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ABSTRACT
The main goal of the motif finding problem is to detect novel,
over-represented unknown signals in a set of sequences (for
eg. transcription factor binding sites in a genome). Most
widely used algorithms for finding motifs obtain a generative
probabilistic representation of these over-represented signals
and try to discover profiles that maximize the information
content score. Although these profiles form a very power-
ful representation of the signals, the major difficulty arises
from the fact that the best motif corresponds to the global
maximum of a non-convex continuous function. Popular al-
gorithms like Expectation Maximization (EM) and Gibbs
sampling tend to be very sensitive to the initial guesses and
are known to converge to the nearest local maximum very
quickly. In order to improve the quality of the results, EM
is used with multiple random starts or any other powerful
stochastic global methods that might yield promising initial
guesses (like projection algorithms). Global methods do not
necessarily give initial guesses in the convergence region of
the best local maximum but rather suggest that a promis-
ing solution is in the neighborhood region. In this paper, we
introduce a novel optimization framework that searches the
neighborhood regions of the initial alignments in a system-
atic manner to explore the multiple local optimal solutions.
This effective search is achieved by transforming the origi-
nal optimization problem into its corresponding dynamical
system and estimating the practical stability boundary of
the local maximum. Our results show that the popularly
used EM algorithm often converges to sub-optimal solutions
which can be significantly improved by the proposed neigh-
borhood profile search. Based on experiments using both
synthetic and real datasets, our method demonstrates sig-
nificant improvements in the information content scores of
the probabilistic models. The proposed method also gives
the flexibility in using different local solvers and global meth-
ods that work well for some specific datasets.
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1. INTRODUCTION
Recent developments in DNA sequencing have allowed biol-
ogists to obtain complete genomes for several species. How-
ever, knowing the sequence does not imply the understand-
ing of how these genes interact and regulate one another
within the genome. Many transcription factor binding sites
are usually highly conserved throughout the sequences and
discovering the location of such binding sites plays an im-
portant role in the inference of the gene interaction and gene
regulation. A motif is a sequence of DNA which manifests it-
self repetitively throughout genomic sequences. The length
of the motif in each occurrence may not be the same as
all of the other occurrences, although in general the occur-
rences must have roughly the same length. The motif chal-
lenge problem [19] that is being considered in this paper is
described as follows: Given N sequences with ti being the
length of the ith sequence, the goal of the motif finding prob-
lem is to locate all occurrences of the l-length motif which is
within a distance of d mutations in each of the t sequences
(see fig. 1). More details about the complexity of the motif
finding problem is given in [18]. A detailed assessment of dif-
ferent motif finding algorithms has been published recently
in [26].

Figure 1: Synthetic DNA sequences containing some in-
stance of the pattern ‘CCGATTACCGA’ with a maximum
number of 2 mutations. The motifs in each sequence are
highlighted in the box. We have a (11,2) motif where 11 is
the length of the motif and 2 is the number of mutations
allowed.

Although there are several variations of the motif finding
algorithms, the problem discussed in this paper is defined
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as follows: without any previous knowledge about the con-
sensus pattern, discover all instances (alignment positions)
of the motifs and then recover the final pattern to which
all these instances are within a given number of mutations.
Inspite of the significant literature on the motif finding prob-
lem, relatively few researchers have exploited the probabilis-
tic models used for motif refinement [16],[1]. More details
on the estimates of the hardness of this problem without
any complex information like overlapping motifs and back-
ground distribution is shown in [27].

In this paper, we provide a novel optimization framework for
refining motifs using systematic subspace exploration and
neighborhood search techniques. This paper is organized
as follows: Section 2 gives some relevant background about
the existing approaches used for finding motifs. Section 3
describes the problem formulation in detail. Section 4 dis-
cusses our new framework and Section 5 details our imple-
mentation. Section 6 gives the experimental results of our
algorithm on synthetic and real datasets. Finally, Section 7
concludes our discussion with future research directions.

2. RELEVANT BACKGROUND
Existing approaches used to solve the motif finding problem
can be classified into two main categories [10]. The first
group of algorithms utilizes a generative probabilistic repre-
sentation of the nucleotide positions to discover a consensus
DNA pattern that maximizes information content score. In
this approach, the original problem of finding the best con-
sensus pattern is formulated into finding the global max-
imum of a continuous non-convex function. The main ad-
vantage of this approach is that profiles generated are highly
representative of the signals being determined [7]. The dis-
advantage, however, is that the determination of the “best”
motif cannot be guaranteed and is often very difficult since
finding global maximum of any continuous non-convex func-
tion is a challenging problem. Current algorithms converge
to the nearest local optimum instead of the global solution.
Gibbs sampling [15], Expectation-Maximization [1], greedy
CONSENSUS algorithm [13] and HMM based methods [8]
belong to this category.

The second group uses patterns with ‘mismatch representa-
tion’ which defines a signal to be a consensus pattern and
allows up to a certain number of mismatches to occur in
each instance of the pattern. The goal of these algorithms is
to recover the consensus pattern with the highest number of
instances. These methods view the representation of the sig-
nals as discrete and the main advantage to these algorithms
is that they can guarantee the highest scoring pattern to
be the global optimum for any scoring function. The dis-
advantage, however, is that consensus patterns are not as
expressive of the DNA signal as the profile representations.
Recent approaches within this framework include Projection
methods [4; 22], string based [19], Pattern-Branching [21],
MULTIPROFILER [14], suffix trees [24] and other branch
and bound approaches [11; 10].

A hybrid approach could potentially combine the expres-
siveness of the profile representation with convergence guar-
antees of the consensus pattern. An example of a hybrid
approach is the Random Projection [4] algorithm followed
by Expectation-Maximization [1]. It uses a global solver to
obtain promising alignments in the discrete pattern space
followed by further local solver refinements in continuous

space[2; 25]. Currently, not many algorithms take complete
advantage of the combined discrete and continuous space
search [4; 10; 22]. In this paper, the profile representation
of the motif is emphasize and a new hybrid algorithm is de-
veloped to escape out of the local maximum of the likelihood
surface.

The main research concerns that motivated the new hybrid
algorithm proposed in this paper are :

• Motif refinement stage is vital and popularly used by
many pattern based algorithms (like PROJECTION,
MITRA etc) that try to find optimal motifs.

• Traditional Expectation Maximization algorithm used
in the context of motif finding converges very quickly
to the nearest local optimal solution (within 5-8 itera-
tions).

• There are many other promising local optimal solu-
tions in the close vicinity of the profiles obtained from
the global methods.

In spite of the importance of obtaining a globally optimal
solution in the context of motif finding, not much work has
been done in the direction of finding such solutions [28;
12]. There had been several attempts for escaping out of
the local optimal solution to find better solutions in other
machine learning [9] and optimization [5] related problems.
Most of these methods are stochastic in nature and usually
rely on perturbing either the data or the hypothesis. These
stochastic perturbation algorithms are ineffecient because
they sometimes miss a neighborhood solution or obtain an
already existing solution. To avoid these problems, we in-
troduce a novel optimization framework that has a better
chance of avoiding sub-optimal solutions. It systematically
escapes out of the convergence region of a local maximum to
explore the existence of other neighborhood local maxima.
Our method is primarily based on some fundamental prin-
ciples of finding an exit points on the stability boundary of
a nonlinear continuous function. The underlying theoretical
details of our method are described in [6; 17].

3. PRELIMINARIES
Before discussing the details of our method, we describe our
problem formulation and the details about the EM algo-
rithm in the context of motif finding problem. We also de-
scribe some details about the dynamical system of the log-
likelihood function which enables us to search the nearby
local optimal solutions.

3.1 Problem Formulation
Some promising initial alignments are obtained by applying
projection methods or random starts on the entire dataset.
These initial alignments are then converted into profile rep-
resentation.

Let t be the total number of sequences and n be the average
length of each sequence. Let S = {S1, S2...St} be the set
of t sequences. Let P = {P1, P2...Pt} be the set of initial
alignments. l is the length of the consensus pattern. For
further discussion, we use the following variables

i = 1 ... t % for t sequences
k = 1 ... l % for l-mers
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Table 1: A count of nucleotides A, T, G, C at each position K =
1..l in all the sequences of the data set. K = 0 denotes the
background count.

j k = 0 k = 1 k = 2 K = 3 k = 4 ... k = l
A C0,1 C1,1 C2,1 C3,1 C4,1 ... Cl,1

T C0,2 C1,2 C2,2 C3,2 C4,2 ... Cl,2

G C0,3 C1,3 C2,3 C3,3 C4,3 ... Cl,3

C C0,4 C1,4 C2,4 C3,4 C4,4 ... Cl,4

j ∈ {A, T, G, C} % for each nucleotide

The count matrix can be constructed from the given align-
ments as shown in Table 1. We define C0,j to be the non-
position specific background count of each nucleotide in all
of the sequences where j ∈ {A, T, C, G} is the running total
of nucleotides occurring in each of the l positions. Similarly,
Ck,j is the count of each nucleotide in the kth position (of
the l −MER) in all the P alignments.

Q0,j =
C0,jP
j C0,j

(1)

Qk,j =
Ck,j + bj

t +
P

j bj
(2)

Equation (1) shows the background frequency of each nu-
cleotide where bj is known as the Laplacian or Bayesian
correction and is equal to d ∗Q0,j where d is some constant
usually set to unity. Equation (2) gives the weight assigned
to the type of nucleotide at the kth position of the motif.

A Position Specific Scoring Matrix (PSSM) can be con-
structed from one set of instances in a given set of t se-
quences. From (1) and (2), it is obvious that the following
relationship holds:

X

j∈{A,T,G,C}
Qk,j = 1 ∀k = 0, 1, 2, ...l (3)

From equation (3), for a given k value, each Q can be repre-
sented in terms of the other 3 variables. Since the length of
the motif is l, the final objective function (i.e. the informa-
tion content score) would contain 3l independent variables1.

To obtain the score, every possible l −MER in each of the
t sequences must be examined. This is done so by multi-
plying the respective Qi,j/Q0,j dictated by the nucleotides
and their respective positions within the l − MER. Only
the highest scoring l−MER in each sequence is noted and
kept as part of the alignment. The total score is the sum of
all the best scores in each sequence.

1Although, there are 4l variables in total, because of the
constraints obtained from (3), the parameter space will con-
tain only 3l independent variables. Thus, the constraints
help in reducing the dimensionality of the search problem.

A(Q) =

tX
i=1

log(A)i =

tX
i=1

log

 
lY

k=1

Qk,j

Qb

!

i

=

tX
i=1

lX

k=1

log(Q
′
k,j)i

(4)

Q
′
k,j is the ratio of the nucleotide probability to the corre-

sponding background probability, i.e. Qk,j/Qb. Log(A)i is
the score at each individual ith sequence where t is the to-
tal number of sequences. In equation (4), we see that A is
composed of the product of the weights for each individual
position k. A(Q) is the non-convex 3l dimensional continu-
ous function for which the global maximum corresponds to
the best possible motif in the dataset. EM refinement that
is done at the end of the combinatorial approaches has the
main disadvantage that it converges to a local optimal so-
lution [3]. Our method improves the refinement procedure
by understanding the details about the stability boundaries
and trying to escape out of the convergence region of the
EM algorithm.

3.2 Hessian Computation and Dynamical Sys-
tem for the Scoring Function

In order to present our algorithm, we have defined the dy-
namical system corresponding to the log-likelihood function
and the PSSM. The key contribution of the paper is the
development of this nonlinear dynamical system which will
enable us to realize the dynamic and geometric nature of the
likelihood surface. We construct the following gradient sys-
tem in order to locate critical points of the objective function
(4):

Q̇(t) = −∇A(Q) (5)

One can realize that this transformation preserves all the
critical points [6]. Now, we will describe the construction of
the gradient system and the Hessian in detail. In order to re-
duce the dominance of one variable over the other, the values
of the each of the nucleotides that belong to the consensus
pattern at the position k will be represented in terms of the
other three nucleotides in that particular column. This will
also minimize the dominance of the eigen vector directions
when the Hessian is obtained. The variables of the scor-
ing function are transformed into new variables described in
Table 2.

A(Q) =

tX
i=1

lX

k=1

log fik(w3k−2, w3k−1, w3k)i (6)

where

fik =

(
1− (w3k−2, w3k−1, w3k) if Pik = Ck

w3k−2 or w3k−1 or w3k elsewhere
(7)

The first derivative of the scoring function is a one dimen-
sional vector with 3l elements.

∇A =

»
∂A

∂w1

∂A

∂w2

∂A

∂w3
. . . .

∂A

∂w3l

–T

(8)
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Table 2: A count of nucleotides j ∈ {A, T, G, C} at each position
k = 1..l in all the sequences of the data set. Ck is the kth nu-
cleotide of the consensus pattern which represents the nucleotide
with the highest value in that column. Let the consensus pattern
be GACT...G and bj indicates the background.

j k = b k = 1 k = 2 K = 3 k = 4 ... k = l
A bA w1 C2 w7 w10 ... w3l−2

T bT w2 w4 w8 C4 ... w3l−1

G bG C1 w5 w9 w11 ... Cl

C bC w3 w6 C3 w12 ... w3l

and each partial derivative is given by

∂A

∂wp
=

tX
i=1

∂fip

∂wp

fik(w3k−2, w3k−1, w3k)
(9)

∀p = 1, 2 ... 3l and k = round(p/3) + 1

The Hessian ∇2A is a block diagonal matrix of block size
3X3. For a given sequence, the entries of the 3X3 block
will be the same if that nucleotide belongs to the consensus
pattern (Ck). The gradient system is mainly obtained for
enabling us to identify the stability boundaries and stabil-
ity regions on the likelihood surface. The theoretical details
about these concepts are published elsewhere [6]. Stability
region of each local maximum is an approximate convergence
zone of the EM algorithm. If we can identify all the saddle
points on the stability boundary of a given local maximum,
then we will be able to find all the tier-1 local maxima. How-
ever, finding all saddle points is computationally intractable
and hence we have adopted a heuristic by generating the
eigen vector directions of the PSSM at the local maximum.
The next section details out our approach and explains the
different phases of our algorithm.

4. NOVEL FRAMEWORK
Our framework consists of three phases. The first phase
is the global phase, in which the promising solutions in the
entire search space are obtained. The second phase is the
refinement phase where a local method is applied to the
solutions obtained in the previous phase in order to refine
the profiles. The third phase is the exit phase; the exit
points are computed and the Tier-1 and Tier-2 solutions are
systematically explored.

In the global phase, a branch and bound search is performed
on the entire dataset. All the profiles that do not meet a
certain threshold (in terms of a given scoring function) are
eliminated in this phase. The promising patterns obtained
are transformed into profiles and local improvements are
made to these profiles in the refinement phase. The con-
sensus pattern is obtained from each nucleotide that corre-
sponds to the largest value in each column of the PSSM.
The 3l variables chosen are the nucleotides that correspond
to those that are not present in the consensus pattern. Be-
cause of the probability constraints discussed in the previous
section, the largest weight can be represented in terms of the
other three variables.

To solve (4), current algorithms begin at random initial
alignment positions and attempt to converge to an align-

Figure 2: Diagram illustrates the exit point method of es-
caping from the original solution (A) to the neighborhood
local optimal solutions (a1i) through the corresponding exit
points (e1i). The dotted lines indicate the local convergence
of the EM algorithm.

ment of l − MERs in all the sequences that maximize the
objective function. In other words, the l − MER whose
log(A)i is the highest (with a given PSSM) is noted in every
sequence as part of the current alignment. During the max-
imization of A(Q) function, the probability weight matrix
and hence the corresponding alignments of l − MERs are
updated. This will occur iteratively until the PSSM con-
verges to the locally optimal solution. The consensus pat-
tern is obtained from the largest weight nucleotide in each
position (column) of the PSSM. This converged PSSM and
the set of alignments correspond to a local optimal solution.

To escape out of this local optimal solution, our approach re-
quires the computation of a Hessian matrix (i.e. the matrix
of second derivatives) of dimension (3l)2 and the 3l eigen-
vectors of the Hessian. The Hessian ∇2A is a block diagonal

Input: Local Maximum (A).
Output: Best Local Maximum in the neighborhood region.
Algorithm:
Step 1: Construct the PSSM for the alignments correspond-
ing to the local maximum (A) using Eqs. 1 and 2.
Step 2: Calculate the eigen vectors of the Hessian matrix
for this PSSM.
Step 3: Find exit points (e1i) on the practical stability
boundary along each eigen vector direction.
Step 4: For each of the exit points, the corresponding Tier-1
local maxima are obtained (a1i) by applying the EM algo-
rithm after the ascent step.
Step 5: Repeat this process for promising tier-1 solutions to
obtain Tier-2 (a2j) local maxima.
Step 6: Return the solution that gives the maximum infor-
mation content score of {A, a1i, a2j}.

Figure 3: The Exit phase where the neighborhood of the
original solution is explored in a systematic manner.
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matrix of block size 3X3. For a given sequence, the entries of
the 3X3 block will be the same if that nucleotide belongs to
the consensus pattern (Ck). The main reasons for choosing
the eigenvectors of the Hessian as search directions are:

• Computing eigen vectors of the Hessian is related to
finding the directions with extreme values of the sec-
ond derivatives, i.e., directions of extreme normalto-
isosurface change.

• Eigen vectors of the Hessian will form the basis vectors
for the search directions. Any other search direction
can be obtained by a linear combination of these basis
directions.

• This will make our algorithm deterministic since the
eigen vector directions are always unique.

The value of the objective function is evaluated along these
eigen vector directions with some small step size increments.
Since the starting position is a local optimal solution of a
function that is being maximized, the function value dur-
ing the initial few steps will reduce. Since the Hessian is
obtained only once during the entire procedure, it is more
efficient compared to Newton’s method where an approxi-
mate Hessian is obtained for every iteration. After a certain
number of step evaluations, there might be an increase in
the value indicating that the current point is out of the con-
vergence region of the local maximum. The point along this
direction where the A(Q) has the lowest value is called the
exit point. Once the exit points are computed along each
eigenvector direction, the local maximum in the other re-
gion is obtained by applying local method with these new
points as initial guesses. This procedure is clearly shown in
Fig 4. To ascertain that the new initial guess is in a different
convergence region from the original, the objective function
value is evaluated even after its increase. The descent stage
indicates the function evaluation along a particular eigen
vector direction. Applying local method at the exit point
might give the original local maximum. The ascent stage is
used to ensure that the new guess is in a different conver-
gence zone. Hence, given the best local maximum obtained
using any current local methods, this framework allows us to
systematically escape out of the local maximum to explore
surrounding local maxima.

Figure 4: A summary of escaping out of the local optimum
to the neighborhood local optimum. Observe the corre-
sponding trend of A(Q) at each step.

Input: The DNA sequences, length of the motif (l),
Maximum Number of Mutations (d)
Output: Motif (s)
Algorithm:
Step 1: Given the sequences, apply random projection
algorithm to obtain different set of alignments.
Step 2: Choose the promising buckets and apply EM
algorithm to refine these alignments.
Step 3: Apply the exit point method to obtain nearby
promising local optimal solutions.
Step 4: Report the consensus pattern that corresponds to
the best alignments and their corresponding PSSM.

Figure 5: The complete algorithm

This new framework can be treated as a hybrid approach be-
tween global method and the local method. The approach
differs from traditional local methods by computing multiple
local solutions in the neighborhood region in a systematic
manner. It differs from global methods by working com-
pletely in profile space and searching a subspace efficiently
in a deterministic manner. For a given non-convex function,
there is a massive number of convergence regions that are
very close to each other and are separated from one another
in the form of different basins of attraction. These basins
are effectively modeled by the concepts of stability regions.

5. IMPLEMENTATION DETAILS
Our program is implemented in Red Hat Linux version 9 and
runs on a Pentium IV 2.8 GHz machine. The core algorithm
that we implemented is XP EM described in Algorithm 1.
XP EM obtains the initial alignments and the original data
sequences along with the length of the motif. It returns the
best motif that is obtained in the neighboring region of the
sequences. This procedure constructs the PSSM, performs
EM refinement, and then computes the Tier-1 and Tier-2
solutions by calling the procedure Next T ier. The Eigen
vectors of the Hessian were computed using the code ob-
tained from [20]. Next T ier takes a PSSM as input and
computes an array of PSSMs corresponding to the next tier
local maxima using the exit point methodology.

Algorithm 1 Motif XP EM(init aligns, seqs, l)

PSSM = Construct PSSM(init aligns)
New PSSM = Apply EM(PSSM, seqs)
TIER1 = Next T ier(seqs, New PSSM, l)
for i = 1 to 3l do

if TIER1[i] <> zeros(4l) then
TIER2[i][ ] = Next T ier(seqs, T IER1[i], l)

end if
end for
Return best(PSSM, TIER1, T IER2)

Given a set of initial alignments, Algorithm 1 will find the
best possible motif in the neighborhood space of the profiles.
Initially, a PSSM is computed using construct PSSM from
the given alignments. The procedure Apply EM will return
a new PSSM that corresponds to the alignments obtained
after the Expectation Maximization algorithm is applied to
the initial PSSM. The details of the procedure Next T ier
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are given in Algorithm 2. From a given local solution (or
PSSM), Next T ier will compute all the 3l new PSSMs in
the neighborhood of the given local optimal solution. The
second tier patterns are obtained by calling the Next T ier
from every first tier solutions 2. Finally, the pattern with the
highest score amongst the original PSSM, Tier1 and Tier2
is returned.

Algorithm 2 PSSMs[ ] Next T ier(seqs, PSSM, l)

Score = eval(PSSM)
Hess = Construct Hessian(PSSM)
Eig[ ] = Compute EigV ec(Hess)
MAX Iter = 100
for k = 1 to 3l do

PSSMs[k] = PSSM Count = 0
Old Score = Score ep reached = FALSE
while (! ep reached) && (Count < MAX Iter) do

PSSMs[k] = update(PSSMs[k], Eig[k], step)
Count = Count + 1
New Score = eval(PSSMs[k])
if (New Score > Old Score) then

ep reached = TRUE
end if
Old Score = New Score

end while
if count < MAX Iter then

PSSMs[k] = update(PSSMs[k], Eig[k], ASC)
PSSMs[k] = Apply EM(PSSMs[k], Seqs)

else
PSSMs[k] = zeros(4l)

end if
end for
Return PSSMs[ ]

The procedure Next T ier takes a PSSM and computes an
array of PSSMs that corresponds to the next tier local op-
timal solutions. It applies the Exit-point methodology to
compute the next tier solution. The procedure eval eval-
uates the scoring function for the PSSM using (4). The
procedures Construct Hessian and Compute EigV ec com-
putes the Hessian matrix and the eigen vectors respectively.
MAX iter indicates the maximum number of uphill evalu-
ations that are required along each of the eigen vector di-
rections. The neighborhood PSSMs will be stored in the
variable PSSMs[ ]. The original PSSM is updated with
a small step until an exit point is reached or the number
of iterations exceed MAX Iter value. If the exit point is
reached along a particular direction, some more iterations
are made to guarantee that the PSSM exists in a different
stability region and entered a new one. The EM algorithm
is then used during this ascent stage to obtain a new PSSM
3.

The initial alignments are converted into profile space and a

2New PSSMs might not be obtained for certain search direc-
tions. In those cases, a zero vector of length 4l is returned
back. Only those new PSSMs which do not have this value
will be used for any further processing.
3For completeness, the entire algorithm has been shown in
this section. However, during the implementation, several
heuristics have been applied to reduce the running time of
the algorithm. For example, if the first tier solution is not
very promising, it will not be considered for obtaining the
corresponding second tier solutions.

Figure 6: 2-D illustration of first tier improvements in a 3l
dimensional objective function. The original local maximum
has a score of 163.375. The various Tier-1 solutions and
plotted and the one with highest score (167.81) is chosen.

PSSM is constructed. The PSSM is updated (using the EM
algorithm) until the alignments converge to a local optimal
solution. The Exit-point methodology is then employed to
escape out of this local optimal solution to compute nearby
first tier local optimal solutions. This process is then re-
peated on promising first tier solutions to obtain second tier
solutions. As shown in Fig. 6, from the original local op-
timal solution, various exit points and correspondingly the
new local optimal solutions are computed along each Eigen
vector direction. Sometimes two directions might yield the
same local optimal solution. This can be avoided by comput-
ing the saddle point corresponding to the exit point on the
stability boundary [23]. There can be many exit points, but
there will be a unique saddle point corresponding to the new
local minimum. However, in high dimensional problems, it
is not very efficient to compute the saddle points and hence,
we chose to compute the exit points. For computational effi-
ciency, the Exit-point approach is applied to only promising
initial alignments (i.e. random starts with higher Informa-
tion Content score). Therefore, a threshold A(Q) score is
determined by the average of the best three first tier scores
just after 10-15 random starts; any current and future first
tier solution with score greater than the threshold is con-
sidered for further analysis. Additional random starts are
carried out in order to aggregate at least ten first tier solu-
tions. Exit-point is repeated on all first tier solutions above
a certain threshold to obtain second tier solutions.

6. EXPERIMENTAL RESULTS
Experiments were performed on both synthetic data and real
data. Two different methods were used in the global phase:
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random starts and random projection. The main purpose of
this paper is not to demonstrate that our algorithm can out-
perform the existing motif finding algorithms. Rather, the
main work here focusses on improving the results that are
obtained from other efficient algorithms. We have chosen
to demonstrate the performance of our algorithm on the re-
sults obtained from the random projection method which is
a powerful global method that has outperformed other tra-
ditional motif finding approaches like MEME, Gibbs sam-
pling, WINNOWER, SP-STAR etc [4]. Since the compari-
son results were already published, we mainly focus on the
performance improvements of our algorithm compared to
the random projection algorithm. For random starts exper-
iment, a total of N random numbers each value between 1
and (t − l + 1) that corresponds to random initial starting
alignments are generated. Let m be the number of indepen-
dent trials required to obtain the motifs.

6.1 Synthetic Datasets
The synthetic datasets were generated using the procedure
described in [19]. The value of m = 1 is chosen to demon-
strate the efficiency of our approach. This corresponds to
one full random projection + EM cycle. We compared the
performance coefficient (PC) which gives the measure of the
average performance of our implementation to that of Ran-
dom Projection. The PC is given by :

PC =
|K ∩ P |
|K ∪ P | (10)

where K is the set of the residue positions of the planted
motif instances, and P is the corresponding set of positions
predicted by the algorithm. Table 4 gives an overview of
the performance of our method compared to the random
projection algorithm on the (l,d) motif problem for different
l and d values.

Our results also show that by branching out and discover-
ing multiple local optimal solutions one need not use higher
m values. A higher m value corresponds to more computa-
tional time because projecting the l-mers into k-sized buck-
ets is a time consuming task. Using our approach, we can
replace the need for randomly projecting l-mers repeatedly
in an effort to converge to a global optimum by determinis-
tically and systematically searching the solution space mod-
eled by our dynamical system and improving the quality of
the existing solutions. The improvements of our algorithm
are clearly shown in Table 4. We can see that there is a
significant improvement for higher length motifs.

Table 4: The results of performance coefficient with m = 1 on
synthetically generated sequences. The scores are not normalized
and the perfect score is 20 since there are 20 sequences.

Motif PC obtained using PC obtained using
(l,d) Random Projection Exit-point method

(11,2) 20 20
(15,4) 14.875 17
(20,6) 12.667 18

Fig. 6 shows the tier-1 solutions obtained from a given con-
sensus pattern. Since the exit points are being used instead
of saddle points, it might sometimes find the same local

Figure 7: The average scores with the corresponding first
tier and second tier improvements on synthetic data using
the random starts with Exit-point approach with different
(l,d) motifs.

optimal solution obtained before. As seen from the figure,
the tier-1 solutions does not have to be different from the
original pattern in just one nucleotide position. Also, the
function value at the exit points is much higher than the
original value.

As opposed to stochastic processes like mutations in genetic
algorithms, our approach reduces the stochastic nature and
tries to obtain multiple local optimal solutions in the neigh-
borhood systematically. Fig. 7 shows the performance of
the Exit-point approach on synthetic data for different (l,d)
motifs. The average scores of the best ten solutions obtained
from random starts and their corresponding improvements
in tier-1 and tier-2 are reported. One can see that the im-
provements become more prominent for larger length motifs.
Table 3 shows the best and worst of these top ten random
starts along with the consensus pattern and the alignment
scores.

Figure 8: The average scores with the corresponding first
tier and second tier improvements on synthetic data using
the Random Projection with Exit-point approach with dif-
ferent (l,d) motifs.

With a few modifications, more experiments were conducted
using the Random Projection method. The Random Projec-
tion will eliminate non-promising regions in the search space
and gives a number of promising sets of initial patterns. EM
refinement is applied to those promising initial patterns with
higher score. Due to the robustness of the results, the Exit-
point method is employed only on the top five local optima.
Exit-point is again repeated on the top scoring first tier so-

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 7



Table 3: The consensus patterns and their corresponding scores of the original local optimal solution obtained from multiple random
starts on the synthetics data. The best first tier and the second tier optimal patterns and their corresponding scores are also reported.

(l,d) Initial Pattern Score First Tier Pattern Score Second Tier Pattern Score
(11,2) AACGGTCGCAG 125.1 CCCGGTCGCTG 147.1 CCCGGGAGCTG 153.3
(11,2) ATACCAGTTAC 145.7 ATACCAGTTTC 151.3 ATACCAGGGTC 153.6
(13,3) CTACGGTCGTCTT 142.6 CCACGGTTGTCTC 157.8 CCTCGGGTTTGTC 158.7
(13,3) GACGCTAGGGGGT 158.3 GAGGCTGGGCAGT 161.7 GACCTTGGGTATT 165.8
(15,4) CCGAAAAGAGTCCGA 147.5 CCGCAATGACTGGGT 169.1 CCGAAAGGACTGCGT 176.2
(15,4) TGGGTGATGCCTATG 164.6 TGGGTGATGCCTATG 166.7 TGAGAGATGCCTATG 170.4
(17,5) TTGTAGCAAAGGCTAAA 143.3 CAGTAGCAAAGACTACC 173.3 CAGTAGCAAAGACTTCC 175.8
(17,5) ATCGCGAAAGGTTGTGG 174.1 ATCGCGAAAGGATGTGG 176.7 ATTGCGAAAGAATGTGG 178.3
(20,6) CTGGTGATTGAGATCATCAT 165.9 CAGATGGTTGAGATCACCTT 186.9 CATTTAGCTGAGTTCACCTT 194.9
(20,6) GGTCACTTAGTGGCGCCATG 216.3 GGTCACTTAGTGGCGCCATG 218.8 CGTCACTTAGTCGCGCCATG 219.7

lutions to arrive at the second tier solutions. Fig. 8 shows
the average alignment scores of the best random projection
alignments and their corresponding improvements in tier-1
and tier-2 are reported. In general, the improvement in the
first tier solution is more significant than the improvements
in the second tier solutions.

6.2 Real Datasets
Table 5 shows the results of the Exit-point methodology on
real biological sequences. We have chosen l = 20 and d = 2.
‘t’ indicates the number of sequences in the real data. The m
value reported is the approximate average number of full cy-
cles required to obtain the motif. For the biological samples
taken from [4; 21], the value of m is the average number
of full LSH cycles it would take the original algorithm to
discover the motif. The values for all other parameters (like
projection size k = 7 and threshold s=4) are chosen to be
the same as those used in the Random projection paper [4].
All the motifs were recovered with m = 1 using the Exit-
point strategy. Without the exit point strategy, the random
projection algorithm needed multiple LSH cycles inorder to
retrieve the original motifs. This clearly elucidates the fact
that, we need to use global methods to certain extent and
combine them with refined local heuristics in order to obtain
better efficiency. Running one LSH cycle is much more time
consuming compared to the exit-point strategy. The main
advantage of our strategy comes with the deterministic na-
ture of the algorithm as opposed to the stochastic version
(as seen in random projection). This clearly indicates the
efficiency of the newly proposed method on real biological
samples.

7. CONCLUDING DISCUSSION
The Exit-point framework proposed in this paper broadens
the search region for obtaining improved solution that can
potentially corresponds to a better motif. In most of the
profile based algorithms, EM is used to obtain the nearest
local optimum from a given starting point. In our approach,
we consider the boundaries of these convergence regions and
find the surrounding local optimal solution based on the the-
ory of stability regions. We have shown in both real and
synthetic data sets that beginning from the EM converged
solution, the Exit-point approach is capable of searching in
the neighborhood regions for another solution with an im-
proved information content score. This will often translate
to finding a pattern with less hamming distance from the
resulting alignments in each sequence. Our approach has
shown improvements in the score on all datasets that it was

tested on. One of the primary advantages of our method
is that it can be used with different global and local meth-
ods. The main contribution of our work is to demonstrate
the capability of this hybrid expectation maximization algo-
rithm in the context of the motif finding problem. We can
potentially use any global method and improve its results
efficiently.

From our results, we see that motif refinement stage in the
motif finding problem plays a vital role and can yield accu-
rate results more efficiently in terms of computational costs.
We would like to continue our work by combining other
global methods that are available in the literature with ex-
isting local solvers like EM or GibbsDNA that work in con-
tinuous space. Implementing the Exit-point method as an
intermediate between the global and local solver provides us
with a fundamental advantage of choosing different meth-
ods to explore the data specific properties in more detail.
We will follow the example of [26] and try different combi-
nations of the existing methods to improve the chances of
finding more promising patterns.
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