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Abstract  Various forms of additive modeling techniques have been successfully used in
many data mining and machine learning—related applications. In spite of their great success,
boosting algorithms still suffer from a few open-ended problems that require closer investi-
gation. The efficiency of any additive modeling technique relies significantly on the choice of
the weak learners and the form of the loss function. In this paper, we propose a novel multi-
resolution approach for choosing the weak learners during additive modeling. Our method
applies insights from multi-resolution analysis and chooses the optimal learners at multiple
resolutions during different iterations of the boosting algorithms, which are simple yet pow-
erful additive modeling methods. We demonstrate the advantages of this novel framework in
both classification and regression problems and show results on both synthetic and real-world
datasets taken from the UCI machine learning repository. Though demonstrated specifically
in the context of boosting algorithms, our framework can be easily accommodated in general
additive modeling techniques. Similarities and distinctions of the proposed algorithm with
the popularly used methods like radial basis function networks are also discussed.

Keywords Boosting - Regression - Classification - Weak learner - Additive models -
Gaussian kernel - Multi-resolution

1 Introduction
In statistical data mining, boosting methods have been proven to be very effective for not

only improving the classification accuracies but also reducing the bias and variance of
the estimated classifier. The boosting meta-algorithm is an efficient, simple and easy to
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Fig. 1 Model-driven multi-resolution boosting: Every iteration of boosting considers all the datapoints. The
model complexity of the model (a decision tree in this case) is increased as the algorithm progresses. a—d Tree
models with different model complexity starting with a decision stump (a). The term ‘complexity’ used here
is reflected by the number of splits in the tree

manipulate additive modeling technique that can use potentially any weak learner available
[15]. The most popular variant of boosting, namely the AdaBoost (Adaptive Boosting) in
combination with the trees, has been described as the “best off-the-shelf classifier in the
world” [7]. In simple terms, boosting algorithms combine weak learning models that are
slightly better than random models. Boosting algorithms are generally viewed as functional
gradient descent schemes and obtain the optimal updates based on the global minimum of the
error function [11]. Both classification and regression-based boosting algorithms have been
successfully used in a wide variety of applications in the fields of computer vision [33,34],
data retrieval [2,29], bioinformatics [16,18] etc.

In spite of their great success, boosting algorithms still suffer from a few open-ended
issues such as the choice of the optimal set of parameters for the weak learner. The frame-
work proposed in this paper, termed as “Multi-resolution Boosting”, can model any arbitrary
function using the boosting methodology at different resolutions of either the model or the
data. Here, we propose a novel boosting model that can take advantage of using the weak
learners at multiple resolutions. In this work, we achieve the multi-resolution concept in the
context of boosting algorithms by one of the following two ways:

e Model-driven multi-resolution: This is achieved by varying the complexity of the classi-
fication boundary. This approach will provide a systematic procedure that increases the
complexity of the weak learner as the boosting iterations progress. The first few itera-
tions will use weak learners that obtain a simple classification boundary and the bound-
ary becomes more and more complex as the iterations proceed. Figure 1 demonstrates
an example of model-driven multi-resolution boosting. This framework can obtain weak
learners in a systematic manner. The detailed algorithm will be discussed in Sect. 4.1 of
this paper.

e Data-driven multi-resolution: This can be achieved by considering the data (not the
model) at multiple resolutions during each iteration in the boosting algorithm. Our frame-
work chooses the weak learners for the boosting algorithm that can best fit the current
resolution; as the boosting iterations progress, the modeling resolution is increased. Our
algorithm provides the flexibility of choosing the weak learner dynamically compared to
static learners with certain prespecified parameters. For every learner in the boosted model,
the resolution is either maintained or doubled and a weak learner is modeled to accurately
fit the data during that particular iteration. Figure 2 demonstrates an example of data-driven
multi-resolution boosting. This framework is discussed in Sect. 4.2 of this paper.

The main idea of the proposed framework is to use Multi-resolution data (or model)-
driven fitting in the context of additive modeling. The rest of the paper is organized

@ Springer



Multi-resolution boosting for classification and regression problems

PENIANAN

() (d)

Fig. 2 Data-driven multi-resolution boosting considers the same model (e.g. Gaussian) at every iteration.
However, the number of datapoints that will be modeled during each iteration will be reduced as the algorithm
progresses and hence the kernel width of the model is reduced. a—d The width of the Gaussian weak regressor
is being reduced since the number of datapoints that are modeled is reduced

as follows: Sect. 2 gives some relevant background on various boosting techniques and
scale-space kernels. Section 3 shows the problem formulation in detail and discusses the
concepts necessary to comprehend our algorithm. Section 4 describes both the model-driven
and the data-driven multi-resolution boosting frameworks. Section 5 gives the experimental
results of our algorithms on both synthetic and real-world datasets. Finally, Sect. 6 concludes
our discussion with future research directions.

2 Relevant background

Ensemble learning is one of the most powerful modeling methods that is effective and suc-
cessful in a wide variety of applications in recent years [25]. Several ensembling techniques
have been proposed in the literature and is still a very active area of research. Boosting [30]
is one of the most widely used algorithm that has caught the attention of several research-
ers working in the areas of data mining and machine learning. As opposed to other popular
ensemble learning techniques like bagging [6], boosting methods reduce the bias and the var-
iance simultaneously [7]. A detailed comparison of other combining schemes is thoroughly
investigated in [3]. A comprehensive study on boosting algorithms and their theoretical prop-
erties are given in [12]. One main advantage of boosting algorithms is that the weak learner
can be a black-box which delivers the result in terms of accuracy. This is a very desirable
property of the boosting algorithms that can be applied in several applications of predictive
modeling [15]. The additive model provides a reasonable flexibility in choosing the optimal
weak learners for a desired task. Various extensions for the original boosting algorithms had
been proposed recently [31,38]. There had also been some work on boosting for regression
problems [10,37]. A detailed study on L, norm-based classification and regression is given in
[8]. The use of various loss functions for the boosting algorithm is discussed in [15]. Several
extensions and theoretical generalizations have also been studied in the literature [9,28,35].
Despite the vast literature on boosting methods, researchers have not investigated the use of
multi-resolution analysis in the context of boosting.

The data-driven multi-resolution framework proposed in this paper has some similarity
with other popularly used models such as Radial Basis Function (RBF) Networks [4]. The
RBF networks rely on the fact that any continuous function can be approximated by a sum
of appropriately chosen Gaussian functions [23]. These networks are one form of neural net-
works that have a static Gaussian function for the hidden layer processing elements to attain
non-linearity. The RBF networks compute the input to output map using local Gaussian
approximators. During the training phase, the centers and width of the Gaussians in the
hidden units along with the weights of the connections are determined. In spite of their
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success, the RBF networks suffer from some of the drawbacks of neural networks such as
fixing the topology, including the number of hidden nodes and the active connections between
the layers [13]. Our algorithm contains very minimal number of user-defined parameters and
does not suffer from these problems. It provides a systematic approach to automatically model
the target function as a linear combination of Gaussian kernels. Being complex models, the
training of RBF networks is difficult and they are more prone to the overfitting problem
compared to the multi-resolution boosting algorithm. Being powerful local approximators,
RBF networks perform poorly on noisy data since the coefficients are adjusted in order to
accommodate local data. These networks do not average out noise over the entire data space.

In this paper, we propose a novel multi-resolution framework for choosing optimal weak
learners during the iterations in boosting. This approach allows for effective modeling of
the dataset at any given resolution [24]. In terms of analyzing (or modeling) a given dataset
at different resolutions, our approach resembles wavelet decomposition techniques that are
effective tools in the field of multi-resolution signal analysis [14,21]. Recently, there had
been extensive use of this multi-resolution ideas in the data mining community [17]. In the
model-driven multi-resolution boosting framework, the models are built by increasing the
complexity during the boosting process. The main advantages of using this multi-resolution
framework in the context of boosting are that they:

allow systematic hierarchical modeling of the final target model.

provide more flexibility by allowing the user to stop at a reasonable resolution.

require fewer predefined user parameters.

avoid the use of good learners in the beginning stages of modeling and progressively use
them toward the end.

3 Problem formulation

We will now provide some notations that are used in the rest of this paper. Table 1 gives the
notations and symbols used in our paper.

Let us consider N i.i.d. training samples D = (X, )) consisting of samples (X,)) =
(x1, y1), (X2, y2), ..., (xn, yn) where X € RV*4 and y e RV*!, y; indicate the final

Table 1 Description of the

notations used Notation Description
N Number of training samples
d Dimensionality of the data
X Input features
Yy Output values
D Data comprising of { X, '}
Xi ith datapoint
Vi Target output of the ith datapoint
f(X) Weak model
F(X) Final model
L Loss function
t Iteration index for additive modeling
T Total number of iterations
r Residual | — F|
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target value to be modeled. In the case of binary classification problems, we have y; €
{—1, +1}, and for regression problems, y; takes any arbitrary real value. In other words, the
univariate response ) is continuous for regression problems and discrete for classification
problems. Now, we will discuss boosting algorithms applied to general classification prob-
lems. We choose to demonstrate the power of scale-space kernels in the context of logitboost
algorithm because of its popularity and the power of additive modeling. The logitBoost
algorithm uses adaptive Newton steps for fitting an additive symmetric logistic model by
maximum likelihood [12].

3.1 Boosting for classification

Algorithm 1 Logitboost algorithm (2 classes)
©)

i

Start with weights w; "~ = %, Initialize F(© (x;) = 0 and probability estimates p(o) (x;) = %, fori =
1,2,...,N
fort =1to T do

1. Compute working response and weights for all datapoints

0 vi =P V)
! pU=D @) - (1= pt=D(xp)

w = p=Diy) . (1 - p(til)(x"))

2. Fit a weak learner f(f) by a weighted least squares regression of zlm

(1)

i

to the training data (x;) using

weights w

n
2
f(t) =arg n}inZw?) (th) — f(xl))
i=1

3. Update the Classifier and the probabilities
1
FOW) = FO0) + 5 1)
-1
PO = (14 exp(=2F0x))

end for
Output the classifier C(X) = sign(F® (x;)).

Algorithm 1 gives generic Logitboost algorithm to solve two-class classification problem.
The basic idea of boosting is to repeatedly apply the weak learner to modified versions of
the data, thereby producing a sequence of weak learners f® (x) forr = 1,2, ..., T where
T denotes predefined number of iterations. Each boosting iteration performs the following
three steps: (1) Computes the response (zl@) and weights (wi(z)) for every datapoint. (2) Fits
a weak learner (f (X)) to the weighted training samples and (3) Computes the error and
updates the final model (F(X)). In this way, the final model obtained by boosting algorithm
is a linear combination of several weak learning models.

In the case of classification problems, the penalty function induced by the error estimation
is given by:

Ly, FO) =1y # FP(x) (1

where 1(.) denotes an indicator function that returns value 0, when y; # F®(x;) and 1
otherwise. In other words, the penalty term is 1 if the ith sample is misclassified and O if it is
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correctly classified. Whether it is a classification or a regression problem, the main challenges
in the boosting framework are the following: (i) the choice of the weak learner and (ii) the
complexity of the weak learner. While choosing a weak learner model can be a complicated
issue, tuning the right complexity for such a weak learner might be even more challenging.
The multi-resolution framework proposed in this paper addresses the second issue.

We represent the probability of y; = 1 by p(x;), where

p(xi) = (1 +exp(=2F (x;))) ™" )

3.2 Boosting for regression

The boosting framework discussed above works for classification problems and can be easily
adapted to solve regression problems. In the case of regression problems, the penalty function
is given by:

L(yi, FOx) = llyi = FO @l 3)

where || - ||, indicates the L, norm. We will consider p = 2 in this paper.

We formulate this multi-resolution boosting using the standard logitBoost algorithm with
exponential L, norm loss function and demonstrate empirical results on both classification
and regression problems. We also derive the update equations for the regression algorithms
using logitboost (Newton’s iteration) and first derivatives. Let us consider the following
exponential loss function

L(y, F) = exp(ly — (F + )II*) 4

Depending on the choice of weak regressor and the rate of convergence, one can use one
of the following update mechanisms :

e Equate the first derivative to zero
e obtain the Hessian and use Quasi-Newton method

Let us consider the residual r = |) — F|.

Lemma 1 During each boosting iteration, the minimum of the loss function is achieved by

setting f = r and the Newton’s update is chosen by setting f = —(I +2rrT)~! .7,

The proof is given in appendix-A. This is the residual fitting used in our data-driven multi-
resolution boosting algorithm.

3.3 Scale-space kernels

Figure 3 demonstrates the data-driven multi-resolution boosting framework. In the beginning
of the iteration, complete input data are considered for fitting a weak model. As the iterations
progress, the number of datapoints considered for fitting is reduced and a Gaussian model is
fit to the data [26]. At every boosting iteration, we obtain an optimal weak model that can
fit the given number of datapoints at that particular resolution of interest. In this manner, we
propose a hierarchical approach for modeling the data using weak models.

The data-driven multi-resolution framework proposed in this paper also uses the concepts
of the scale-space-based methods that were popularly used in the computer vision literature
[19,20]. Let us consider the general regression problem which is a continuous mapping
p(x) : RY — R. More specifically, Gaussian kernels have been extensively studied in this
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Fig. 3 Illustration of the original
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scale-space framework [32]. In scale-space theory, p(x) is embedded into a continuous fam-
ily P(x, o). Our method starts with an approximation of the entire dataset with Gaussian
kernel of o = 0. As the resolution (or scale) increases, the sigma value is reduced and even-
tually converges to zero. In our case, the highest frequency (or resolution) corresponds to
fitting every datapoint with a Gaussian kernel. In simple terms, one can write the new kernel
p(x, o) as a convolution of p(x) with a Gaussian kernel g(x, o) given as follows:

P(x,0)=pkx)®gx,0)= /p(x —-y) e22 dy )

1
o+/2m
The main reasons for choosing Gaussian models as weak regressors because:

They are powerful universal approximators.

Other popular regression models like Radial Basis Functions use Gaussian kernels.

The scale-space theory is well formulated for Gaussian models. Hence, it allows system-
atic hierarchical modeling for regression problems.

As described earlier, choosing optimal o value during every iteration of boosting becomes
a challenging task. In other words, one cannot predetermine the reduction in the o value.

4 Multi-resolution boosting framework

We will now describe both the model-driven and data-driven multi-resolution boosting algo-
rithms. To demonstrate a reasonably wide-range applicability of the multi-resolution frame-
work, we implement our framework using both the adaboost and logitboost algorithms [26,
27]. We show the model-driven multi-resolution algorithm using the adaboost framework
for classification problems and the data-driven multi-resolution algorithm using the logit-
boost framework for regression problems. Though, we chose to demonstrate in this setting,
the proposed framework can be generically applied to both classification and regression in
the context of generic additive modeling approach. It should be noted that the data-driven
multi-resolution is more general and can be applied for both classification and regression
problems. However, the data-driven approach is more applicable for regression problems

@ Springer



C. K. Reddy, J.-H. Park

because of the use of scale-space kernels (discussed in the previous section) that are more
appropriate for regression tasks. The model-driven multi-resolution boosting is more appli-
cable for classification tasks because changing the model complexity is more suitable for
weak classifiers better than weak regressors.

4.1 Model-driven multi-resolution boosting

Algorithm 2 Model-driven multi-resolution boosting

Input: Data (X'), No. of samples (N), No. of iterations (7).
Output: Final model (F)
Algorithm:
Initialize the weight vector WD such that w =1/Nfori=1,2,...,N
nplits =1
fort =1t T do

[f(),erro] = Train_Val(X,W®, nsplits)

[fl erry] = Train_Val(X, w®, nsplits 4 2)

if errg < erry then

fi=Jo e =err

else R
fi=fi ea=ern
nsplits = nsplits + 1
end if

Compute oy = —ln (l f’

(t+1)

Modify the training weight w; as follows:

Dl expany fix)
D _

2t

where z; is the normalization factor (chosen so that Z im1 w(H_l) 1)

end for
Output the final model F(X) = >, a; f;(X)

Algorithm 2 describes our model-driven multi-resolution boosting framework using the
adaboost algorithm for a binary classification problem. The weight vector W is initialized
to 1/N uniformly. The main algorithm runs for a predefined number (7) of iterations. The
procedure Train_Val will obtain weak learner (and the corresponding training error) using
the weights W) . It should be noted that this function returns the error on the validation data
which is then used to decide the complexity of the tree used in that iteration. The number
of splits (nsplits) is a parameter that determines the complexity of the model i.e. the more
the number of splits in the weak learner, the higher the complexity of the model will be. It
is initialized to one at the beginning. As the iterations progress, the complexity of the weak
learner is either retrained or incremented depending upon the training error. The training
error at the rth iteration is given by the following:

N
err(t) = > w - I{yi # fi(x)}

i=1

For every iteration, the training error of the current model is compared with the error of
a slightly complex model (with nsplits + 2 nodes in the tree). If this new model performs
well, then the complexity of the current model is increased (nsplits = nsplits 4+ 1) and the
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re-weighting of the datapoints is computed using this new model. The weights are normalized
(so that they sum to one) in every iteration. o, measures the importance to be assigned to the
weak model in the 7th iteration ( f;). One can see that the algorithm appears to be working in
a similar manner to the traditional adaboost, except for the fact that the choice of the weak
learner is made more systematically from simple to complex and is not chosen arbitrarily as
done in the standard boosting procedure. In this way, the algorithm increases the complexity
of the weak learners chosen, and eventually, the weighted combinations of the selected weak
learners are used as the final trained model. Hence, the model will have a very simple clas-
sification boundary in the initial stages, and the boundary becomes more and more complex
as the iterations proceed.

4.2 Data-driven multi-resolution boosting

In this section, we will describe the data-driven approach where we maintain the same com-
plexity of the weak learner, but change the number of datapoints to be modeled during each
boosting iteration. Algorithm 3 describes our data-driven multi-resolution boosting frame-
work for a regression problem. As mentioned earlier, this approach is demonstrated using the
logitboost algorithm. The initial model is set to null or the mean value of the target values. The
main program runs for a predefined number (7)) of iterations. Initially, 7es (which indicates
the resolution) is set to 1, which implies the simplest model by considering all the datapoints.
The feature values are sorted independently by column-wise and the indices corresponding
to each column are stored. As the iterations progress, the resolution considered for fitting the
weak learner is retained or doubled depending on the error. In other words, depending on the
error obtained at a given iteration, the resolution of the data is maintained or increased for
the next iteration. For every iteration, the residual » is computed depending on the difference
between the target value ()V) and the final model (F). By equating the first derivative of the
loss function (r = L(), F)) to zero, we will set the residual as the data to be modeled during
the next iteration using another weak regressor.! The best multi-variate weak model will be
fitted to this data at a given resolution. The details of the procedure best fit that obtains the
best weak model at a given resolution of the data are described in the next section. This pro-
cedure returns the best weak model ( fo) and the error (errp). The main reason for retaining
the resolution of the next iteration is that sometimes there might be more than one significant
component at that given resolution. One iteration can model only one of these components.
In order to model the other component, one has to perform another iteration of obtaining the
best weak model at the same resolution. Increasing the resolution for the next iteration in
this case might fail to model the component accurately. Only after ensuring that there are no
more significant components at a given resolution, our algorithm will increase the resolution
for the next iteration. Hence, the best weak model corresponding to current resolution or next
higher resolution is obtained at every iteration and the model with the lowest error added to
the final model. Though demonstrated for regression problems, our algorithm can also be
used for classification problems by performing regression on class indicators.

The main aspect of our algorithm, which is the multi-resolution, can be seen from the fact
that the resolution of the data to be modeled is either maintained or increased as the number
of iterations increases. In fact, one might interpret this approach as an improvement in the
weak learner alone because the algorithm proposed here will obtain improved weak learner at
every iteration and hence the overall boosting will have faster convergence. We consider that
our main contribution of this paper is not just at the level of choosing a weak learner but itis at

1 Using the quasi-Newton’s method the data to be modeled in the next iteration will be setto — (I + 2rr Ty-1.,.
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Algorithm 3 Data-driven multi-resolution boosting

Input: Data (X'), No. of samples (N), No. of iterations (7).
Output: Final Model (F)
Algorithm:
setres=1,F =0
fori =1:ddo
/*Get the sorted data and the corresponding indices after sorting */
[X, idx(:, )] =sort(X(:, ))

end for
fort=1:Tdo
r=LQ,F)

[fo,errgl = bestfit(./\;, r,N,d,res,idx)
[f'l, erry] = bestfit(/YA', r,N,d,res x2,idx)
if errg < err) then
F=F+fy
else R
F=F+ f
res =res x?2
end if
end for
return F

the junction of the choice of weak learner and the iterations in the boosting algorithm. Also,
our algorithm obtains the weak models and models the data in a more systematic hierarchical
manner. Most importantly, the increase in the resolution is monotonically non-decreasing,
i.e. the resolution either remains the same or increased.

For every iteration, the best weak model is fitted to the data based on a single feature
value at a given resolution. This is performed using the best fit function in the algorithm.
Changing the resolution can be done either by reducing the complexity of the weak learner
or by changing the number of datapoints. Changing the complexity of the weak model can
be done in a very intuitive manner depending on the choice of the weak learner. For example,
if decision trees are used as a weak learner, the resolution can be changed by changing the
number of levels in the decision tree that is being considered. The initial boosting iterations
use trees with only one level (or decision stumps) and later on the resolution can be increased
by increasing the depth of the tree. One has to note that the complexity of the modeling
(or classification boundary) is significantly increased by changing the resolution.

More theoretical way of approaching this problem is to use scale-space kernel to model a
subset of data and handling the data in a multi-resolution way. The procedure bestgaussfit
(instead of best fit) performs this task for a particular value of resolution. Additive modeling
with smooth and continuous kernels will result in smooth functions for classifier boundary
and regression functions. Gaussian kernels are a simple and a trivial choice for scale-space
kernels that are powerful universal approximators. Also, Gaussian kernels allow generative
modeling of a target function which is good choice for many applications. Choosing optimal
kernel width during every iteration of boosting becomes a non-trivial task. In other words,
one cannot predetermine the reduction in the kernel width.

The basic idea is to slide a Gaussian window across all the sorted datapoints correspond-
ing to each feature at a given resolution (See Fig. 4). Algorithm 4 contains a loop with a
nested loop inside it. The outer loop ensures that the Gaussian fit has to be computed for each
feature and the inner loop corresponds to the sliding Gaussian. In other words, depending on
the given resolution (indicated by n datapoints), a Gaussian kernel containing n datapoints is
moved across all the datapoints and the location where the minimal residual error is obtained.
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Fig. 4 Demonstration of the sliding Gaussian kernel. There are N datapoints and each has its corresponding

N

response as a residual (y-F). A Gaussian kernel of resolution 7 is slided across the entire range of data-
points to find the optimal fit. The optimal fit is obtained by minimizing the L, norm between the residual and
the weighted Gaussian fit. The dotted Gaussians represent the sliding windows, while the dashed Gaussian
represent the active window

Algorithm 4 bestgaussfit

1:

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Input: Sorted feature data (22 ), No. of samples(V), No. of samples to fit Gaussian (n), Residual vector (r),
Sorting indices (idx).

: Output: Best fit Regressor (f), Error (Erryin)
: Algorithm:

. Errpin =MAXDOUBLE

cfori=1:ddo

forj=1:N—-—n+1do
F=XCj:j+n—1
F=r(idx(j:j+n—1,i)
wgt (1 : n) = abs(F(1 : n))/sum(abs(r))
= Eyg(X) = wgt? * %
o = sqri(Eyg (1 — £)%))
f :normpdf(é?, nw,o)
B =sum(r)/sum(f(j:j+n—1))
err = (r—BNHT - (r = Bf)
if err < Erry,j, then
Erryin, = err
f=r
end if A
fp = min(f(1:d))
end for
end for
return {fp, Erryin}

Within each active window, the weight of individual datapoint is computed based on the nor-
malized value 2

2 The weak learner is being fit to the sorted feature data. Hence, the corresponding value must also be sorted
using the idx values. This is done in line 8 of the bestgaussfit procedure.
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The result f is obtained by fitting a normal distribution computed using weighted mean
(n) and standard deviation (o) for the datapoints within this window. After obtaining the
weak learner, it must be scaled (scale factor is B) according to the target values. Finally, the
error is computed between the weak learner and the target values. It should be noted that
the error is not computed using the given window alone. In other words, Gaussian kernel
that will fit the data is computed based on the parameters computed within the window, and
the final error is computed based on the deviation in the entire dataset (not just the active
window). This is a non-trivial aspect in our algorithm and failing to perform this might lead
to erroneous results that might fit the data locally. This is due to the fact that every iteration,
the result will be a local fit to the data and each of this weak learner might not perform well
globally. Finally, the best weak learner across each feature that has the minimum error is
returned.

The resolution is increased at a logarithmic scale. i.e. every time the resolution is doubled
or the number of datapoints considered to fit a Gaussian is halved. In fact, we can use any
other heuristic to change the resolution more efficiently. Experimental results indicated that
this change of resolution is optimal and also this logarithmic change of resolution has nice
theoretical properties.

5 Experimental results

We will now demonstrate our empirical results on both synthetic and real-world datasets.
We will also demonstrate the use of data-driven framework to solve regression problems.
All of our experiments were run in MATLAB 7.0 and on a pentium IV 2.8 GHz machine.
Six different real-world binary classification datasets were chosen from the UCI machine
learning repository [5]. Two different sets of experiments were conducted on these data-
sets to illustrate the power of multi-resolution boosting. To demonstrate the model-driven
framework, decision trees at multiple resolutions (different number of levels in the decision
tree) are considered, and to demonstrate the data-driven framework, scale-space kernels are
considered for fitting the data at multiple resolutions.

5.1 Results for model-driven multi-resolution boosting

Figure 5 shows the results of the multi-resolution boosting algorithm on a synthetic two-
dimensional synthetic binary classification example. Due to the increase in the number of
levels in the decision trees used as weak learners at each iteration, the complexity of the clas-
sification boundary gradually increases as the boosting iterations progress. Figure 6 shows
the test error results on different datasets during the boosting iterations. Comparisons are
made between the standard Adaboost and the multi-resolution boosting framework. One
can see that the error obtained in the multi-resolution boosting procedure is significantly
lower compared to the standard procedure. Under this framework, during the initial iter-
ations of boosting, decision stumps (trees with only one level of child nodes) are used.
As the iterations proceed, more deeper trees (with levels greater than 2) are used for mod-
eling. This way, a hierarchical approach is used for computing the classification bound-
ary from low resolution to high resolution. For example, using a tree with many levels in
the first few iterations in the boosting procedure might obtain a very complicated decision
boundary.
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Fig. 5 Experimental results of the multi-resolution boosting framework along with the number of iterations
using a synthetic two-dimensional binary dataset. ‘*’ Indicates datapoints that belong to class 1 and ‘o’ indi-
cates datapoints that belong to class 2. The classification boundaries and the regions obtained during various
iterations of the data-driven multi-resolution boosting algorithms are indicated by different shaded regions
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5.2 Results on data-driven multi-resolution boosting

We demonstrate the power of data-driven multi-resolution approach using scale-space
kernels on binary classification problems. Experiments on multi-class classification prob-
lems can also be performed using methods similar to [1]. Additive modeling with smooth
and continuous kernels will result in smooth functions for classifier boundary and regression
functions. Since obtaining the width of the kernel during the boosting process can be a chal-
lenging task, the use of scale-space kernels can resolve the problem using adaptive step-sizes
by a ‘global-to-local’ fitting process. One cannot predetermine the reduction in the kernel
width.

We compare the performance of these scale-space kernels with other static and dynamic
kernels. Exhaustive kernel is the most expensive one which tries to fit a kernel of various
widths during each iteration of boosting. Dynamic kernel (or random kernel) fits a kernel of
random width during the boosting process. Static kernels will have fixed width that does not
change during the boosting process. The multi-resolution boosting approach automatically
chooses the optimal width of the kernel and does not require any input from the user. This
is a vital component of the proposed approach since the task of choosing the appropriate
kernel width is the most computationally intensive part. Also, in the case of model-driven
multi-resolution boosting, the user does not need to specify the complexity of a weak learner
(e.g. the depth of a tree in tree-based learners). The algorithm will gradually increase the
complexity of the weak learners starting from simple to complex learners in a systematic
manner. This is one of the most critical parameters in boosting approaches and does not
require any sort of user involvement in our framework. Hence, the proposed model is flexible
with minimal user involvement. Our model still allows for any kind of weak learner, and
hence, it is flexible with any form of weak learners.

Figure 7 shows the Convergence of boosting algorithms with different kernels. Exhaustive
kernel is the fastest and the best kernel in terms of convergence of the training error. Scale-
space kernel converges faster than all other kernels except the exhaustive kernel. Experiments
were conducted using fivefold cross-validation method, and the test results are reported for
the algorithm using various kernels.

We compare the performance of these scale-space kernels with other static and dynamic
kernels. Exhaustive kernel is the most expensive one which tries to fit a kernel of various
widths during each iteration of boosting. Dynamic kernel (or random kernel) fits a kernel of
random width during the boosting process. Static kernels will have fixed widths that do not
change during the boosting procedure. Compared to other static kernels of fixed width, the
scale-space kernel does not suffer from the generalization problem as clearly illustrated by
the results on the test data shown in Table 2. To compare the results using different kernels,
we show the root mean square error (RMSE) between the class labels and the output of the
model, though we used the classification datasets. Scale-space kernel consistently performs
better than the exhaustive or dynamic kernels. For some datasets, wider static kernels per-
form better than the scale-space kernel and for other datasets static kernels with lesser width
perform better. However, scale-space kernels are competitive with the best possible kernels
and can be generically used for any dataset. Overall, the scale-space kernels are two times
cheaper than the static width kernels. One can also see that the results of the scale-space ker-
nels are fairly robust compared to other kernels. This multi-resolution framework provides
a systematic hierarchical approach for obtaining the classification boundary in the context
of additive modeling. To the best of our knowledge, this is the first effort to combine the
multi-resolution concepts with additive modeling.
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Fig. 7 Convergence of boosting algorithms with different kernels on various datasets. Exhaustive kernel is
the fastest in terms of convergence and the scale-space kernel also converges relatively rapidly

Table 2 Performance of scale-space kernels with other kernels on various real-world datasets

Dataset Cancer Ionosphere ~ Sonar Bupa Tic-Tac-Toe Diabetes
Number of samples 569 351 208 345 958 768
Number of features 30 34 60 6 9 8

Static kernel —n/2 044 £0.21 0.60+0.28 0.814+0.36 0.94+0.28 0.83+£0.20 0.82+0.25
Static kernel —n/4  0.45+£0.17 0.58+0.28 0.824+0.26 0.96+0.34 0.76+£0.14 0.80+0.24
Static kernel —n/8  0.49£0.29 0.64£0.32 0964036 0.97+0.25 0.75+0.15 0.81+0.14
Static kernel —8 0.87+£0.26 0.71+£0.24 1.07£0.39 097+0.34 0.75+0.18 0.86+0.23
Dynamic kernel 043+0.18 0.60£0.25 0.87£0.30 093+£0.23 0.764+0.19 0.82+0.27
Exhaustive kernel 048+£0.25 0.65+£0.35 090£0.56 098+0.34 0.754+0.20 0.81%0.26
Scale-space kernel ~ 0.43 £0.21 0.58+0.30 0.844+0.38 0.95+0.36 0.75+£0.19 0.8040.23

Test error along with the standard deviation during fivefold cross validation is reported
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5.2.1 Results on regression problems

Another set of experiments were conducted to demonstrate the effect of multi-resolution
framework using the Gaussian kernels. We performed experiments on both synthetic and
real-world regression datasets. Regression datasets were chosen to demonstrate the capability
of our algorithm to obtain smooth functions. Using boost stumps or trees, one might be able to
obtain more accurate models in terms of metrics such as mean square error and accuracy. But
this will come at a cost of obtaining highly discontinuous models that are not desirable. Hence,
we will now obtain smooth and continuous functions that are useful for regression problems.

We demonstrate the behavior of algorithm on two synthetic sine wave datasets: (1) noise-
free sine wave and (2) the sine wave with Gaussian noise. For the first dataset, 241 samples
were generated from a sine wave (with x from O to 12 uniformly and y = sin(x)). For the
second dataset, Gaussian random noise with zero mean and 0.2 standard deviation is overlaid
onto all the samples of the first dataset. Figure 8 depicts the experiment results using the two
synthetic sine wave datasets: (1) noise-free sine wave in the first row and (2) sine wave with
Gaussian noise in the second row. In Fig. 8, the red dots represent the input data and the blue
lines represent the results of the regression computed using our proposed algorithm. The green
color in the second row of Fig. 8 is the noise-free sine wave which is the same as the red sine
wave in the first row. We overlaid the noise-free sine wave in the second row in order to com-
pare our results not only with the given noisy data but also with the original noise-free data.

We performed experiments using two non-linear regression datasets from NIST StRD
(Statistics Reference Datasets [22]). We selected two datasets : (1) Gauss3 from the cate-
gory of average level of difficulty containing 250 samples with 1 predictor variable (x) and
1 response variable (y). (2) Thurber from the category of high level of difficulty contain-
ing 37 samples with 1 predictor variable (x) and 1 response variable (y). Figure 9 shows
experimental results on these two datasets using the proposed data-driven multi-resolution
boosting algorithm after 1, 5, 10 and 50 iterations are shown. We also ran our experiments
on the following complex real-world datasets [5]:

e Diabetes dataset contains 43 samples with 2 predictor variables.
e Ozone dataset contains 330 samples with 8 predictor variables.
e Abalone dataset contains 4177 samples with 8 predictor variables.

The multi-resolution boosting algorithm is very effective in reducing the error quickly
in the first few iterations. Significant reduction in the training error occurs within first 10
boosting iterations. By using scale-space kernels, one can achieve the optimal point (point
where the over-fitting starts) within this first few iterations. Usually this point is obtained after
at least 40 boosting iterations in the case of static kernels as shown in Fig. 10, which gives
the convergence of the regression error during the boosting iterations. Clearly, the behavior
of the convergence is similar to static kernels of very less width but the error is much lesser
in the case of scale-space kernel. The main reason for using the scale-space framework is
for faster convergence of the results by dynamically choosing the weak regressors during
the boosting procedure. One can also see the comparison between the convergence behavior
of a randomly chosen dynamic kernel versus the scale-space kernel. Choosing an optimal
weak regressor by exploring all possibilities might yield a better result, but it will be com-
putationally inefficient and infeasible for most of the practical problems. For such problem:s,
scale-space kernels will give the users with a great flexibility of adaptive kernel scheme at a
very low computational effort (also considering the fact of speedy convergence). The fact that
the scale-space kernels converge much faster than static kernels makes them more suitable
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Fig. 8 Experimental results along with the number of iterations using two synthetic sinewave datasets. The
first row is a sine wave without noise and the second row is a sine wave with Gaussian noise (u = 0 and
o = 0.2). As the iterations progress, our method models the original sine wave even in the presence of noise
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Fig. 9 Experimental results for Gauss3 (first row) and Thurber (second row) datasets after 1, 5, 10 and 50
iterations
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Fig. 10 Convergence of the regression error during the boosting procedure (training phase) using scale-space
kernel and other static and dynamic kernels of various widths

for additive modeling algorithms. Also, one can see that the results of the scale-space kernels

are fairly robust compared to other kernels.

We also demonstrate the fact that the scale-space framework does not suffer from the over-
fitting problem. Figure 11 shows the train and test errors during the boosting iterations along
with the standard deviation using fivefold cross-validation scheme for different datasets. For
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Fig. 11 Results of training and test error on different datasets using fivefold cross validation. The solid lines
indicate the mean of the error and the dashed lines indicate the standard deviation in the errors

Table 3 Comparison of RMSE

. . Dataset Diabetes Ozone Abalone

values for multi-Resolution

boosting algorithm Wlth other Linear regression 0.6277 4.538 2.4471

state-of-the-art regression

methods on various real-world Isotonic regression 0.7461 5.0 2.4604

datasets. The best results are in Additive regression 0.815 4.9504 2.4439

bold RBF networks 0.6953 69133 28464
Multi-resolution boosting 0.6532 4.4721 2.3979

improving the computational efficiency, the sliding window kernel in the bestgaussfit
procedure is moved in steps of multiple datapoints rather than individual datapoints.
One other advantage of using the scale-space-based boosting approach is that it obtains
smooth regression functions (approximators) at different level of accuracies as shown in our
results. This cannot be achieved using a decision tree or a boosting stump though they might
yield lower RMSE values for prediction. Hence, our comparisons were specifically made
with other smooth kernels that were used in the literature.

5.2.2 Comparison with other methods

We also compared the performance of the multi-resolution boosting algorithm with the other
popular regression algorithms proposed in the literature, namely linear regression, isotonic
regression, additive regression and RBF networks. All comparisons were made using the
Waikato Environment for Knowledge Analysis (WEKA) software [36]. Table 3 reports the
results of fivefold cross validation on different regression datasets. We can see that the multi-
resolution boosting is either comparable or better than RBF networks and other methods
in terms of the RMSE values. One other primary advantage of using the multi-resolution
approach compared to other methods is its simplicity in modeling and learning. As shown in
the graphs of Figure 11, it requires less iteration (approximately ten) for the multi-resolution
algorithm to obtain the optimal model corresponding to the best test error. Hence, the final
model is a combination of ten simpler models, which is easy to explain and evaluate. The
advantage of boosting compared to other methods such as RBF networks and support vector
machines for real-time processing is well documented in the computer vision literature [34].

6 Conclusions and future research

Recently, boosting techniques have received a great attention from several researchers work-
ing in a wide variety of applications in science and engineering. Choosing optimal weak
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learners and setting their parameters during the modeling have been a crucial and challeng-
ing task. In this paper, we proposed a novel boosting algorithm that uses multi-resolution
framework to obtain the optimal weak learner at every iteration. We demonstrated our results
for logitboost-based regression problems on both synthetic and real datasets. We also show
the derivations for the Newton’s method and updates using first derivative for the regression
problem in the logitboost framework with exponential L, norm loss function. Advanta-
ges of our method compared to other standard methods proposed in the literature are also
demonstrated.

As a continuation of this work, we would like to perform the generalization of the multi-
resolution approach for other additive modeling techniques. Optimal choice of the weak
learner and obtaining the multi-resolution concept for any given weak learner might some-
times become a non-trivial task. Some user-friendly guidelines to obtain the amount of change
in the resolution that is to be chosen adaptively during each boosting iteration must be stud-
ied more thoroughly depending on individual dataset to be modeled. Effects of different
loss functions in this multi-resolution boosting framework are yet to be studied. Further
investigation into more theoretical insights related to combination of additive models and
multi-resolution techniques appears to be a promising research direction.

Appendix-A

Proof of Theorem 1 We will discuss the derivations for the first derivative and the second
derivative and show the Newton updates in the case of the boosting for regression problems.
Consider the following exponential loss function:

Ly, F, f)=exp(ly — F — fII)

For the Newton’s update equation, we need to compute the first and second derivatives with
respect to f(x) and evaluate them at f(x) = O.

sy = AL D),
af(xy O

= 2exp(llr — fIDr — Hlr=0
=2 exp(rTr) -r

Taking the derivative again, we have

_ LG, Ff)
H(x) = WUW:O

=2exp(|r — fI*) -1

+aexp(lr — fI1) -G — )= y=0
=2- exp(rTr) I+ 4exp(rTr) !
=2exp(r’r) - (I +2rrT)

Hence, the inverse of the Hessian becomes

(I +2rr")~!

~1 _
H ()= 2exp(rTr)
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Finally, the Newton’s update is given as follows:
F(x) « F(x) — Hx) 's(x)
(I +2rr")~!
2exp(rTr)
= Fx)—I 42"~ or

= Fx)— . Zexp(rTr) -r

Hence, we plug-in the value —(I 4 2r77)~! . r as the regression value to be modeled

using the weak regressor. Also, we can notice that the minimum of the loss function can also
be obtained by equating the first derivative to zero.

2exp(lr = fIDCr = f)=0=r=f

In other words, by modeling the residual directly using the weak regressor, the minimum

of the loss function can be obtained.
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