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Abstract— Clinical time series, comprising of repeated clin-
ical measurements provide valuable information of the trajec-
tory of patients’ condition. Linear dynamical systems (LDS)
are used extensively in science and engineering for modeling
time series data. The observation and state variables in LDS
are assumed to be uniformly sampled in time with a fixed
sampling rate. The observation sequence for clinical time series
is often irregularly sampled and LDS do not model such
data well. In this paper, we develop two LDS–based models
for irregularly sampled data. The key idea is to incorporate
a temporal difference variable within the state equations of
LDS whose parameters are estimated using observed data. Our
models are evaluated on prediction and imputation tasks using
real irregularly sampled clinical time series data and are found
to outperform state-of-the-art techniques.

I. INTRODUCTION

Irregularly sampled time series is commonly found in
clinical data. For example, physiological vitals such as
blood pressure, heart rate and respiration rate are measured
repeatedly but irregularly during a patient’s hospital episode.
Modeling such time series is important for several applica-
tions like clinical decision support systems [1].

Linear dynamical system (LDS) [2], [3], [4] have been
extensively used for time series analysis and modelling.
They model sequences of measurements (observations) and
underlying sequence of states that represent the system
dynamics, with the assumption that both the state evolution
and measurement sequences are corrupted by noise. Such
models attempt to capture the dynamics of the system states
that govern the temporal evolution of the measurements.
By definition, LDS (described in equation 1), assumes both
observation and state variables to be uniformly sampled [2],
[5]. Thus, the time difference between any two successive
measurement instants is assumed to be a constant, an as-
sumption that is often not true in clinical time series.

In this paper, we design two models, called KF2 and KF3,
that explicitly model the time difference between measure-
ments through a temporal difference variable (TDV) and thus
can be used for irregularly sampled time series. TDV is
additively incorporated into the state evolution equation of
LDS in one model (KF2) and two hierarchical LDS are built
with the TDV in the another model (KF3). The advantage of
our models, compared to previous time series models, are:
• No intermediate transformations are required to model

irregularly sampled time series.
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• No imputation is required during prediction.
• Our hierarchical model captures the dependency be-

tween measurement time intervals and the measurement
values, seen in clinical time series as measurements are
often more frequent for more severely ill patients.

We evaluate both the models on real patient data com-
prising irregularly sampled clinical time series (physiological
vitals) on prediction and imputation tasks. We show that by
extending LDS models to account for the irregularity, we ob-
tain better models of clinical time series. These models when
used for prediction and imputation are found to be superior
to state-of-the-art methods that assume regular sampling.

A. Related Work

There have been several attempts to address irregular
sampling in time series. A popular scheme that is often used
is the lifting technique [6], [7] where the observations and
state variables are binned into regular periodic intervals in
an attempt to convert time-varying multirate systems into
a time-invariant single rate system. While this approach
is applicable for problems where the sampling pattern is
periodic over a larger interval, it becomes intractable when
the samples are completely irregularly sampled.

In [5], [8] two approaches are detailed to model irregularly
sampled time series. In an approach called the direct value
interpolation, a pre-specified fixed sampling rate is assumed
and observation values at these points are interpolated using
various techniques. Further this interpolated time series is
used to train a regular LDS. Another approach is the window-
based segmentation approach which is similar to the lifting-
based technique. Here the time series is first segmented to
intervals of fixed-sized windows. Subsequently, the behavior
in each window is summarized in terms of its statistics which
are then used in a model such as LDS or a Gaussian process.
In both of these approaches, the principle is to convert an
irregularly sampled time series into a uniformly sampled time
series and subsequently use it in a LDS. Recently, muli-
task Gaussian processes (MTGP) have been used [9], [10]
to model clinical data where irregular sampling is inherently
addressed by using time-dependent kernels which take the
instant at which the measurements are made as inputs.

B. Background and Notation

A Linear Dynamical System, also known as Kalman Filter,
is given by:

zt = Azt−1 + εt

yt = Czt + δt
(1)



where, zt ∈ Rk and yt ∈ Rp respectively denote the
hidden or state-space variables and observation variables at
discrete time intervals t ∈ {1, .., N}; Ak×k and Cp×k respec-
tively denote the state-transition and observation matrices;
εt and δt are the the noise corrupting the state-space and
observation variables, respectively.
In its usual embodiment, a LDS has a deterministic itera-
tive closed-form solution, given the knowledge of system
dynamics (A and C) and parameters of the noise involved.
The system dynamics are often known from the properties
of the physical system being modeled. For example, in a
navigation system the physical laws of motion determine
the system dynamics. However, when the system dynamics
are unknown, the parameters of an LDS can be estimated
from (historical/training) data, for example using expectation
maximization [11] or spectral estimation methods [12].

We assume a dataset of N patients. For each patient
there are p measurement variables. Let yi represent the
ith patient’s multivariate observation sequence of length Ti
where yi = {yit1 , ..., y

i
tTi
}. Note that yi ∈ Rp×Ti and in

general Ti 6= Tj for i 6= j. The observation timestamps
t1, . . . , tTi differ across patients and are not assumed to be
at regular intervals within a patient’s observation sequence.

II. OUR MODELS

We introduce a variable called the temporal difference
variable (TDV) denoted by ∆ defined as follows. For an
observation sequence, given a pair of observations instances
tu and tv , u ≥ v, ∆ is a p-dimensional vector, with the
ith dimension, ∆i

tu,tv = tu − tv if ith data-dimension is
observed at both tu and tv and zero otherwise. The idea
behind the proposed models is to include this variable ∆
in the state equation of the LDS so that the state (and thus
the observation) at a given time not only depends on the
previous state (and observation) but also on the time instant at
which the previous observation was made. This information
is incorporated in a straightforward manner – shown in model
KF2 below. But a better approach is found to be through a
hierarchical model – described in model KF3 below.

A. Model KF2

Model KF2 is a direct way of using the temporal difference
variable in LDS. To our knowledge, this approach has not
been used previously for modeling clinical time series. ∆ is
linearly scaled by a matrix and added in the state equation:

zt = Azt−1 +B∆t,t−1 + εt

yt = Czt + δt
(2)

where, zt ∈ Rk denotes the hidden states; Ak×k denotes
the state transition matrix; ∆t,t−1 denotes the TDV between
the tth and (t − 1)th observations; yt ∈ Rp denotes the
observations; Cp×k denotes the observation matrix which
maps the hidden state space into the observed space. We
assume that both the process noise and observation noise
are zero-mean Gaussian with an unknown co-variance, that
is, εt ∼ N (0, Q), δt ∼ N (0, R). It is to be noted that t and
(t−1) are used just for notational convenience and they only

denote the successive measurement instants in time. Note that
in this model, the hidden states at a given time depends on
the previous state and also the temporal differences of the
measurement instants through B.

Since the noise statistics as well as the system dynam-
ics are unknown for clinical time series, the parameters
of the model that are estimated from training data are
(A,B,C,Q,R).

B. Model KF3

In KF2, TDV does not directly alter the system dynamics
since it does not affect the A matrix. Further, note that
the TDV ∆ is also a temporal evolving parameter. This is
because clinical staff often take more frequent measurements
for more severely ill patients. To account for both these
observations, we design a hierarchical LDS model where two
filters – one on ∆t,t−1 and the other on y – are used.

The filter for ∆t,t−1 can be formulated as:

Λ̃t,t−1 = ÃΛ̃t−1,t−2 + ε̃t

∆t,t−1 = C̃Λ̃t,t−1 + δ̃t
(3)

where, Λ̃t,t−1 ∈ Rk denotes the hidden states; Ã denotes the
k × k state transition matrix; ε̃t ∼ N (0, Q̃) is the process
noise with error covariance Q̃. ∆t,t−1 ∈ Rp denotes the
observations; C̃p×k denotes the observation matrix which
maps the true state space into the observed space; δ̃t ∼
N (0, R̃) is the observation noise with error covariance R̃.

The filter for yt can be formulated as:

zt = Atzt−1 + εt

yt = Czt + δt
(4)

where, zt ∈ Rk denotes the hidden states; At denotes the
k × k state transition matrix at time t; εt ∼ N (0, Q) is
the process noise with error covariance Q. yt ∈ Rp denotes
the observations; Cp×k denotes the observation matrix which
maps the true state space into the observed space; δt ∼
N (0, R) is the observation noise with error covariance R.

We model At as At = A + B∆̃t,t−1, where ∆̃t,t−1
denotes the k× k diagonal matrix with the diagonal entries
as Λ̃t,t−1, (the hidden states corresponding to equation
3). Note that At accumulates the effect of the covariate
∆̃t,t−1 of the TDV on the final state sequence zt and is
a time-varying matrix. The complete set of parameters for
KF3 are (Ã, C̃, Q̃, R̃, A,B,C,Q,R).

III. PARAMETER ESTIMATION

We briefly sketch the method of parameter estimation for
both models KF2, KF3. More details can be found in [11].

For KF2 model described in equation 2, the likelihood of
the data (for a single observation sequence) is given by:

L(θ|D) = p(z1)

T∏
t=2

p(zt|zt−1)

T∏
t=1

p(yt|zt) (5)



p(z1) ∼ N (µ1,Σ1); p(zt|zt− 1) ∼ N (Azt−1 +
B∆t,t−1, Q);p(yt|zt) ∼ N (Czt, R).

Assuming zt to be Markovian and from equations 2 and
5, the log likelihood l(θ|D) for N observation sequences is
given by:
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where X = (zi1 − µ1) and Y = (zit − Azi(t−1) −
B∆i,t,t−1) and Z = (yit − Czit).

We use Expectation Maximization (EM) to estimate the
parameters. Below we state the update equations for ith

iteration for the parameters A, B and C below. Other update
equations can be derived easily and are not shown.

A(i) = (
N∑
i=1

Ti∑
t=2

zitz
′
i(t−1)

̂zitz′i(t−1) −

N∑
i=1

Ti∑
t=2

B(i−1)∆i,t,t−1zi(t−1) ̂zi(t−1)′)×
(
N∑
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Ti∑
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′
i(t−1)

̂zi(t−1)z
′
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−1
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where zitẑit = E(zit|y1:Ti
) ; zitz

′
itẑitz

′
it =

E(zitz
′
it|y1:Ti) and zitz

′
i(t−1)

̂zitz′i(t−1) =

E(zitz
′
i(t−1)|y1:Ti) are obtained via Kalman smoothing

and filtering equations [13].
In the case of model KF3, there are two filters given by

equations 3 and 4. For the first filter (equation 3), parameters
are estimated using update equations as described in [11].
For the second filter (equation 4), the log-likelihood is
identical to equation 6 except that Y = (zit − Azi(t−1) −
B∆̃i,t,t−1zi(t−1)). Note that ∆̃i,t,t−1 is obtained from state
equations of the filter from equation 3. Thus the parameters
for this filter can be easily obtained using EM, similar to that
of KF2.

IV. EXPERIMENTS AND RESULTS

A. Data

To evaluate our models, we use clinical time series of 1000
(randomly sampled) patients from the MIMIC-II publicly
available database [14] containing patient records from In-
tensive Care Units (ICU). We use three vital measurements:
Systolic blood pressure (BPS), Respiration Rate (RR) and
Heart Rate (HR) for our experiments. The measurement
intervals in the data are between 1 second and 1 minute.
Measurement intervals outside the ICU is typically much
larger, in several hours. To simulate such a setting, we
randomly remove measurements to create an irregularly
sampled dataset.

B. Experiment Protocol

We test the performance of our model on two tasks: (1)
imputation (2) prediction. For the imputation task, in each
time series, 20% of the data is randomly removed which
then are imputed using our model and other techniques. In
the prediction task, given an observation and the instant at
which the next observation is to be made (this defines the
TDV, ∆), the subsequent observation is predicted. All the
experiments are cross-validated over five folds of data splits.
The evaluation metrics are the mean and standard deviation
of the root mean squared error (RMSE) computed between
the imputed/predicted values and the actual values given

by
√∑n

i=1(ŷi−yi)2

n , where ŷi is the predicted/imputed value
given for the true value yi and n is the total number of
predictions made.

C. Baseline methods

For prediction experiments we use three baselines, two
of which are previously known: Multi-task Gaussian Pro-
cess (MTGP) [9], [10] and Kalman Filter (KF1) (model
described in equation 2). Recall that in the KF1 model,
we assume (incorrectly) that the sampling is uniform. Thus,
given a current observation, the prediction for the next
observation is the same irrespective of the instant at which
it is made. The third baseline, denoted by Particle Filter
uses non-linear state-space models (NSS) as described in
[15]. Here, the state equation is linear and the observation
equations are modeled using a non-linear Gaussian mixed
model. However, to handle irregular sampling, we replace
the linear state equation by the state equation of KF2 thus
using the temporal difference variable. The likelihood of this
NSS model is derived using a particle filter [16]. To our
knowledge this variant of NSS has not been studied before.

For imputation, We compare our method with state–of–
the–art imputation techniques: MICE [17], MTSDI [18] and
AMELIA II [19]. MICE and AMELIA are general purpose
imputation techniques whereas MTSDI is designed for time
series data (implicitly assuming regular sampling).



D. Results

Fig. 1. RMSE for prediction task on Systolic Blood Pressure (BPS), Heart
Rate (HR) and Respiration Rate (RR) on patient vitals from MIMIC-II.
Lower value is better.

Figure 1 shows the mean RMSE for individual vitals
(along with standard deviations) for the prediction task. KF3
outperforms all the other techniques. This implies that using
TDV in an LDS hierarchically, models the data very well. It
is also seen that the particle filter based model is comparable
to KF2 which suggests that a linear model is sufficient to
fit the data well. The variance in the performance of KF2 is
found to be lesser. The effectiveness of both the models, seen
through better performance over KF1, thus can be attributed
to the use of TDV. MTGP has lower performance than all
the other state-space models.

Fig. 2. RMSE for imputation task on Systolic Blood Pressure (BPS),
Heart Rate (HR) and Respiration Rate (RR) on patient vitals from MIMIC-
II. Lower value is better.

Figure 2 shows the mean RMSE for individual vitals
(along with standard deviations) for the imputation task.
Among the baselines MTSDI that is designed for time series
data outperforms MICE and AMELIA. Both KF2 and KF3
that do not assume regular sampling outperforms MTSDI
with KF3 showing the best performance.

V. CONCLUSION

In this paper, we design models based on linear dy-
namical systems for irregularly sampled time series data
using a temporal difference variable (TDV), that captures

the dependencies between consecutive state and observation
variables. TDV is additively used in one model (KF2) and
hierarchically in the another model (KF3). Prediction and
imputation experiments are conducted on irregularly sampled
physiological vitals obtained from the MIMIC-II database.
Experiments show that our models perform better than state-
of-the-art methods thus revealing the value of the TDV in
modeling irregular sampling. The dependency of the time
interval between measurements on the patient’s condition,
observed in clinical time series, is also effectively modeled
by our hierarchical KF3 model.
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