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Saddle Points on Potential Energy Surfaces
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ABSTRACT

The task of finding saddle points on potential energy surfaces plays a crucial role in under-
standing the dynamics of a micromolecule as well as in studying the folding pathways of
macromolecules like proteins. The problem of finding the saddle points on a high dimen-
sional potential energy surface is transformed into the problem of finding decomposition
points of its corresponding nonlinear dynamical system. This paper introduces a new method
based on TRUST-TECH (TRansformation Under STability reTained Equilibria CHaracter-
ization) to compute saddle points on potential energy surfaces using stability boundaries.
Our method explores the dynamic and geometric characteristics of stability boundaries of
a nonlinear dynamical system. A novel trajectory adjustment procedure is used to trace
the stability boundary. Our method was successful in finding the saddle points on different
potential energy surfaces of various dimensions. A simplified version of the algorithm has
also been used to find the saddle points of symmetric systems with the help of some analyt-
ical knowledge. The main advantages and effectiveness of the method are clearly illustrated
with some examples. Promising results of our method are shown on various problems with
varied degrees of freedom.

Key words: potential energy surfaces, saddle points, stability boundary, minimum gradient point,
computational chemistry.

I. INTRODUCTION

Recently, there has been a lot of interest across various disciplines to understand a wide
variety of problems related to bioinformatics. One of the most challenging problems in the field of

bioinformatics is de novo protein structure prediction where the structure of a protein is estimated from
some complex energy functions. Scientists have related the native structure of a protein structurally to the
global minimum of the potential energy surface of its energy function (Dill et al., 1997). If the global
minimum could be found reliably from the primary amino acid sequence, it would provide us with new
insights into the nature of protein folding. However, understanding the process of protein folding involves
more than just predicting the folded structures of foldable sequences. The folding pathways in which the
proteins attain their native structure can deliver some important information about the properties of the
protein structure (Merlo et al., 2005).
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Proteins usually have multiple stable macrostates (Erman et al., 1997). The conformations associated
with one macrostate correspond to a certain biological function. Understanding the transition between
these macrostates is important to comprehend the interplay between that protein with its environment, and
to understand the kinetics of the folding process, we need the structure of the transition state. Since, it
is difficult to characterize these structures by manual experiments, simulations are an ideal tool for the
characterization of the transition structures. Recently, biophysicists started exploring the computational
methods that can be used to analyze conformational changes and identify possible reaction pathways
(Bokinsky et al., 2003). In particular, the analysis of complex transitions in macromolecules has been
widely studied (Henkelman et al., 2000a).

From a computational viewpoint, transition state conformations are saddle points. Saddle points are the
points on a potential energy surface where the gradient is zero and where the Hessian of the potential
energy function has only one negative eigenvalue (Heidrich et al., 1991). Intuitively, this means that a
saddle point is a maximum along one direction but a minimum along all other orthogonal directions.
Figure 1 shows a saddle point (xd ) located between two local minima (x1

s and x2
s ) and two local maxima

(x1
m and x2

m). As shown in the figure, the saddle point is a maximum along the direction of the vector
joining the two local minima and a minimum along its orthogonal direction (or the direction of the vector
joining the two local maxima). The direction in which the saddle point is the maximum is usually unknown
in most of the practical problems and is the direction of interest. This makes the problem of finding the
saddle points more challenging than the problem of finding local minima on a potential energy surface.
In terms of transition states, saddle points are local maxima with respect to the reaction coordinates for
folding and local minima with respect to all other coordinates. The search for the optimal transition state
becomes a search for the saddle points at the edge of the potential energy basin corresponding to the initial
state. Hence, finding the saddle points on potential energy surfaces is a challenging problem and will give
new insight into the folding mechanism of proteins.

The primary focus of this paper is to find the saddle points on different potential energy surfaces
with varied degrees of freedom using TRUST-TECH based strategies (Chiang and Chu, 1996; Lee and
Chiang, 2004). The saddle point to be found is between two known neighborhood local minima. Section II
briefly describes some related methods that were developed for finding saddle points. Section III gives
the necessary theoretical background of our approach and describes the problem formulation. Section IV
explains the various steps involved in our approach. The implementation details along with the pseudocode
of different procedures are provided in Section V. Results of our method on different systems are clearly
illustrated in Section VI with some relevant discussions. Finally, conclusions and future plans of our
research are discussed in Section VII.

FIG. 1. The surface and contour plots of a two-dimensional energy function. A saddle point (xd ) is located between
two local minima (x1

s and x2
s ). Points x1

m and x2
m are two local minima located in the orthogonal direction.
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II. RELEVANT BACKGROUND

The task of finding saddle points has been a topic of active research in the field of computational
chemistry for almost two decades. Recently, there has also been some interest in finding the saddle points
of the Lennard–Jones clusters since it will give some idea about the dynamics of the system (Doye and
Wales, 2002). The properties of higher-index saddle points have been invoked in recent theories of the
dynamics of supercooled liquids. Since the saddle points are related to the eigenvalues of the Hessian
matrix, several methods have been proposed in the literature that are based on the idea of digitalization of
the Hessian matrix (Khait et al., 1995; Baker, 1986; Helgaker, 1991). Some improved methods dealing with
the updates of Hessian matrix have also been proposed (Quapp et al., 1998). Even though these methods
appear to find saddle points accurately, they work mainly for low dimensional systems. These methods are
not practical for higher dimensional problems because the computational cost increases tremendously as
the number of dimensions increases.

However, some methods that work without the necessity for computing the second derivatives have been
developed. Because of the scalability issues, much more importance is given to the algorithms that use
only the first derivatives to compute the saddle points. A detailed description of the methods that work
based only on first derivatives along with their advantages and disadvantages is given in a recent review
paper (Henkelman et al., 2000a). The various methods that are used to find saddle points are the drag
method (Henkelman et al., 2000a), dimer method (Henkelman et al., 1999), self-penalty walk (Czerminski
and Elber, 1990), activation relaxation technique (Barkema and Mousseau, 1996), ridge method (Ionova
and Carter, 1993), conjugate peak refinement (Fischer and Karplus, 1992), DHS method (Dewar et al.,
1984), nudged elastic band (Jonsson et al., 1998; Henkelman et al., 2000b), and step and slide (Miron
and Fichthorn, 2001). Continuation methods for finding the saddle points are described by Lastras (1998).
Almost all these methods except the dimer method are used to identify the saddle point between two given
neighboring local minima. Though the dimer method successfully finds the saddle points in those cases
where only one minimum is given, it does not have a good control over which saddle point it intends
to find.

All these methods start searching for saddle points from the local minimum itself, and hence they need
to compute the first derivative. However, our approach doesn’t require the gradient information starting
from the local minima. It will find the stability boundary in a given direction and then trace the stability
boundary till the saddle point is reached (Reddy and Chiang, 2005). This tracing of the stability boundary
is more efficient than looking for saddle points in the entire search space. This paper presents a completely
novel stability boundary based approach to compute the saddle point between two given local minima. Our
method is based on some of the fundamental results on stability regions of nonlinear dynamical systems
(Chiang et al., 1988; Chiang and Fekih-Ahmed, 1996; Lee and Chiang, 2004).

III. PROBLEM FORMULATION AND TRANSFORMATIONS

This section introduces some of the terminology needed to understand our approach. Most importantly,
this section deals with the transformation of the potential energy function into a nonlinear dynamical system.
It also gives the correspondence between all the saddle points of an n-dimensional potential energy surface
and that of its nonlinear dynamical system.

A. Mathematical preliminaries

Before presenting the details of our method, we review some fundamental concepts of nonlinear dy-
namical systems. Let us consider an unconstrained search problem on an energy surface defined by the
objective function

f (x) (1)

where f (x) is assumed to be in C2(�n,�).
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Definition 1. Point x̄ is said to be a critical point of (1) if it satisfies the following condition.

∇f (x̄) = 0 (2)

A critical point is said to be nondegenerate if at the critical point x̄ ∈ �n, dT∇2
xxf (x̄)d �= 0 (∀d �= 0).

We construct the following negative gradient system in order to locate critical points of the objective
function (1):

dx

dt
= −∇f (x) (3)

where the state vector x belongs to the Euclidean space �n and the vector field f : �n→ �n satisfies the
sufficient condition for the existence and uniqueness of the solutions. The solution curve of Equation (3)
starting from x at time t = 0 is called a trajectory and it is denoted by �(x, ·) : � → �n. A state vector
x is called an equilibrium point of Equation (3) if f (x) = 0.

Definition 2. An equilibrium point is said to be hyperbolic if the Jacobian of f at point x has
no eigenvalues with zero real part. A hyperbolic equilibrium point is called a (asymptotically) stable
equilibrium point (SEP) if all the eigenvalues of its corresponding Jacobian have negative real part.
Conversely, it is an unstable equilibrium point if some eigenvalues have a positive real part.

An equilibrium point is called a type-k equilibrium point if its corresponding Jacobian has exact k

eigenvalues with positive real part. When k = 0, the equilibrium point is (asymptotically) stable and it is
called a sink (or attractor). If k = n, then the equilibrium point is called a source (or repeller).

A dynamical system is completely stable if every trajectory of the system leads to one of its stable
equilibrium points. The stable (Ws(x̃)) and unstable (Wu(x̃)) manifolds of an equilibrium point, say x̃, is
defined as

Ws(x̃) =
{
x ∈ �n : lim

t→∞�(x, t) = x̃
}

, (4)

Wu(x̃) =
{
x ∈ �n : lim

t→−∞�(x, t) = x̃

}
. (5)

The stable and unstable manifolds of an equilibrium point are said to satisfy the transversality condition
if either they do not intersect at all, or at every intersection point x0 between these two manifolds, the
tangent spaces of Ws(x0) and Wu(x0) span �n. This is shown in Equation (6)

T (Ws(x0))⊕ T (Wu(x0)) = �n (6)

Definition 3. The stability region (also called region of attraction) of a stable equilibrium point xs of
a dynamical system (3) is denoted by A(Xs) and is

A(xs) =
{
x ∈ �n : lim

t→∞�(x, t) = xs

}
. (7)

The boundary of stability region is called the stability boundary of xs and will be denoted by ∂A(xs).
It has been shown that the stability region is an open, invariant, and connected set (Chiang et al., 1988).
From the topological viewpoint, the stability boundary is an (n− 1) dimensional closed and invariant set.
A new concept related to the stability regions, namely, the quasi-stability region (or practical stability
region), was developed by Chiang and Fekih-Ahmed (1996).

Definition 4. The practical stability region of a stable equilibrium point xs of a nonlinear dynamical
system (3), denoted by Ap(xs) is

Ap(xs) = int A(xs) (8)
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where Ā denotes the closure of A and int Ā denotes the interior of Ā. Set int A(xs) is an open set. The
boundary of practical stability region is called the practical stability boundary of xs and will be denoted
by ∂Ap(xs).

It has been shown that the practical stability boundary ∂Ap(xs) is equal to ∂Ā(xs). The practical
stability boundary is a subset of its stability boundary. It eliminates the complex portion of the stability
boundary which has no “contact" with the complement of the closure of the stability region. A complete
characterization of the practical stability boundary for a large class of nonlinear dynamical systems can be
found in Chiang et al. (1988).

Definition 5. A type-1 equilibrium point xd (k = 1) on the practical stability boundary of a stable
equilibrium point xs is called a decomposition point.

In this paper, the task of finding saddle points is transformed into the task of finding the decomposition
points on the stability boundary between two stable equilibrium points (i.e., the two local minima). The
advantage of our approach is that this transformation into the corresponding dynamical system will yield
more knowledge about the various dynamic and geometric characteristics of the original surface and leads
to the development of a powerful method for finding saddle points.

B. Theoretical background

To comprehend the transformation, we need to define the energy function. A smooth function V (·) :
�n → �n satisfying V̇ (�(x, t)) < 0 , ∀ x /∈ {set of equilibrium points (E)} and t ∈ �+ is called the
energy function.

Theorem 3.1 (Chiang and Chu, 1996). Function f (x) is a Lyapunov function for the negative quasi-
gradient system (3).

Proof. See Appendix C.

The stability region of a stable equilibrium point can be completely characterized for a fairly large class
of nonlinear systems. Consider the gradient system described by (3) satisfying the following assumptions:

(A1) The critical elements on the stability boundary are hyperbolic and finite in number.
(A2) The stable and unstable manifolds of the critical elements on the stability boundary satisfy the

transversality condition.
(A3) Every trajectory on the stability boundary approaches one of the critical elements as t →∞.

We present the conditions for an equilibrium point to be on the ∂A(xs). This is a key step in the complete
characterization of ∂A(xs).

Theorem 3.2 (Chiang et al., 1988). Let A(xs) be the stability region of nonlinear dynamical system (3).
Let σ �= xs be a hyperbolic critical element of system (3). If assumptions (A1)–(A3) are satisfied, then

1. σ ∈ ∂A if and only if Wu(σ) ∩ A(xs) �= ∅.
2. σ ∈ ∂A if and only if Ws(σ) ⊂ ∂A(xs).

Theorem 3.3 (Chiang and Fekih-Ahmed, 1996). Characterization of stability boundary. Consider
a nonlinear dynamical system described by (3) which satisfy assumptions (A1)–(A3). Let σi , i = 1, 2, . . .

be the equilibrium points on the stability boundary ∂A(xs) of a stable equilibrium point, say xs . Then

∂A(xs) =
⋃

σi∈∂A

Ws(σi). (9)

Theorem 3.3 completely characterizes the stability boundary for nonlinear dynamical systems satisfying
assumptions (A1)–(A3) by asserting that the stability boundary is the union of the stable manifolds of all
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critical elements on the stability boundary. This theorem gives an explicit description of the geometrical
and dynamical structure of the stability boundary. This theorem can be extended to the characterization of
the practical stability boundary in terms of the stable manifold of the decomposition point.

Theorem 3.4 (Chiang and Fekih-Ahmed, 1996). Characterization of practical stability boundary.
Consider a nonlinear dynamical system described by (3) which satisfy assumptions (A1)–(A3). Let σi , i =
1, 2, . . . be the decomposition points on the practical stability boundary ∂Ap(xs) of a stable equilibrium
point, say xs . Then

∂Ap(xs) =
⋃

σi∈∂Ap

Ws(σi). (10)

Theorem 3.4 asserts that the practical stability boundary is contained in the union of the closure of
the stable manifolds of all the decomposition points on the practical stability boundary. Hence, if the
decomposition points can be identified, then an explicit characterization of the practical stability boundary
can be established using (10).

Theorem 3.5 (Lastras, 1998). Unstable manifold of type-1 equilibrium point. Let x1
s be a stable

equilibrium point of the gradient system (3) and xd be a type-1 equilibrium point on the practical stability
boundary ∂Ap(xs). Assume that there exist ε and δ such that ‖∇f (x)‖ > ε unless x ∈ Bδ(x̂), x̂ ∈ {x :
∇f (x) = 0}. If assumptions (A1)–(A3) are satisfied, then there exists another stable equilibrium point x2

s

to which the one dimensional unstable manifold of xd converges. Conversely, if Ap(x1
s )

⋂
Ap(x2

s ) �= ∅,
then there exists a decomposition point xd on ∂Ap(x1

s ).

Theorem 3.5 is imperative to understand some of the underlying concepts behind the development of our
method. It associates the notion of stable equilibrium points, practical stability regions (Ap(xs)), practical
stability boundaries (∂Ap(xs)), and type-1 equilibrium points. As shown in Fig. 2, The unstable manifold

FIG. 2. Phase potrait of the gradient system corresponding to Fig. 1. The solid lines represent the basin boundary

which shows that ∂Ap(x1
s ) = ∪3

i=1Ws(xi
d
). The local minima x1

s and x2
s correspond to the stable equilibrium points

of the gradient system. The saddle point (x1
d
) corresponds to the decomposition point of the gradient system.
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(Wu) of the decomposition point x1
d converges to the two stable equilibrium points x1

s and x2
s . Also, it

should be noted that x1
d is present on the stability boundary of x1

s and x2
s .

We also need to show that under the transformation from (1) to (3), the properties of the critical points
remain unchanged. Theorem 3.6 illustrates the correspondence of the critical points of the original system.
In this paper, we are particularly interested in the properties of the saddle points and their one-to-one
corrspondence to decomposition points.

Theorem 3.6 (Chiang and Chu, 1996). Critical points and their correspondence. An equilibrium
point of (3) is hyperbolic if, and only if, the corresponding critical point f is nondegenerate. Moreover, if
x̄ is a hyperbolic equilibrium point of (3), then

1. x̄ is a stable equilibrium point of (3) if and only if x̄ is an isolated local minimum for (1),
2. x̄ is a source of (3) if and only if x̄ is an isolated local maximum for (1), and
3. x̄ is a decomposition point of (3) if and only if x̄ is a saddle point for (1).

Proof. See Appendix C.

IV. A STABILITY BOUNDARY BASED METHOD

Our TRUST-TECH based method uses the theoretical concepts of dynamical systems presented in
the previous section. The method described in this section finds the decomposition point when the two
neighborhood local minima are given. Our method is illustrated on a two-dimensional LEPS potential
energy surface (Polanyi and Wong, 1969). The equations corresponding to the LEPS potential are given
in the appendix. The two local minima are A and B, and the decomposition point is DP.

Given: Two neighborhood local minima (A,B)
Goal: To obtain the corresponding decomposition point (DP)

Step 1: Initializing the search direction: Since the location of the neighborhood local minima is already
given, the initial search direction becomes explicit. The vector that joins the two given local minima
(A and B) is chosen to be the initial search direction.

Step 2: Locating the exit point (Xex) (see Fig. 3): Along the direction AB, starting from A, the function
value is evaluated at different step intervals. Since the vector is between two neighborhood local minima,
the function value will monotonically increase and decrease till it reaches the other local minimum (B).
The point where the energy value attains its peak is called the exit point.

Step 3: Moving along the stability boundary to locate the minimum gradient point: We used a novel
trajectory adjustment procedure to move along the practical stability boundary (see Fig. 4). Once the
exit point is identified, the consecutive points on the stability boundary can be identified by this trajectory-
adjustment procedure. The exit point (Xex) is integrated for a predefined number of times. Let m′1 be the
new point obtained after integration. The function value between m′1 and the local minimum is evaluated
and the peak value is obtained. Let the new boundary point along the vector m′1B starting from the
point m′1 and where the value attains the peak be m2. This process is repeated and several points on
the stability bondary are obtained. During this traversal, the value of the gradient along the boundary is
noted, and the process of moving along the boundary is terminated when the minimum gradient point
(MGP) is obtained. In summary, the trajectory of integration is being modified so that it moves towards
the MGP and will not converge to one of the local minima. This is an intelligent TRUST-TECH based
scheme for following the stability boundary which is the heart of the proposed method. This step is
named as the trajectory-adjustment procedure.

Step 4: Locating the decomposition point (DP): The minimum gradient point (mn) obtained from the
previous step will be present in the neighborhood of the decomposition point. A local minimizer to
solve the system of nonlinear equations is applied with mn as initial guess, and this will yield the
decomposition point. A detailed survey about different local minimizations applied to a wide variety of
areas is given by Schlick (2002).
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FIG. 3. Contour plot of a 2-D LEPS potential (described in Appendix A). Each line represents the values of a
constant potential. Points A and B are the two local minima. Point DP is the decomposition point to be computed.
The search direction is the direction of the vector joining AB. The exit point (Xex ) is obtained by finding the peak
of the function value along this vector. The dotted line indicates the stability boundary. The dashed line indicates the
search direction.

FIG. 4. Illustration of step 3 of our algorithm. Xex is the exit point between A and B. Xex is integrated until m′1
is reached and traced back along the vector m′1B to get m2, and so on. Points m2, m3, . . . , are the mn points on
the stability boundary. The nth point is the minimum gradient point where the magnitude of the gradient (GM ) is the
minimum. DP is the decomposition point.
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Remarks:

• The step size to be chosen during the step 2 of our algorithm is very critical for faster computation and
accuracy of the exit point.
• The number of integrations to be performed from a point on the stability boundary (mk) till the new

point (m′k) is reached is problem specific and it depends on the characteristics of the stability region
near the boundary.
• The minimum gradient point is usually in the neighborhood of the decomposition point. Newton’s

method appears to be a good choice for a local solver that can be used to obtain the decomposition
point.

V. IMPLEMENTATION ISSUES

For our illustration, let’s consider an N dimensional function F with variables Xi , where i = 1 . . . N .
From the algorithmic viewpoint, our method consists of three stages: (i) finding exit point, (ii) following
stability boundary, and (iii) local minimization. Let A and B be the given local minima. The psuedocode
for finding the decomposition point is as follows:

point procedure locate_DP(A, B)

Initialize stepsize = 10 // initial evaluation step size
EP ← find_ExitPt(A, B, stepsize) // Exit point
MGP ← Boundary_Following(EP) // Trace the boundary
DP ← local_minimizer(MGP)

return DP

point procedure find_ExitPt(A, B, steps)

1: Initialize eps // accuracy
2: interval = (B − A)/steps
3: cur = eval(A)

4: tmp = A + interval
5: if eval(tmp) < cur then
6: B = 2 ∗ A − B

7: end if
8: for i = 1 to steps do
9: tmp = A + i ∗ interval

10: prev = cur
11: cur = eval(tmp)

12: if prev > cur then
13: newPt = A + (i − 2) ∗ interval
14: BdPt = GoldenSectionSearch(tmp, newPt, eps)
15: return BdPt
16: end if
17: end for
18: return NULL

The procedure find_ExitPt will find the point on the stability boundary between two given points A and
B starting from A (step 2 of our algorithm). If the function value is monotonically decreasing from the
first step, then it indicates that there will not be any boundary in that direction, and the search is changed
to a new direction. The new direction can be obtained by making B = 2A − B. Finding the exit point
can be done more efficiently by first evaluating the function at comparatively large step intervals (see
Fig. 5). The function evaluation is started from a1, a2 and so on. Once a6 is reached, the energy value
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FIG. 5. The plot of the function value along the vector AB. The curve monotonically increases starting from A

and then decreases until it reaches B. Point Xex is the exit point where the function attains its peak value. Points
a1, a2, . . . , a9 are the interval points. The marked circles indicate that the function has been evaluated at these points.
The empty circles indicate the points where the function is yet to be evaluated.

starts to diminish indicating that the peak value has been reached. The golden section search algorithm
(see appendix) is used to efficiently find the exit point within a small interval range where the peak value
is present. The golden section search is applied to obtain the exit point Xex within the intervals a4 and
a6. In fact, golden section search could have been used from the two given local minima. We prefer to
evaluate the function value at certain intervals because using this method the stability boundary can be
identified without knowing the other local minima as well.

Figure 6 shows the other two possibilities of having the interval points. It should be noted that the
golden section search procedure should not be invoked with two consecutive intervals between which the
value starts to diminish. It should be applied to two intervals a4 and a6. The two possibilities are that a5
can be present either to the left of the peak or to the right of the peak. From Fig. 6b, we can see that the
value at a5 is greater than a4 and less than a6 but still the peak is not present between a5 and a6. This is
the reason why the golden section search method should have a4 and a6 as its arguments.

In an ideal case, integration from the exit point will lead to the decomposition point. However, due
to the numerical approximations made, the integration at the exit point will eventually converge to its
corresponding local minimum. Hence, we need to adjust the path of integration so that it can effectively
trace the boundary.

FIG. 6. The interval point a5 can be present either to the left or to the right of the peak. When a6 is reached, the
golden section search method is invoked with a6 and a4 as the interval.
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point procedure Boundary_Following(ExP t)

1: Initialize dt // Integral step size
2: Initialize intsteps // No. of integration steps
3: Initialize smallstep //small step size
4: reduce_flag = OFF // To check if gradient reduced
5: BdPt = ExPt
6: GM_next = GM(BdPt)
7: while (1) do
8: NewPt = integrate(BdPt, intsteps, dt)

9: prevPt = BdPt
10: BdPt = find_ExitPt(NewPt, A, smallstep)

11: GM_prev = GM_next
12: GM_next = GM(BdPt)
13: if GM_next < GM_prev then
14: reduce_flag = ON
15: end if
16: if GM_next > GM_prev & reduce_flag = ON then
17: MGPt = prevPt
18: end if
19: return MGPt
20: end while

The procedure Boundary_Following takes in the exit point as the argument and returns the computed
MGP obtained by tracing the stability boundary starting from the exit point (step 3 of our algorithm).
The point on the stability boundary is integrated a predefined number of times. From the exit point, it is
integrated using the equation shown below.

X(i+1) = X(i) −
(

∂F

∂X(i)

)
. �t (11)

The procedure integrate computes a point (newPt) by integrating a certain number of integral steps
(intstep) with a predefined integration step size (�t) from the boundary point (bdPt). Once again a new
boundary point is obtained from newP t and the local minimum in the other stability region using the
procedure find_ExitPt and this process is repeated. Another important issue to be dealt is when should we
stop this process. For this, we need to compute the magnitude of the gradient at all points obtained on the
stability boundary. The magnitude of the gradient (GM ) is calculated using Equation (12).

GM =
√√√√ N∑

i=1

(
∂F

∂Xi

)2

(12)

where �t is the integral step size. The GM value can either start increasing and then decrease or it might
start decreasing from the exit point. The reduce_flag indicates that the GM value started to decrease. The
two variables GM_next and GM_prev are sed to store the values of the current and previous GM values,
respectively. The MGP is obtained when GM_next > GM_prev and reduce_flag = ON .

VI. RESULTS AND DISCUSSION

A. Test Case 1: Two-dimensional potential energy surfaces

Muller–Brown surface: The Muller–Brown surface forms a standard two-dimensional example of a
potential energy function in theoretical chemistry (Muller and Brown, 1979). This surface was designed
for testing the algorithms that find saddle points. Equation (13) gives the Muller–Brown energy function.



756 REDDY AND CHIANG

FIG. 7. Two dimensional contour plot of the potential energy surface corresponding to the Muller–Brown function
described by Equation (13). Points A, B, C are stable equilibrium points and DP1, DP2 are two decomposition
points. The dashed lines indicate the initial search direction. The dots indicate the results of the trajectory adjustment
procedure. These points are the points on the stability boundary that reach the MGP.

Figure 7 represents the two-dimensional contour plot of the potential energy surface of the Muller–Brown
function.

C(x, y) =
4∑

i=1

Ai exp
[
ai(x − xo

i )2 + bi(x − xo
i )(y − yo

i )+ ci(y − yo
i )2

]
(13)

where

A = (−200.0,−100.0,−170.0,−15.0) a = (−1.0,−1.0,−6.5,−0.7)

xo = (1.0, 0.0,−0.5,−1.0) b = (0.0, 0.0, 11.0, 0.6)

yo = (0.0, 0.5, 1.5, 1.0) c = (−10.0,−10.0,−6.5, 0.7)

As shown in Fig. 7, there are three stable equilibrium points (A,B,C) and two decomposition points
(DP1,DP2) on the muller-brown potential energy surface. Decomposition point 1 is present between A and
B and is more challenging to find, compared to decomposition point 2 which is present between B and C.
Table 1 shows the exact locations and energy values of the local minima and the decomposition points.

Table 1. Stable Equilibrium Points and Decomposition
Points for the Muller–Brown Surface Described in

Equation (13)

Equilibrium points Location Energy value c(·)
SEP A (−0.558, 1.442) −146.7
DP 1 (−0.822, 0.624) −40.67
SEP B (−0.05, 0.467) −80.77
DP 2 (0.212, 0.293) −72.25
SEP C (0.623, 0.028) −108.7
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FIG. 8. The gradient curve corresponding to the various points obtained from the trajectory adjustment procedure.
The graph shows that the magnitude of the gradient slowly increases in the initial phases and then starts to reduce.
The highlighted point corresponds to the gradient at the MGP.

We construct the dynamical system corresponding to (13) as follows:

[
ẋ(t)

ẏ(t)

]
= −

⎡
⎢⎢⎢⎣

∂C

∂x

∂C

∂y

⎤
⎥⎥⎥⎦ , (14)

∂C

∂x
=

4∑
i=1

Ai . P . [2ai(x − xo
i )+ bi(y − yo

i )],

∂C

∂y
=

4∑
i=1

Ai . P . [bi(x − xo
i )+ 2ci(y − yo

i )],

where

P = exp[ai(x − xo
i )2 + bi(x − xo

i )(y − yo
i )+ ci(y − yo

i )2].
The exit point obtained between the local minima A and B is (−0.313, 0.971). Figure 7 shows the results

of our algorithm on a Muller–Brown surface. The dashed lines indicate the initial search vector which is
used to compute the exit point. The dots indicate the points along the stability boundary obtained during
the trajectory adjustment procedure These dots move from the exit point towards the MGP. The gradient
curve corresponding to the points along this stability boundary is shown in Fig. 8. From the MGP, the
local minimizer is applied to obtain the decomposition point (DP 1). The exit point obtained between the
local minima B and C is (0.218, 0.292). It converges to the decomposition point (DP 2) directly when the
local minimizer is obtained. Hence, given the three local minima, we are able to find the two saddle points
present between them using our method.

B. Test Case 2: Three-dimensional symmetric systems

Three-atom Lennard–Jones clusters: This system is mainly used to demonstrate a simplified version of
our algorithm. Our method has some advantages when applied to energy surfaces that are symmetric in
nature. To demonstrate this, we used the Lennard–Jones pair potential which is a simple and commonly
used model for interaction between atoms. The Lennard–Jones potential is given by the Equation (15).
For simplicity, we applied reduced units; i.e., the values of ε and r0 are taken to be unity. A plot of
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FIG. 9. Characteristic curves of the Lennard–Jones potential and the Morse potential with all parameters set to unity.
The solid line represents Lennard–Jones potential (15), and the dashed line represents the Morse potential (17).

the Lennard–Jones Potential of interaction between two atoms generated using Equation (15) is shown in
Fig. 9. The original problem is to find the global minimum of the potential energy surface obtained from
the interaction between N atoms with two-body central forces. In this example, we consider the potential
energy surface corresponding to the three-atom cluster which exhibits symmetric behavior along the x-axis.

V =
N−1∑
i=1

N∑
j=i+1

v(rij )

v(rij ) = ε

[(
r0

rij

)12

− 2

(
r0

rij

)6
]

(15)

where

rij =
√

(xi − xj )2 + (yi − yj )2 + (zi − zj )2

The total potential energy (V ) of the microcluster is the summation of of all two-body interaction terms,
v(rij ) is the potential energy term corresponding to the interaction of atom i with atom j , rij is the
Euclidean distance between i and j , ε describes the strength of the interaction, and r0 is the distance at
which the potential is zero (see Table 2).

For a three atom cluster, let the coordinates be (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3). Though, there
are nine variables in this system, due to the translational and rotational variants, the effective dimension is
reduced to three. This reduction can be done by setting the other six variables to zero. Hence, the effective
variables are (x2, x3, y3).

Table 2. Stable Equilibrium Points and Decomposition
Points for the Three-Atom Lennard–Jones Cluster

Described in Equation (15)

Equilibrium point Location Energy value c(·)
SEP A (1.0, 0.5, 0.866) −3.000
DP 1 (2.0, 1.0, 0.0) −2.031
SEP B (1.0, 0.5, −0.866) −3.000
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We construct the dynamical system corresponding to (15) as follows:

⎡
⎣ẋ2(t)

ẋ3(t)

ẏ3(t)

⎤
⎦ = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂V

∂x2

∂V

∂x3

∂V

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

where

∂V

∂xi

=
3∑

j=1
j �=i

12

(rij )8

[
1−

(
1

rij

)6
]

. (xi − xj )

and

∂V

∂yi

=
3∑

j=1
j �=i

12

(rij )8

[
1−

(
1

rij

)6
]

. (yi − yj ).

Based on the two given local minima, one can compute the exit point analytically (not numerically) since
the system is symmetric. Since the exit point is an exact (not an approximate) value, one can eventually
reach the decomposition point by integrating the exit point. The exit point is (0.0,0.0,0.0), (2.0,0.0,0.0),
(1.0,0.0,0.0).

In this case, the trajectory-adjustment procedure is not needed. Integrating from the exit point will
eventually find the decomposition point. The last two steps of our method, the trajectory-adjustment
procedure and the local minimizer, are not required to obtain the decomposition point. It is clear from the
example above that in all cases where we compute the exit point numerically, we get an approximation
of the exit point which will eventually converge to one of the two local minima after integration. In such
cases, the trajectory-adjustment procedure will guide us to maintain the path along the stability boundary
and prevent us from being trapped in one of the local minima. Hence, a simplified version of our algorithm
is developed for finding saddle points on symmetric surfaces.

C. Test Case 3: Higher dimensional systems

Heptamer island on a crystal: To test our method on a higher dimensional system, we have chosen a
heptamer island on the surface of an face-centered cubic (FCC) crystal. This system will not only illustrate
the atomic scale mechanism of island diffusion on surfaces but also will help us to understand the kinetics
of a process. The atoms interact via a pairwise additive Morse potential described by Equation (17):

V (r) = A
(
e−2α(r−r0) − 2e−α(r−r0)

)
(17)

where A = 0.71 eV, α = 1.61 Å−1, r0 = 2.9 Å.
These parameters were chosen in such a way that it will reproduce diffusion barriers on real surfaces.

The potential was cut and shifted at 9.5 Å. The surface is simulated with a six-layer slab, each layer
containing 56 atoms. The minimum energy lattice constant for the FCC solid is 2.74 Å. The bottom three
layers in the slab are held fixed. A total of 7+168 = 175 atoms are allowed to move during the search for
decomposition points. Hence, this is an example of a 525 (175× 3) dimensional search problem. This is
the same system used in the review paper by Henkelman et al. (2000a). Figure 10 shows the top view of
the initial configuration of the island with a compact heptamer sitting on top of the surface. The shading
indicates the height of the atoms. The white ones are the heptamer island on the surface of the crystal,
and the black ones are at the bottom-most part of the crystal (see Fig. 11).
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FIG. 10. Top view of the surface and the seven atom island on the surface of an FCC crystal. The shading indicates
the height of the atoms.

FIG. 11. Some sample configurations of the heptamer island on the surface of the FCC crystal. First row: saddle
points configurations. Second row: other local minimum energy configurations corresponding to the above saddle point
configurations.

FIG. 12. The gradient curve obtained in one of the higher dimensional test cases.
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Table 3. Results of Our Algorithm on a Heptamer Island over the FCC Crystal with the Number of
Force Evaluations Made to Compute the MGP Given in the Last Column

Saddle no. Emin Esaddle EMGP RMSD �Energy �Force No. of evals

1 −1775.7787 −1775.19 −1775.2139 0.00917 0.02376 0.01833 49
2 −1775.7787 −1775.1716 −1775.1906 0.00802 0.01903 0.01671 43
3 −1775.0079 −1774.8055 −1774.8213 0.0121 0.01578 0.01664 97
4 −1775.006 −1774.8041 −1774.9228 0.03208 0.11868 0.02654 67
5 −1775.0058 −1774.8024 −1774.8149 0.01229 0.01256 0.01704 91
6 −1775.0942 −1774.5956 −1774.3819 0.04285 −0.21362 0.04343 37
7 −1775.0931 −1774.5841 −1774.3916 0.03296 −0.19252 0.03905 43
8 −1775.01 −1774.3106 −1775.0789 0.05287 0.76832 0.04031 97
9 −1775.0097 −1774.3082 −1775.0848 0.05297 0.77662 0.04113 97

10 −1774.3896 −1774.2979 −1774.9551 0.05623 0.65718 0.03103 79
11 −1774.3928 −1774.2997 −1774.9541 0.05615 0.65439 0.03086 79
12 −1774.3933 −1774.2792 −1774.2938 0.02262 0.01450 0.07092 19

Let N be the number of atoms that can move (175) and N ′ be the total number of atoms (343):

V (r) =
N∑

i=1

N ′∑
j=1

A
(
e−2α(rij−r0) − 2e−α(rij−r0)

)
(18)

where rij is the Euclidean distance between i and j . The dynamical system is a 3N column matrix given by

[ẋ1(t) ẋ2(t) .. ẋn(t) ẏ1(t) ẏ2(t) .. ẏn(t) ż1(t) ż2(t) .. żn(t)]
T

= −
[

∂V

∂x1

∂V

∂x2
..

∂V

∂xn

∂V

∂y1

∂V

∂y2
..

∂V

∂yn

∂V

∂z1

∂V

∂z2
..

∂V

∂zn

]T

where

∂V

∂xi

=
n∑

j=1
j �=i

2αA
(
e−α(r−r0) − e−2α(r−r0)

)
.
(xi − xj )

rij
(19)

and derivatives are computed with respect yi and zi in a similar manner.
To illustrate the importance of the minimum gradient point and the effectiveness of the boundary tracing,

we compared our results with other methods reported by Henkelman et al. (2000a). The energy value at
the given local minimum is −1775.7911. Value Emin is the energy at the new local minimum; Esaddle is
the energy value at the saddle point. Value EMGP is the energy at the minimum gradient point; RMSD is
the root mean square distance of all the atoms at the MGP and the saddle point; �Energy is the energy
difference between EMGP and Esaddle; and � Force is the magnitude of the gradient at the MGP. The results
of our method are shown in Table 3. The last column indicates the number of gradient computations that
were made to reach the minimum gradient point. As seen from the table, our method finds the saddle
points with fewer number of gradient computations when compared to other methods. Typically, even the
best available method takes at least 200–300 evaluations of the gradient. For detailed results about the
performance of other methods, refer to Henkelman et al. (2000a). The MGP that was computed in our case
varied from 0.01–0.05. The MGP can be treated as a saddle point for most of the practical applications.
The RMSD (root mean square distance) value between the MGP and the saddle point is very low. The
gradient curve corresponding to this system is shown in Fig. 12.

D. Special cases

Eckhardt surface: The Eckhardt surface (Eckhardt, 1988) is an exceptional case where we need to
perturb the exit point in order to follow the stability boundary. Such cases almost never occur in practice,
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FIG. 13. Two-dimensional contour plot of the potential energy surface of the Eckhardt energy function described by
Equation (20). Points A, B, M are stable equilibrium points, and DP1, DP2 are two decomposition points. The dots
correspond to the points on the stability boundary during the trajectory adjustment procedure.

and hence dealing with such surfaces will not be given much importance. Equation (20) gives the Eckhardt
energy function. Figure 13 represents the two-dimensional contour plot of the potential energy surface of
the Eckhardt function.

C(x, y) = e−[x2+(y+1)2] + e−[x2+(y−1)2] + 4 e−[3(x2+y2)/2] + y2/2 (20)

As shown in Fig. 13, there are two local minima (A,B), and two decomposition points (1,2) on the
Eckhardt potential energy surface. A local maximum is present exactly at the center between the two local
minima. The two decomposition points are on either side of the maximum. Table 4 shows the energy
values at the local minima and the decomposition points.

We construct the dynamical system corresponding to (20) as follows:

[
ẋ(t)

ẏ(t)

]
= −

⎡
⎢⎢⎢⎣

∂C

∂x

∂C

∂y

⎤
⎥⎥⎥⎦ (21)

∂C

∂x
= −2x e−[x2+(y+1)2] − 2x e−[x2+(y−1)2] − 12x e−[3(x2+y2)/2]

∂C

∂y
= −2(y + 1) e−[x2+(y+1)2] − 2(y − 1) e−[x2+(y−1)2] − 12y e−[3(x2+y2)/2] + y

Table 4. Stable Equilibrium Points and Decomposition
Points for the Eckhardt Surface Described in

Equation (13)

Equilibrium points Location Energy value c(·)
SEP A (−3.0, 0.0) 0.0
DP 1 (0.0, 1.4644) 2.0409
SEP B (3.0, 0.0) 0.0
DP 2 (0.0, −1.4644) 2.0409
SEP M (0.0, 0.0) 4.7358
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FIG. 14. Gradient curve corresponding to the various points along the stability boundary on the Eckhardt surface.

This surface can be treated as a special case where there are different critical points lying on the vector
joining the two local minimum. As seen from the figure, there is a local maximum at (0,0), which is the
exit point obtained. It should be noted that this system is also symmetric, and hence one can obtain the
exit point analytically. Since the exit point is also a critical point, the exit point is first perturbed and then
the trajectory adjustment procedure is used to compute the MGP. The two decomposition points are at
(0.0, 1.4644) and (0.0, −1.4644). The gradient curve is shown in Fig. 14.

From this MGP, the local minimizer is applied to obtain the decomposition point (DP1). The other
decomposition point (DP2) is similarly obtained. Our method was also successful in finding saddle points
on other two dimensional test surfaces like Minyaev Quapp (Minyaev et al., 1997), NFK (Neria–Fischer–
Karplus) (Neria et al., 1996), etc.

VII. CONCLUSIONS AND FUTURE RESEARCH

Saddle points play a vital role in realizing the folding pathways of a protein as well as in understanding
the transition state structures during chemical reactions. This paper primarily focuses on a new TRUST-
TECH based method for finding saddle points on potential energy surfaces using stability boundaries.
Our approach is based on some fundamental results of nonlinear dynamical systems. A novel trajectory
adjustment procedure has been used to move along the stability boundary. Our method was able to find
the saddle points on a wide range of surfaces with varying dimensions. The primary advantage of our
method comes from the fact that following the stability boundary is computationally more efficient than
directly searching for a saddle point from the given local minima. The deterministic nature of the algorithm
ensures that the same saddle point is obtained for every run. Very few user-specific parameters makes it
easy for a new user to implement. We have also explored the symmetric behaviour of some energy surfaces
to obtain the exit point analytically and developed a simplified version of our algorithm to compute the
saddle points. The algorithm has also been tested successfully on a heptamer island over the surface of an
FCC crystal.

As a continuation of this work, we are planning to implement a hierarchial approach for finding the
global minimum on a potential energy surface. Combining our approach with any stochastic algorithm
will enable us to search the entire solution space more effectively. This can be done by using the method
presented in this paper as a tool for escaping from a given local minimum to another local minimum
in the neighborhood. Though the current work assumes that the two local minima between which the
saddle point is computed are given, it can be easily extended to find saddle points from a single local
minimum. We would also like to exploit some other application areas where the energy surfaces are more
complicated.
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APPENDIX A: LEPS POTENTIAL

The model of LEPS potential simulates a reaction involving three atoms confined to motion along a
line. Only one bond can be formed either between atoms A and B or between atoms B and C:

C(x, y) = QAB

1+ a
+ QBC

1+ b
+ QAC

1+ c
−

[
J 2

AB

(1+ a)2
+ J 2

BC

(1+ b)2
+ J 2

AC

(1+ c)2
+ JABJBC

(1+ a)(1+ b)

+ JBCJAC

(1+ b)(1+ c)
+ JABJAC

(1+ a)(1+ c)

] 1
2

(22)

where the Q functions represent the Coulomb interactions between electron clouds and the nuclei and the
J functions represent the quantum mechanical exchange interactions. The form of the Q and J functions
is given below:

Q(r) = d

2

(
3

2
e−2α(r−r0) − e−α(r−r0)

)

J (r) = d

4

(
e−2α(r−r0) − 6e−α(r−r0)

)
The parameters were chosen to be a = b = c = 0.05, dAB = dAC = dBC = 4.746, α = 1.942, and
r0 = 0.742. The details about the LEPS potential are given by Polanyi and Wong (1969).

APPENDIX B: GOLDEN SECTION SEARCH

The following procedure describes the golden section search method. Let a and b be the two intervals
between which the exit point is located. The golden section search method computes the exit point with

an accuracy of ±ε; r is the golden mean ( 3−√5
2 ) (Press et al., 1992); and f (x) returns the function value

at point x.

procedure GoldenSectionSearch(a, b, ε)

1: Initialize r = 0.38197 (golden mean)
2: c = a + r(b − a)

3: d = b − r(b − a)

4: while |b − a| > ε do
5: if f (c) > f (d) then
6: b = d, d = c, c = a + r(b − a)

7: else
8: a = c, c = d, d = b − r(b − a)

9: end if
10: end while
11: return b

APPENDIX C: PROOFS

Proof of Theorem 3.1

Proof. Let �(x, t) denote the bounded trajectory starting at x. Consider the time derivative d
dt

f (�(x, t))

along the trajectory. It is clear that d
dt

f (�(x, t)) = −(∇f (�(x, t)))T (∇f (�(x, t))) ≤ 0 moreover,
d
dt

f (�(x, t)) = 0 if, and only if, x ∈ E. Therefore, f (x) is an energy function of the negative quasi-
gradient system (3).
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Proof of Theorem 3.6

Proof. The first part of the proof is published in Chiang and Chu (1996). Function f (x) is a Lyapunov
function (Chiang et al., 1988) for the negative gradient system (3). Hence, every trajectory within the
stability region A(x̄) converges to x̄, and the function value f (x) decreases along every nontrivial trajectory.
So, x̄ is a stable equilibrium point of (3) if and only if there exists a neighborhood N such that f (x)

reaches a local minimum at x = x̄. In a similar manner, we can prove that x̄ is a source of (3) if and only if
x̄ is an isolated local maximum for (1) by inverting the dynamical system (to make the stable equilibrium
point a source) and the energy function (new energy function for the new dynamical system).

To prove that x̄ is a decomposition point of (3) if and only if x̄ is a saddle point for (1), one has to
consider the properties of the second derivatives. Since, all the critical points of (1) and all the equilibrium
points of (3) are the same and Hessian of the original function f (x) and the gradient of (3) at these points
are the same, the corresponding eigenvalues and eigenvectors of are equal. This concludes the proof.

ACKNOWLEDGMENTS

We would like to thank Dr. Graeme Henkelman of University of Texas at Austin for providing the source
code and images of the high dimensional FCC crystal surface. We would also like to thank Dr. Choi, Cornell
University, and Dr. Li, Global Optimal Technology Inc., for some useful discussions.

REFERENCES

Baker, J. 1986. An algorithm for the location of transition states. J. Comp. Chem. 7(4), 385–395.
Barkema, G., and Mousseau, N. 1996. Identification of relaxation and diffusion mechanisms in amorphous silicon.

Phys. Rev. Lett. 77, 43–58.
Bokinsky, G., Rueda, D., Misra, V.K., Gordus, A., Rhodes, M.M., Babcock, H.P., Walter, N.G., and Zhuang, X. 2003.

Single-molecule transition-state analysis of rna folding. Proc. Natl. Acad. Sci. 100, 9302–9307.
Chiang, H., and Chu, C. 1996. A systematic search method for obtaining multiple local optimal solutions of nonlinear

programming problems. IEEE Trans. on Circuits and Systems: I Fundamental Theory and Applications 43(2), 99–109.
Chiang, H., and Fekih-Ahmed, A. (1996). Quasi-stability regions of nonlinear dynamical systems: Theory. IEEE Trans.

on Circuits and Systems 43, 627–635.
Chiang, H., Hirsch, M., and Wu, F.F. 1988. Stability regions of nonlinear autonomous dynamical systems. IEEE Trans.

on Automatic Control 33, 16–27.
Czerminski, R., and Elber, R. 1990. Reaction path study of conformational transitions in flexible systems: Applications

to peptides. J. Chem. Phys. 92, 5580–5601.
Dewar, M., Healy, E., and Stewart, J. 1984. Location of transition states in reaction mechanisms. J. Chem. Soc. Faraday

Transactions 80, 227–233.
Dill, K., Phillips, A., and Rosen, J.B. 1997. Protein structure prediction and potential energy landscape analysis using

continuous global minimization. Proc. 1st Ann. Int. Conf. on Computational Molecular Biology, 109–117.
Doye, J., and Wales, D. 2002. Saddle points and dynamics of Lennard–Jones clusters, solids and supercooled liquids.

J. Chem. Phys. 116, 3777–3788.
Eckhardt, B. 1988. Irregular scattering. Physica D33, 89–98.
Erman, B., Bahar, I., and Jernigan, R.L. 1997. Equilibrium states of rigid bodies with multiple interaction sites.

Application to protein helices. J. Chem. Phys. 107, 2046–2059.
Fischer, S., and Karplus, M. 1992. Conjugate peak refinement: An algorithm for finding reaction paths and accurate

transition states in systems with many degrees of freedom. Chem. Phys. Lett. 192, 252–261.
Heidrich, D., Kliesch, W., and Quapp, W. 1991. Properties of chemical interesting potential energy surfaces. Lecture

Notes in Chemistry 56.
Helgaker, T. 1991. Transition state optimizations by trust-region image minimization. Chem. Phys. Lett. 182(5),

503–510.
Henkelman, G., Johannesson, G., and Jonsson, H. 1999. A dimer method for finding saddle points on high dimensional

potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022.
Henkelman, G., Johannesson, G., and Jonsson, H. 2000a. Methods for finding saddle points and minimum energy

paths. Progress on Theoretical Chemistry and Physics 111, 269–300.



766 REDDY AND CHIANG

Henkelman, G., Uberuaga, B., and Jonsson, H. 2000b. A climbing image nudged elastic band method for finding
saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904.

Ionova, I., and Carter, E. 1993. Ridge method for finding saddle points on potential energy surfaces. J. Chem. Phys.
98, 6377–6386.

Jonsson, H., Mills, G., and Jacobsen, K.W. 1998. In Berne, B.J., Ciccotti, G., and Coker, D.F., eds., Classical and
Quantum Dynamics in Condensed Phase Simulations, chapter Nudged Elastic Band Method for Finding Minimum
Energy Paths of Transitions, World Scientific, New York.

Khait, Y., Panin, A., and Averyanov, A. 1995. Search for stationary points of arbitrary index by augmented Hessian
method. Int. J. Quantum Chem. 54, 329–336.

Lastras, L. 1998. Continuation Methods and Saddle Points: A New Framework. Master’s thesis, Cornell University.
Lee, J., and Chiang, H. 2004. A dynamical trajectory-based methodology for systematically computing multiple optimal

solutions of general nonlinear programming problems. IEEE Trans. on Automatic Control 49(6), 888–899.
Merlo, C., Dill, K.A., and Weikl, T.R. 2005. Phi values in protein folding kinetics have structural and energetic

components. Proc. Natl. Acad. Sci. 102(29), 10171–10175.
Minyaev, R., Quapp, W., Subramanian, G., Schleyer, P., and Ho, Y. 1997. Internal conrotation and disrotation in

H2BCH2BH2 and diborylmethane 1,3 H exchange. J. Comp. Chem. 18(14), 1792–1803.
Miron, R., and Fichthorn, K. 2001. The step and slide method for finding saddle points on multidimensional potential

surfaces. J. Chem. Phys. 115(19), 8742–8747.
Muller, K., and Brown, L.D. 1979. Location of saddle points and minimum energy paths by a constrained simplex

optimization procedure. Theoret. Chem. Acta 53, 75–93.
Neria, E., Fischer, S., and Karplus, M. 1996. Simulation of activation free energies in molecular systems. J. Chem.

Phys. 105(5), 1902–1921.
Polanyi, J., and Wong, W. 1969. Location of energy barriers. I. Effect on the dynamics of reactions A + BC. J. Chem.

Phys. 51(4), 1439–1450.
Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. 1992. Numerical Recipes in C: The Art of Scientific Com-

puting, Cambridge University Press, London.
Quapp, W., Hirsch, M., Imig, O., and Heidrich, D. 1998. Searching for saddle points of potential energy surfaces by

following a reduced gradient. J. Comp. Chem. 19, 1087–1100.
Reddy, C., and Chiang, H. 2005. Finding saddle points using stability boundaries. Proc. 2005 ACM Symp. on Applied

Computing, 212–213.
Schlick, T. 2002. Molecular Modeling and Simulation: An Interdisciplinary Guide, chapter Multivariate Minimization

in Computational Chemistry, Springer Verlag, New York.

Address correspondence to:
Chandan K. Reddy

304 Phillips Hall
School of Electrical and Computer Engineering

Cornell University
Ithaca, NY 14850

E-mail: ckr6@cornell.edu


