2:	Sort	distances	for	each	test	instanceStep 6: Send	indices	of	k nearest	neighbors	to	CPUStep 7: CPU	Process:	Assign	most	frequent	class	label	from	nearest	
neighbors	as	predicted	class	label

K‐NN MultiCore CPU Pseudocode

Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Split	D into	multiple	cores
2:	Calculate	the	distance	between	each	di ∈ D and	each	xj ∈ X
3:	Send	distances	to	central	core
4:	Split	the	distances	into	multiple	cores
5:	For	each	test	instance	sort	the	distances
6:	Send	indices	of	k nearest	neighbors	to	central	core
7:	Assign	most	frequent	class	label	from	nearest	neighbors	as	predicted	class

K‐NN on MultiCore CPU

Step 1: Split	D into	multiple	coresStep 2: Calculate	the	distance	between	each	di ∈ D and	each	xj ∈ XStep 3: Send	distances	to	central	coreStep 4: Split	the	distances	into	multiple	coresStep 5: For	each	test	instance	sort	the	distancesStep 6: Send	indices	of	k nearest	neighbors	to	central	coreStep 7: Assign	most	frequent	class	label	from	nearest	neighbors	as	
predicted	class	label

K‐NN MapReduce Pseudocode
Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Mapper:	Read	D	and	X	from	HDFS
2:	Compute	the	distance	between	each	di ∈ D and	each	xj ∈ X
3:	Mapper	Output:	Key‐value	pairs	with	key	as	test	instance	Id	and	value	as	
train	instance	ID	and	the	distance	between	them
4:	Shuffle	and	Sort:	Aggregate	for	each	key	(test	instance)
5:	Reducer:	Sort	the	distances	and	take	first	k	train	instances	as	nearest	
neighbors
6:	Reducer:	Take	majority	voting	of	class	labels	of	nearest	neighbors
7:	Reducer	Output:	Class	labels	of	test	instances

K‐NN on MapReduce

Step 1: Mapper:	Read	D	and	X	from	HDFSStep 2: Compute	the	distance	between	each	test	and	each	train	
instances
Step 3: Mapper	Output:	Key‐value	pairs	with	key	as	test	instance	Id	
and	value	as	train	instance	ID	and	the	distance	between	them
Step 4: Shuffle	and	Sort:	Aggregate	for	each	key	(test	instance)Step 5: Reducer:	Sort	the	distances	and	take	first	k	train	
instances	as	nearest	neighbors
Step 6: Reducer:	Take	majority	voting	of	class	labels	of	nearest	
neighbors

Step 7: Reducer	Output:	Class	labels	of	test	instances

K‐NN Spark Pseudocode
Input:	Train	Data	D,	Test	Data	X,	Number	of	nearest	neighbors	k
Output: Predicted	class	labels	of	X
1:	Read	X	as	RDDX and	D from	HDFS
2:	Broadcast	D to	all	the	worker	nodes
3:	Calculate	the	distance	between	each	point	in	RDDX and	D as	RDDdistance
4:	Find	the	indices	of	k smallest	distances	as	nearest	neighbours
5:	Assign	most	frequent	class	label	from	nearest	neighbours as	predicted	class	
label
6:	Write	predicted	class	labels	to	HDFS

K‐NN on Spark

Step 2: Broadcast	D to	all	the	worker	nodes
Step 3: Calculate	the	distance	between	each	point	in	RDDX and	D as	
RDDdistance
Step 4: Find	the	indices	of	k smallest	distances	as	nearest	neighbours
Step 5: Assign	most	frequent	class	label	from	nearest	neighbours as	
predicted	class	label
Step 6: Write	predicted	class	labels	to	HDFS

Amazon Web Services

Amazon EC2
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable compute capacity in the cloud.
Designed to make web-scale computing easier for developers.
Simple web service interface allows you to obtain and configure capacity
with minimal friction.
Provides you with complete control of your computing resources and lets
you run on Amazon’s proven computing environment.
Reduces the time required to obtain and boot new server instances to
minutes, allowing you to quickly scale capacity, both up and down, as your
computing requirements change.
Changes the economics of computing by allowing you to pay only for
capacity that you actually use.
Provides developers the tools to build failure resilient applications and
isolate themselves from common failure scenarios.

Benefits
Elastic Web-Scale Computing

Enables you to increase or decrease capacity within minutes.
You can commission thousands of server instances simultaneously.
Applications can automatically scale itself up and down depending on its needs.

Completely Controlled
You have root access to each instance
You can stop your instance while retaining the data.
Instances can be rebooted remotely using web service APIs.
You also have access to console output of your instances.

Flexible Cloud Hosting Services
You have the choice of multiple instance types, operating systems, and software packages.
It allows you to select a configuration of memory, CPU, instance storage, and the boot
partition size that is optimal for your choice of operating system and application.

Reliable
The service runs within Amazon’s proven network infrastructure and data centers.
The Amazon EC2 Service Level Agreement commitment is 99.95% availability for each
Amazon EC2 Region.

Benefits
Secure

Amazon EC2 works in conjunction with Amazon VPC to provide security and robust networking
functionality
Instances are located in a Virtual Private Cloud (VPC) with an IP range that you specify.
You decide which instances are exposed to the Internet and which remain private.
Security Groups and networks ACLs allow you to control inbound and outbound network
access.
You can provision your EC2 resources as Dedicated Instances. Dedicated Instances are
Amazon EC2 Instances that run on hardware dedicated to a single customer for additional
isolation.

Inexpensive
Pay only for what is used, without up-front or long-term commitments
On-Demand Instances let you pay for compute capacity by the hour with no long-term
commitments.
Reserved Instances give you the option to make a low, one-time payment for each instance
and in turn receive a significant discount on the hourly charge for that instance.
Spot Instances allow customers to bid on unused Amazon EC2 capacity and run those
instances for as long as their bid exceeds the current Spot Price.

Easy to Start
Choosing preconfigured software on Amazon Machine Images (AMIs), you can quickly deploy
softwares to EC2 via 1-Click launch or with the EC2 console.

Using EC2 Services
Instances are priced depending upon the configurations

Instance
Type

Usage Use cases Price range

T2 General
Purpose

Development environments, build servers, code
repositories, low-traffic web applications, early product
experiments, small databases.

$0.013 - $0.520
per hour

M3 General
Purpose

Small and mid-size databases, backend servers for SAP,
Microsoft SharePoint

$0.070 - $0.560
per hour

C3 Compute
Optimized

High performance front-end fleets, web-servers, on-
demand batch processing, distributed analytics, high
performance science and engineering applications, ad
serving, batch processing and distributed analytics.

$0.105 - $1.680
per hour

R3 Memory
Optimized

High performance databases, distributed memory caches,
in-memory analytics, genome assembly and analysis,
larger deployments of SAP, Microsoft SharePoint, and
other enterprise applications.

$0.175 - $2.800
per hour

G2 GPU Game streaming, video encoding, 3D application
streaming, GPGPU, and other server-side graphics
workloads.

$0.650 per hour

I2 Storage
Optimized

NoSQL databases, scale out transactional databases,
data warehousing and cluster file systems.

$0.853 - $6.820
per hour

EC2 Best Practices
Make sure you choose the correct instance type, depending upon your use case

Make sure you choose the correct OS and the appropriate amount of storage for

your use case

For Development purposes, choose the configurations which are provided for

free. AWS provides a free tier for 750 hours each month for some configurations

While using On-demand instances, make sure to stop the instances if not in use

and restart them later as required

Terminate the instances which you won’t be needing anymore to avoid being

charged.

Big Data Platform Instance
Configurations for AWS

AWS GPU Instance
Type : g2.2xlarge (GPU)
Instances used: 1
Processor: Intel Xeon-E5-2670 (Sandy Bridge)
CPU cores: 8
Memory : 15 GiB
GPU: NVIDIA (Kepler GK104) with 1,536 CUDA cores and 4 Gb of
video memory
Instance storage: 60GB SSD
Cost per hour: $0.65

AWS Multicore Instance
Type : c3.4xlarge (Compute optimized)
Instances used: 1
Processor: Intel Xeon E5-2666 v3 (”Haswell”)
CPU cores: 16
Memory: 30 GiB
Instance storage: 320 GB SSD
Cost per hour: $0.84

AWS Hadoop Instances
Type : m3.large
Instances used: 5
Processor: Intel Xeon E5-2670 v2 (Ivy Bridge)
CPU cores: 2
Memory: 7.5 GiB
Instance storage: 32 GB SSD
Cost per hour: $0.65

AWS Spark Instances
Type : r3.large
Instances used: 4
Processor: Intel Xeon E5-2670 v2 (Ivy Bridge)
CPU cores: 2
Memory : 15 GiB
Instance storage: 32 GB SSD
Cost per hour: $0.7

Comparison Result: K‐Means
Runtime Comparison of K-means algorithm on four big data
platforms and naïve single core implementation for k=10 with data
dimension varying from 30K to 130K.

Comparison Result: K‐Means
Runtime comparison of K-means algorithm on four big data
platforms and single core machine varying number of clusters k with
data dimension 70K.

Comparison Result: Scalability
Scalability test of the platforms with large data (1.3 million features,
20K rows) having size 50.4 Gigabytes. Only Hadoop and Spark
were able to process such big data.

Comparison Result: K‐NN
Runtime comparison of K-NN algorithm on big data platforms.

Vertical scaling platforms perform better than horizontal scaling
platforms. Single core implementation takes the highest amount of
time as expected.

Comparison Summary

We observe vertical scaling platforms such as GPU and MultiCore CPU
are faster than horizontal scaling platforms such as Hadoop and Spark.
We also observed Horizontal scaling methods are more scalable. For
example vertical scaling platform GPU cannot scale with a data bigger
than 90K features and MultiCore CPU cannot handle more than 70K
features. Hadoop and Spark was able to process a data with 1.3 million
features.
We find that GPU outperforms MultiCore CPU by spawning very high
number of threads.
We observe that, for both iterative and non-iterative scenarios, Spark
yields better timing than Hadoop. We see that for iterative scenarios (for
e.g. K-means), the slowness of Hadoop is due to unavoidable file I/O
operations in each iteration.

Map‐Reduce Workflow for Classification

D1 D2 …… Dm

map() map() map()……

reduce()

User Program

Reduce task –
Generates the merged
classifier and find its weight

Builds the final classifier from Reducer output

Map task –
Runs AdaBoost on its data and
return the sorted list of weak
classifiers

Indranil Palit and Chandan K. Reddy, "Scalable and Parallel Boosting with
MapReduce", IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol.24,
No.10, pp.1904-1916, October 2012.

AdaBoost.PL Algorithm

AdaBoost

h1(1) α1(1)

h1(2) α1(2)

... …
h1(T) α1(T)

AdaBoost AdaBoost……

h2(1) α2(1)

h2(2) α2(2)

... …
h2(T) α2(T)

hM(1)αM(1)

hM(2)αM(2)

... …
hM(T)αM(T)

h1*(1)α1*(1)

h1*(2)α1*(2)

... …
h1*(T) α1*(T)

h2*(1)α2*(1)

h2*(2)α2*(2)

... …
h2*(T) α2*(T)

hM*(1) αM*(1)

hM*(2) αM*(2)

... …
hM*(T) αM*(T)

……

D1 D2 …… Dm

Primary Advantages of Parallelization

Scalability: Less resource intensive than serial version,
since we are distributing the workload across different
machines rather than learning on the entire dataset on a
single machine.

Speed: Runs significantly faster than serial version, since
we are simultaneously learning from N data subsets
rather than learning a single large data set.

Privacy Preserving: Preserves privacy by learning each
data subset in a local node without sharing any of its data
outside the node.

Speedup Performance

Speedup is defined as the ratio of the execution time on
a single processor to the execution time for an identical
data set on p processors.

Scaleup Performance
Scaleup is the ratio of the time taken on a single processor by the
problem to the time taken on p processors when the problem size is
scaled by p.

Study scaleup behavior by keeping the problem size per processor
fixed while increasing the number of available processors.
For a fixed data set, speedup captures the decrease in runtime when
we increase the number of available cores. Scaleup is designed to
capture the scalability performance of the parallel algorithm to handle
large data sets when more cores are available.

Distributed Privacy Preserving Model
Hospital 1 Hospital 2 Hospital 3 Hospital M

Model 1 Model 2 Model 3 Model M

Central Agent

Integrated Model

Hospital 1 Hospital 2 Hospital 3 Hospital M

. . .

. . .
Yan Li, Changxin Bai, and Chandan K. Reddy, "A Distributed Ensemble Approach for Mining
Healthcare Data under Privacy Constraints", Information Sciences, Vol.330, pp.245-259, February 2016.

Linear Regression using Least Squares

Solution: Given m examples: (x1, y1), (x2, y2), …, (xm, ym), Matrix X will
have with x1, …, xm as rows, and row vector Y=(y1, y2, …ym). Then the
solution is

Parallel computation:

•

•

Cut to
m/num_processor
pieces

Develop a general and exact technique for parallel
programming of a large class of ML algorithms for
multicore processors

Goal:
Model: xy T

 2
1

min

m

i ii
T yx

 yXXX TT 1

XXA T

m

i
T
ii xxA

1

yXb T

m

i ii yxb
1

Complexity with MapReduce

Chu, Cheng, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng, and
Kunle Olukotun. "Map-reduce for machine learning on multicore“, Advances in neural
information processing systems 19: 281, 2007.

Conclusion
Big Data is not about handling a particular challenge,
rather it is a field in itself.
Big data can provide potentially revolutionary solutions to
the problems where there are no answers yet.
It can directly impact various disciplines especially in the
way the data is currently being handled in those
disciplines.

Different platforms have different strengths and the choice
of platforms can play a critical role in the eventual
success of the application and/or algorithm used.
Algorithms for Big Data Analytics are still at their infancy.

Healthcare Data Analytics

Electronic Health Records
Biomedical Image Analysis
Sensor Data
Biomedical Signal Analysis
Genomic Data
Clinical Text Mining
Biomedical Literature
Social Media Analytics
Clinical Prediction Models
Temporal Pattern Mining

Visual Analytics
Clinico-Genomic Data Integration
Information retrieval
Privacy-Preserving Data Sharing
Pervasive Healthcare
Fraud Detection
Pharmaceutical Data Analysis
Clinical Decision Support Systems
Computer Aided Imaging Systems
Mobile Imaging

Covers recent advances in Healthcare analytics
Survey Chapters from prominent researchers

KDD 2013 Tutorial on Big Data Analytics on Healthcare. Slides available at
http://dmkd.cs.wayne.edu/TUTORIAL/Healthcare/. Sample chapters on Clinical Prediction, Decision Support,
and EHR are available at http://www.cs.wayne.edu/~reddy/

Acknowledgements

Funding Agencies
National Science Foundation
National Institutes of Health
Department of Transportation
Blue Cross Blue Shield of Michigan

Graduate Students
Dilpreet Singh
Rajiur Rahman
Vineeth Rakesh

Thank You
Questions and Comments

Feel free to email questions or suggestions to
reddy@cs.wayne.edu

http://www.cs.wayne.edu/~reddy/

