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Abstract. Analyzing differences in multivariate datasets is a challenging prob-
lem. This topic was earlier studied by finding changes in the distribution differ-
ences either in the form of patterns representing conjunction of attribute value
pairs or univariate statistical analysis for each attribute in order to highlight the
differences. All such methods focus only on change in attributes in some form and
do not implicitly consider the class labels associated with the data. In this paper,
we pose the difference in distribution in a supervised scenario where the change
in the data distribution is measured in terms of the change in the corresponding
classification boundary. We propose a new constrained logistic regression model
to measure such a difference between multivariate data distributions based on
the predictive models induced on them. Using our constrained models, we mea-
sure the difference in the data distributions using the changes in the classification
boundary of these models. We demonstrate the advantages of the proposed work
over other methods available in the literature using both synthetic and real-world
datasets.

Keywords: Logistic regression, constrained learning, discriminative pattern min-
ing, change detection.

1 Introduction

In many real-world applications, it is often crucial to quantitatively characterize the
differences across multiple subgroups of complex data. Consider the following moti-
vating example from the biomedical domain: Healthcare experts analyze cancer data
containing various attributes describing the patients and their treatment. These experts
are interested in understanding the difference in survival behavior of the patients be-
longing to different racial groups (Caucasian-American and African-American) and in
measuring this difference across various geographical locations. Such survival behav-
ior distributions of these two racial groups of cancer/non-cancer patients are similar in
one location but are completely different in other locations. The experts would like
to simultaneously (i) model the cancer patients in each location and (ii) quantify the
differences in the racial groups across various locations. The problem goes one step
further: the eventual goal is to rank the locations based on the differences in the can-
cer cases of the two racial groups. In other words, the experts want to find the locations
where the difference in the predictive (cancer) models for the two racial groups is higher
and the locations where such difference is negligible. Depending on such information,
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more health care initiatives will be organized in certain locations to reduce the racial
discriminations in cancer patients [22].

In this problem, the main objective is not only to classify the cancer and non-cancer
patients, but also to identify the discriminations (distribution difference) in the cancer
patients across multiple subpopulations (or subgroups) in the data. The traditional so-
lutions for this research problem partially addresses the dissimilarity issue, but fails to
provide any comprehensive technique in terms of the prediction models. It is vital to de-
velop an integrated framework that can model the discriminations and simultaneously
develop a predictive model.

To handle such problems, the methods for modeling the data should go beyond opti-
mizing a standard prediction metric and should simultaneously identify and model the
differences between two multivariate data distributions. Standard predictive models in-
duced on the datasets capture the characteristics of the underlying data distribution to a
certain extent. However, the main objective of such models is to accurately predict on
the future data (from the same distribution) and will not capture the differences between
two multivariate data distributions.

1.1 Existing Methods

To find the changes between multivariate data distributions, we need to understand (i)
the kind of changes and (ii) how to detect and model such changes. Prior work had
emphasized on measuring change in the dataset using the

– difference in probability distribution between individual attributes [15,18]
– difference in the support level of patterns (attribute-value combinations) [8,4]

We term these works as ‘unsupervised distribution change detection’. These methods
do not consider the underlying class distribution and how the class distribution changes
between the datasets. Existing methods like contrast set mining, emerging pattern min-
ing discussed in Section 2 provide rules with different support criteria (with statisti-
cal significance) within two classes. Contrast sets might provide class wise analysis in
terms of patterns which differ in support but cannot quantitatively determine whether
the overall class distribution between two datasets is different or to what extent the dif-
ference is. The requirement of discrete data for contrast set among many open issues
identified in [27] needs to be addressed as well.

In the case of univariate data, methods such as KolmogorovSmirnov (KS) test [18]
will provide information about whether two samples come from same distribution or
not. In the multivariate case, an approach to take maximum KS test statistic among all
possible orderings can provide some vital information, but again it’s univariate analysis
extended to multivariate data. Also the number of possible ordering increases exponen-
tially with higher dimensions making the test statistic computationally expensive. The
popular KL-divergence [15] also known as relative entropy does provide a change in
distribution although non-symmetric in nature (KL(A‖B) �= KL(B‖A)) and purely data
oriented approach. Thus, all these methods provide some kind of information about
patterns or test statistic. However, in this work, we are interested in finding whether the
available data with respect to a class distribution require different classification model
or not.
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Our approach is to consider the change between datasets as the change in underly-
ing class distributions. Our Supervised Distribution Difference (SDD) measure defined
in Sec. 3.2 aims to detect the change in the classification criteria. To understand the
kind of distribution changes we are supposedly trying to find can be illustrated using
an example. Figure 1(a) visualizes two binary datasets. Performing any univariate or
multivariate distribution difference analysis will give us the conclusion that these two
datasets are “different” or provide us with some rules which differ in support (con-
trast set mining). We agree with such analysis, but only to the extent of considering
these two datasets without their class labels. When we consider these two datasets hav-
ing two classes which need to be separated as much as possible using some classifi-
cation method. We conclude that these two datasets are not different in terms of
their classification criteria. A nearly similar Logistic Regression (LR) classifier (or
any other linear classification models) can be used to separate classes in both these
datasets. Thus, our criteria of finding distribution change is in terms of change in the
classification model.

1.2 Need for Constrained Models

The above discussion clearly states that the differences in multivariate data distribu-
tions based on “model” is different from previous “data” based approaches. As such,
inducing models on the datasets and finding difference between them can provide us
some information about the similarity of the datasets. However, there is one pertinent
question related to this discussion. Which model can accurately represent the data?
From Fig. 1(b), we can observe that there are many options for classification models
within the boundaries indicated by bold lines, representing the maximum possible width
of classification margin, whereas the dotted line represent the optimized LR classifier
model. Any classifier between these ‘bold’ boundaries will have the same accuracy
(100% in this case). Similarly, it is shown in Fig. 1(c) for the second dataset.

Based on the parameter values, the LR model can be located between any of the class
boundaries and yet represent the data accurately. Fig. 1(d) shows the LR model (bold
line) obtained using D1 and D2 combined together. A constrained LR model obtained
for each dataset will be nearly same, since the combined model itself is a reasonable
representation of both datasets individually. Thus, the supervised distribution difference
will be reported as zero (or close to zero). Whereas, using LR model obtained separately
on each dataset (dotted lines) will report significant difference between the two datasets
despite each individual LR model being close to the maximum margin classifier in this
case. Thereby, just using classification models directly to obtain SDD will vary in the
results when used for comparing two datasets.

In the case of high-dimensional datasets coupled with non-linearly separable case,
the number of potential classifier models required to represent dataset increase rapidly.
Thus, the model representing the data for comparison has to be chosen carefully. The
basic idea of building constrained models is to provide a baseline which fairly repre-
sents both the datasets for comparison. Then, this baseline model can be altered to gen-
erate specific model for each dataset. By doing this, we reduce the number of models
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Fig. 1. (a) Two binary datasets with similar classification criteria (b) Dataset 1 with linear class
separators (c) Dataset 2 with linear class separators and (d) Base LR model with Dataset 1 and
Dataset 2 model
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available for representing the datasets. By placing an accuracy threshold on the selected
models, we further reduce the number of such models and simultaneously ensure that
the new models are still able to classify each dataset accurately.

In this paper, we propose a new framework for constrained learning of predictive
models that can simultaneously predict and measure the differences between datasets
by enforcing some additional constraints in such a way that the induced models are as
similar as possible. Data can be represented by many forms of a predictive model, but
not all of these versions perform well in terms of their predictive ability. Each predic-
tive modeling algorithm will heuristically, geometrically, or probabilistically optimize
a specific criterion and obtains an optimal model in the model space. There are other
models in the model space that are also optimal or close to the optimal model in terms of
the specific performance metric (such as accuracy or error rate). Each of these models
will be different but yet will be a good representation of the data as long as its predic-
tive accuracy is close to the prediction accuracy of the most optimal model induced. In
our approach, we search for two such models corresponding to the two datasets under
the constraint that they must be as similar as possible. The distance between these two
models can then be used to quantify the difference between the underlying data dis-
tributions. Such constrained model building is extensively studied in the unsupervised
scenarios [3] and is relatively unexplored in the supervised cases. We chose to develop
our framework using LR models due to their popularity, simplicity, and interpret ability
which are critical factors for the problem that we are dealing with in this paper.

The rest of the paper is organized as follows: Section 2 discusses the previous works
related to the problem described. Section 3 introduces the notations and concepts use-
ful for understanding the proposed algorithm. Section 4 introduces the proposed con-
strained LR framework for mining distribution changes. The experimental results on
both synthetic and real-world datasets are presented in Section 5. And finally, Section 6
concludes our discussion.

2 Related Work

In this section, we describe some of the related topics available in the literature and
highlight some of the primary contributions of our work.

(1) Dataset Distribution Differences - Despite the importance of the problem, only
a small amount of work is available in describing the differences between two data
distributions. Earlier approaches for measuring the deviation between two datasets used
simple data statistics after decomposing the feature space into smaller regions using tree
based models [22,12]. However, the final result obtained is a data-dependent measure
and do not give any understanding about the features responsible for measuring that
difference. One of the main drawbacks of such an approach is that they construct a
representation that is independent of the other dataset thus making it hard for any sort
of comparison. On the contrary, if we incorporate the knowledge of the other class
while building models for both the subgroups, they provide more information about the
similarities and dissimilarities in the distributions. This is the basic idea of our approach.
Some other statistical and probabilistic approaches [25] measure the differences in the
data distributions in an unsupervised setting without the use of class labels.



Constrained Logistic Regression for Discriminative Pattern Mining 97

(2) Discriminative Pattern mining - Majority of pattern based mining for different,
unusual statistical characteristics [19] of the data fall into the categories of contrast
set mining [4,14], emerging pattern mining [8], discriminative pattern mining [10,21]
and sub-group discovery [11,16]. Applying most of these methods on a given dataset
with two subgroups will only give us the difference in terms of the attribute-value pair
combinations (or patterns) without any quantitative measures, i.e. difference of class
distribution within a small space of the data and does not provide a global view of the
overall difference. In essence, though these approaches attempt to capture statistically
significant rules that define the differences, they do not measure the data distribution
differences and also do not provide any classification model. The above pattern mining
algorithms do not take into account the change in distribution of class labels, instead
they define the difference in terms of change in attribute value combinations only.

(3) Change Detection and Mining - There had been some works on change detection
[17] and change mining [26,24] algorithms which typically assume that some previous
knowledge about the data is known and measure the change of the new model from a
data stream. The rules that are not same in the two models are used to indicate changes
in the dataset. These methods assume that we have a particular model/data at a given
snapshot and then measure the changes for the new snapshot. The data at the new snap-
shot will typically have some correlation with the previous snapshot in order to find any
semantic relations in the changes detected.

(4) Multi-task Learning and Transfer Learning - The other seemingly related family
of methods proposed in the machine learning community is transfer learning [7,23],
which adapts a model built on source domain DS (or distribution) to make a prediction
on the target domain DT . Some variants of transfer learning had been pursued under
different names: learning to learn, knowledge transfer, inductive transfer, and multi-task
learning. In multi-task learning [5], different tasks are learned simultaneously and may
benefit from common (often hidden) features benefiting each task. The primary goal of
our work is significantly different form transfer learning and multi-task learning, since
these methods do not aim to quantify the difference in the data distributions and they
are primarily aimed at improving the performance on a specific target domain. These
transfer learning tasks look for commonality between the features to enable knowledge
transfer or assume inherent distribution difference to benefit the target task.

2.1 Our Contributions

The major distinction of our work compared to the above mentioned methods is that
none of the existing methods explore the distribution difference based on a ‘model’
built on the data. The primary focus of the research available in the literature for com-
puting the difference between two data distributions had been ‘data-based’, whereas,
our method is strictly ‘model-based’. In other words, all of the existing methods utilize
the data to measure the differences in the distributions. On the contrary, our method
computes the difference using constrained predictive models induced on the data. Such
constrained models have the potential to simultaneously model the data and compare
multiple data distributions. Hence, a systematic way to build a continuum of predictive
models is developed in such a manner that the models for the corresponding two groups
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are at the extremes of the continuum and the model corresponding to the original data
is lying somewhere on this continuum. It should be highlighted that we compute the
distance between two datasets from the models alone; without referring back to the
original data. The major contributions of this work are:

– Develop a measure of the distance between two data distributions using the differ-
ence between predictive models without referring back to the original data.

– Develop a constrained version of logistic regression algorithm that can capture the
differences in data distributions.

– Experimental justification that the results from the proposed algorithm quantita-
tively capture the differences in data distributions.

3 Preliminaries

The notations used in this paper are described in Table 1. In this section, we will also
describe some of the basic concepts of the Logistic Regression and explain the notion
of supervised distribution difference.

Table 1. Notations used in this paper

Notation Description
Di ith dataset
Fi ith dataset classification boundary
C Regularization factor
L Objective function
wk kth component of weight vector w

Wj jth weight vector
diag(v) Diagonal matrix of vector v

sN Modified Newton N th step s

Z Scaling matrix
H Hessian Matrix
Jv Jacobian matrix of |v|
ε Constraint on weight values

eps Very small value (1e-6)

3.1 Logistic Regression

In LR model, a binary classification problem is expressed by logit function which is a
linear combination of the attributes [13]. This logit function is also considered as the
log-odds of the class probabilities given an instance. Let us denote an example by x and
its kth feature as xk . If each example is labeled either +1 or −1, and there are l number
of features in each example, the logit function can be written as follows:

log
Pr (y = +1|x)
Pr (y = −1|x)

=
l∑

k=0

wkxk = z (1)
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Here, x0 = 1 is an additional feature called ‘bias’, and w0 is the corresponding ‘bias
weight’. From Eq. (1), we have

Pr (y = +1|x) =
ez

1 + ez
= g (z) (2)

where, g (z) = 1
1+e−z . Let (x1, x2, ..., xn) denotes a set of training examples and

(y1, y2, ..., yn) be the corresponding labels. xik is the kth feature of the ith sample. The
joint distribution of the probabilities of class labels of all the n examples is:

Pr (y = y1|x1) Pr (y = y2|x2) ... Pr (y = yn|xn) =
n∏

i=1

Pr (y = yi|xi) (3)

LR will learn weights by maximizing the log-likelihood of Eq. (3):

L (w) =
n∑

i=1

log Pr (y = yi|xi) =
n∑

i=1

log g (yizi) (4)

where zi =
∑l

k=0 wkxik . To maximize Eq. (4), Newton’s method which iteratively
updates the weights using the following update equation is applied:

w(t+1) = w(t) −
[

∂2L

∂w∂w

]−1
∂L

∂w
(5)

∂L

∂wk
=

∂

∂wk

(
n∑

i=1

log g (yizi)

)
=

n∑
i=1

yixikg (−yizi) (6)

∂2L

∂wj∂wk
= −

n∑
i=1

xijxikg (yizi) g (−yizi) (7)

To reduce higher estimation of parameters and to reduce over-fitting, a regularization
term is added to objective function. By adding the squared L2 norm and negating Eq.
(4), the problem is converted to a minimization problem as shown in the following
objective function:

L = −
n∑

i=1

log g (yizi) +
C

2

l∑
k=1

w2
k (8)

∂L

∂wk
= −

n∑
i=1

yixikg (−yizi) + Cwk (9)

∂2L

∂wk∂wk
= −

n∑
i=1

x2
ikg (−yizi) + C (10)
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3.2 Supervised Distribution Difference

Let D1, D2 be two datasets having the same number of features and the curve F1 and
F2 represents the decision boundary for the dataset D1 and D2 correspondingly. D
represents the combined dataset (D1 ∪ D2) and F is the decision boundary for the
combined dataset. For LR model, these boundaries are defined as a linear combination
of attributes resulting in a linear decision boundary. We induce constrained LR models
for D1, D2 which are as close as possible to that of D and yet have significant accuracy
for D1, D2 respectively. In other words, F1 and F2 having minimum angular distance
from F . Since, there exists many such decision boundaries, we optimize for minimum
angular distance from F that has higher accuracy. Supervised Distribution Difference
(SDD) is defined as the change in the classification criteria in terms of measuring the
deviation in classification boundary while classifying as accurately as possible.

Definition 1. Let wA and wB be the weight vectors corresponding to the constrained
LR models for D1 and D2, then SDD is defined as follows:

SDD(wA, wB) =
√∑

k

(wA
k − wB

k )2 (11)

4 Proposed Algorithm

We will now develop a constrained LR model which can measure the supervised distri-
bution difference between multivariate datasets. Figure 2 shows the overall framework
of the proposed algorithm. We start by building a LR model (using Eq.(8)) for the com-
bined dataset D and the weight vector obtained for this base model is denoted by R.
The regularization factor C for D is obtained using the best performance for 10-fold
cross validation (CV) and then the complete model is obtained using the best value of
C. Similarly, LR models on datasets D1 and D2 are also obtained. For datasets D1 and
D2, the CV accuracy for the best C is denoted by Acc for each dataset. The best value
of C obtained for each dataset is used while building the constrained model. After all
the required input parameters are obtained, constrained LR models are separately learnt
individually for the datasets D1 and D2 satisfying the following constraint: the weight
vector of these new constrained models must be close to that of R (should not deviate
much from R). To enforce this constraint, we change the underlying implementation of
LR model to satisfy the following constraints:

|Rk − wk| ≤ ε (12)

where ε is the deviation we allow from individual weight vectors of model obtained
from D. The upper and lower bound for each individual component of the weight vec-
tors is obtained from above equation. To solve this problem, we now use constrained
optimization algorithm in the implementation of constrained LR models.

The first derivative while obtaining LR model (Eq. (9)) is set to zero. In our model,
a scaled modified Newton step replaces the unconstrained Newton step [6]. The scaled
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Fig. 2. Illustration of our approach to obtain Supervised Distribution Difference between two
multivariate datasets

modified Newton step arises from examining the Kuhn-Tucker necessary conditions for
Equations (8) and (12).

(Z(w))−2 ∂L

∂w
= 0 (13)

Thus, we have an extra term (Z(w))−2 multiplied to the first partial derivative of the
optimization problem(L). This term can be defined as follows:

Z(w) = diag(|v(w)|− 1
2 ) (14)

The underlying term v(w) is defined below for 1 ≤ i ≤ k

vi = wi − (Ri + ε) if ∂Li(w)
∂w < 0 and (Ri + ε) < ∞

vi = wi − (Ri − ε) if ∂Li(w)
∂w ≥ 0 and (Ri − ε) > −∞

Thus, we can see that the epsilon constraint is used in modifying the first partial deriva-
tive of L. The scaled modified Newton step for the nonlinear system of equations given
by Eq. (13) is defined as the solution to the linear system

ÂZsN = − ∂̂L

∂w
(15)

∂̂L

∂w
= Z−1 ∂L

∂w
(16)

Â = Z−2H + diag(
∂L

∂w
)Jv (17)

The reflections are used to increase the step size and a single reflection step is defined
as follows. Given a step η that intersects a bound constraint, consider the first bound
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constraint crossed by η; assume it is the ith bound constraint (either the ith upper or
lower bound). Then the reflection step ηR = η except in the ith component, where
ηR

i = ηi. In summary, our approach can be termed as constrained minimization with
box constraints. It is different from LR which essentially performs an unconstrained
optimization. After the constrained models for the two datasets D1 and D2 are induced,
we can capture the model distance by the Eq. (11). Algorithm 1 outlines our approach
for generating constrained LR models.

Algorithm 1. Constrained Logistic Regression
Input: Data (D), Accuracy of LR model on D (Acc), Threshold for accuracy loss (τ ), Threshold

for deviation (ε), Unconstrained LR model on D (R)
Output: Final model weight vector (W )

1: maxAcc← 0, s← 0, modelFound← false
2: while modelFound �= true do
3: for a← s+0.01 to s+0.05 step 0.01 do
4: ε← a× R
5: lower ← R− ε
6: upper← R + ε
7: i← 0
8: Li ← L(Ẃi)
9: repeat

10: argminw -lnL(W) to compute ´Wi+1 with constraints lower ≤ ´Wi+1 ≤ upper
11: Li+1← L( ´Wi+1)
12: i← i + 1

13: until Li+1−Li

Li
< eps

14: if (Acc - Acc( ´Wi+1))/ Acc ≤ τ and maxAcc < Acc( ´Wi+1) then
15: W← ´Wi+1

16: maxAcc← Acc( ´Wi+1)
17: modelFound← true
18: end if
19: end for
20: s← s + 0.05
21: end while

Most of the input parameters for the constrained LR algorithm are dataset dependent
and are obtained before running the algorithm as can be seen in the flowchart in Fig. 2.
The only parameter required is τ which is set to 0.15. However, depending on the appli-
cation domain of the dataset used, this value can be adjusted as it’s main purpose is to
allow for tolerance by losing some accuracy while comparing datasets. The constraint
ε is varied systematically using variable a on line 4. This way, we gradually set bounds
for weight vector to be obtained (lines 5, 6). The weight vector for the optimization is
initialized with uniform weights (line 8). Line 10 employs constrained optimization
using bounds provided earlier and terminates when the condition on line 13 is satisfied.
The tolerance value eps is set to 1e-6. After the weight vector for a particular constraint
is obtained, we would like to see if this model can be considered for representing the
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dataset. Line 14 checks whether the accuracy of the current model is within the thresh-
old. It also checks if the accuracy of the current model with previously obtained model
and the better one is chosen for further analysis. The best model in the range of 1%
to 5% constraint of base weight vector R is selected. If no such model is found within
this range, then we gradually increase the constraint range (line 20) until we obtain the
desired model. The final weight vector is updated in line 15 and is returned after the
completion of full iteration. The convergence proof for the termination of constrained
optimization on line 10 is similar to the one given in [6].

5 Experimental Results

We conducted our experiments on five synthetic and five real-world datasets [2]. The bi-
nary datasets are represented by triplet (dataset, attributes, instances). The UCI datasets
used are (blood, 5, 748), (liver, 6, 345), (diabetes, 8, 768), (gamma, 11, 19020), and
(heart, 22, 267). Synthetic datasets used in our work have 500,000 to 1 million tuples.

5.1 Results on Synthetic Datasets

First, a synthetic dataset with 10 attributes is generated using Gaussian distribution with
a predefined mean and standard deviation (μ, σ). Here, two datasets D1, D2 are created
with the same feature space, but the features that are important for class separation are
different in both the datasets. These “significant” features are known a priori. Obtaining
unconstrained LR models on each of the datasets independently will provide weightage
for features, but only the highly significant features can be found using such models
(normally the features that are already familiar in the application domain). Identify-
ing the ‘differential features’, which we define as features that are more important in
one dataset but less in the other dataset, was not possible using unconstrained models.
Using our constrained models, we were able to identify the differential features by rank-
ing them in order of high magnitude by calculating the difference between the weight
vectors for each feature. Since the ground truth is known in this case, we were able
to identify most of the differential features correctly. We repeated our experiments by
varying the differential features in both the datasets to remove any bias for a particular
experiment.

Table 2 highlights the difference in the weight vectors obtained from one such ex-
periment. The difference is between individual component of the weight vectors for LR
and constrained LR model on the two datasets. Bold numbers correspond to the highly
differential features obtained from constrained LR based on ground truth. We can notice
that LR model does not necessarily produce high absolute scores for these attributes and
gives higher absolute scores for other attributes while our method accurately captures
the differential features.

Based on the ground truth available to us, we highlighted (in Fig. 3) the significance
of features given by LR and constrained LR method based on Table 2. The features are
ranked from 10 to 1 where 10 being most highly differential and 1 being least differ-
ential. From the figure, it can be observed that LR models were only able to capture
features 2, 5 and 1 which are similar to the ground truth. The constrained LR model on
the other hand was much closer to the ground truth most of the times.
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Table 2. Difference between weight vectors for constrained and unconstrained LR models

LR Constrained LR LR Constrained LR
-3.3732 -0.8015 1.2014 0.4258
-0.8693 0 0.0641 0.0306
-1.2061 -0.0158 -0.5393 0.1123
-1.6274 0 -3.5901 0
5.0797 0.9244 0.7765 0.0455

Fig. 3. Feature Ranking vs. Number of Features

5.2 The Comparison of the Distance Measure

Let NM.Fnum denote a dataset with N million tuples generated by classification func-
tion num. After computing the distance between the datasets, the main issue to be ad-
dressed is: how large a distance should be there in order to ensure that the two datasets
were generated by different underlying processes? The technique proposed in [12] an-
swers this question as follows: If we assume that the distribution G of distance values
(under the hypothesis that the two datasets are generated by the same process) is known,
then we can compute G using bootstrapping technique [9], and we can use standard sta-
tistical tests to compute the significance of the distance d between the two datasets. The
datasets were generated using the functions F1, F2, and F4 respectively. One of the
datasets is constructed by unifying D with a new block of 50,000 instances generated
by F4 where D = 1M.F1. D1 = D ∪ 0.05M.F4, D2 = 0.5M.F1, D3 = 1M.F2, and
D4 = 1M.F4.

Prior work [12] devised a “data-based” distance measure along with derived a method
for measuring statistical significance of the derived distance. The experiments con-
ducted on synthetic datasets are explained in [1]. The distance value computed on these
datasets by [12] can be taken as the ground truth and our experiments on these datasets
follow the same pattern as that of earlier results. Table 3 highlights that relative ranking
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among datasets for distance is same. Note that the distances are not directly compara-
ble ([12] and Constrained LR), only ranking can be compared based using the distance
computed.

Table 3. The distances of all four datasets by constrained LR and Ganti’s method [12]

Dataset Dist by [12] Dist by Constrained LR
D1 0.0689 0.00579
D2 0.0022 0.004408
D3 1.2068 0.022201
D4 1.4819 0.070124
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Fig. 4. Log(Euclidean distance) vs. sampling percentage

5.3 The Sensitivity of the Distance Measure

We will first show that the distance measure calculated by our algorithm precisely
captures the differences between data distributions. In [20], the authors developed a
systematic way of generating datasets with varying the degree of differences in data
distributions. To achieve similar goal, we generate datasets exhibiting varying degrees
of similarity. We created random subsamples of a given dataset, D of the size p, where
p is varied as 10%, 20%, ..., 100%, with a stepsize of 10%. Each subsample is randomly
chosen 5 times and model distances calculated are averaged to remove bias in the mod-
els. Each of these subsamples is denoted by Dp, where D100 = D. Now, using the
proposed algorithm, we calculated the distance between D and Dp using Algorithm 1.
We expect the calculated distance between D and Dp to decrease as p increases and to
approach zero when p = 100%. Figure 4 shows the result on synthetic datasets used
above (Sec. 5.2). These datasets are big and thus there is a significant change in the
class distribution even at small sampling levels. However, the distance is still small as
expected and decreases monotonically. In Figure 5, we plot the model distances against
the sampling size p for real-world datasets. Here, as we can observe that the class dis-
tribution is nearly uniform and thus SDD metric does not change much except for the
case of less than 10% samples. The constant model distance and sudden drop in SDD
after 10% sampling indicate that more than 10% samples of the data resemble class
distribution closely since the induced models are nearly similar with low value of SDD.
Thus, we can say that our metric captures the class distribution difference accurately.
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6 Conclusion

Standard predictive models induced on multivariate datasets capture certain characteris-
tics of the underlying data distribution. In this paper, we developed a novel constrained
logistic regression framework which produces accurate models of the data and simulta-
neously measures the difference between two multivariate datasets. These models were
built by enforcing additional constraints to the standard logistic regression model. We
demonstrated the advantages of the proposed algorithm using both synthetic and real-
world datasets. We also showed that the distance between the models obtained from
proposed method accurately captures the distance between the original multivariate data
distributions.
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