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Abstract We propose a novel collaborative filtering method for top-n recommendation task
using bicustering neighborhood approach. Our method takes advantage of local biclustering
structure for a more precise and localized collaborative filtering. Using several important
properties from the field of Formal Concept Analysis, we build user-specific biclusters that
are “more personalized” to the users of interest. We create an innovative rank scoring of
candidate items that combines local similarity of biclusters with global similarity. Our method
is parameter-free, thus removing the need for tuning parameters. It is easily scalable and can
efficiently make recommendations. We demonstrate the performance of our algorithm using
several standard benchmark datasets and two paypal (in-house) datasets. Our experiments
show that our method generates better recommendations compared to several state-of-the-art
algorithms, especially in the presence of sparse data. Furthermore, we also demonstrated the
robustness of our approach to increasing data sparsity and the number of users.
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1 Introduction

Recommender systems have seen a wide variety of applications in E-commerce, online
games, display advertising and mobile applications. In spite of extensive work over the past
fifteen years, building efficient algorithms for improving the accuracy of the recommender
systems still remains to be an active area of research [24]. A key application is ranking a list
of items for users to see. The more relevant a recommended list is, the more likely a user
will click on it and make a purchase. This means increased revenue for companies and has
huge commercial implication. The research problem is formulated as top-n recommendation
problem, where performance is measured by number of hits in the top-n ranked list. One
solution is to use the collaborative filtering (CF) technology which will enable the system to
rank the items. While several methods have been proposed in the literature to solve this prob-
lem, they either suffer from computational speed and scalability issues, or the requirement
of model tuning (specifically for model-based approaches).

In this paper, we propose a bicluster neighborhood-based approach for making top-n
recommendations. It explores bicluster similarity in addition to the standard item similarity.
A bicluster is a subset of users and items which forms a dense submatrix, where every user has
an interaction with every item [18]. In other words, it represents a dense neighborhood of the
user. By exploring the hierarchical relationship between one bicluster with other biclusters, we
construct bicluster similarity to capture local proximity between a recommended item and a
user. We then combine this local measure with a global distance measure to create a balanced
ranking score for every item. We applied our algorithm to several datasets with implicit
feedback which is typically used to evaluate most of the top-n recommender systems. Implicit
feedback data are commonly seen in E-commerce applications where the user feedback is
in the form of purchase, website browsing activities or search activities. Early recommender
systems were built on explicit feedback data such as user ratings, but such data are normally
hard to gather from the users.

We list the primary advantages of the proposed bicluster neighborhood algorithm:

1. Parameter-free: As opposed to several existing model-based approaches, our algorithm
does not require any parameters to produce the recommendations.

2. Scalability: Since there is no model-building necessary for our approach, the recom-
mendations for each user can be performed independent of each other. Moreover, since
the recommendations for each user are independent of each other and can be performed
in an embarrassingly parallel manner, our approach is extremely scalable to large-scale
datasets.

3. Interpretability: Biclustering offers a solution to the problem of curse of dimensionality
in large datasets in addition to comprehensibility [22]. Utilizing our framework we can
clearly traceback the source of recommendations, without utilizing the “blackbox” of
latent space.

4. Flexibility: Our algorithm is flexible in modeling the user preferences using both local
and global similarities.

Our experiments on several publicly available datasets and two large PayPal datasets show
that our algorithm outperforms all existing state-of-the-art algorithms in sparse datasets. Most
importantly, our algorithm scales better with respect to the number of users. The organization
of this paper is as follows: In Sect. 2, we review existing works. The theoretical basis of our
methodology is described in Sect. 3. Section 4 details the framework, while Sect. 5 presents
the results of experiments. Finally, Sect. 6 offers concluding remarks, shortcomings, and
avenues for future work.
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2 Related work
Existing collaborative filtering algorithms can be broadly classified into two categories:

e Memory-based algorithms, which typically make the recommendations based on the
preferences of the nearest neighbors in the data. Item-based CF algorithms (Item CF)
are the popular choice in this category and usually outperform user-based algorithms
[7]. Since their development more than a decade ago, several advanced methods have
been proposed, including instance based methods [9] for feature weighting and instance
selection. Nevertheless, they form a strong baseline method to comparatively evaluate
any new approach for this problem.

e Model-based algorithms, on the other hand, typically make recommendations by first
developing a model of user ratings. Regression [20], matrix factorization algorithms [14]
and Bayesian methods [19] are the popular ones that fall into this category. These methods
either explore a ‘latent space” or build a model to capture the relationship. Recently,
proposed sparse linear methods for top-n recommendation problem also fall into this
category [16]. The authors have demonstrated that their approach can simultaneously
produce high-quality recommendations in quick time. By solving L{-norm and L;-norm
regularized optimization problems, sparsity is induced into the final recommendations.
This makes it suitable for real-time applications. We also compare the performance of
this approach (SLIM) to our work in the experimental results section.

A few excellent surveys that provide more detailed descriptions of the prominent collab-
orative filtering algorithms are also available [1,21]. Several other works [13,23] combine
the advantages of memory-based and model-based collaborative filtering of approaches by
introducing a smoothing-based method.

Various approaches have been proposed to handle implicit feedback data. One of the first
works that use implicit feedback in the context of recommender systems is [17]. Then, item-
based top-n algorithm [7] was proposed. Some of the challenges of using implicit feedback for
recommender systems are well described in [12]. In this paper, Hu et al. proposed a Weighted
Regularized Matrix Factorization (WRMF) method which scales linearly with the size of the
data. While this approach outperforms the item-based approaches in ranking results, it has
the same computational problem. Both methods need to process the entire matrix, which
can be very expensive for handling large-scale datasets. E-commerce datasets could easily
contain millions of rows and millions of columns. Thus, a more local approach (or scalable)
would be desirable.

There are few works that proposed to use biclusters for collaborative filtering [8,11,15,
22]. These methods aim to simultaneously cluster the users and items together and then
recommend items. However, due to their static nature of obtaining the initial biclusters, they
are inferior in performance for many practical purposes. For example, in [22], the authors
developed an approach similar in philosophy to what we propose here. The major difference
between the two approaches is that in [22] biclusters are computed offline and not “on
demand”; in turn, this forces the authors to match the nearest biclusters to a user based solely
on the item vector of a single user. On the other hand, in our approach we map a user to a
bicluster on demand; hence, we match the nearest biclusters based on the interactions of the
original user and similar users. This is a key difference, as matching the personalized bicluster,
as opposed to a single users’ interaction vector allows for exploiting the overall bicluster
structure in the data. Moreover, computing the biclusters off-line may require potentially
quadratic or exponential storage space and does not allow for easy incremental updates to the
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model. In summary, contrary to the existing local approaches, in our approach, we obtain
more personalized biclusters that are specific to the users of interest.

Finally, the rank score we employ is based on novel bicluster similarity measures com-
bined with a traditional global similarity. We leverage on our recent work on query-specific
biclustering which provides a theoretical framework for building query-specific biclusters
using several properties from Formal Concept Analysis (FCA) [2]. We build on that frame-
work and use it to build user-specific biclusters that are “more personalized” to the users of
interest. Using such biclusters, the final top-n recommendations are made by combining the
items from the bicluster and the global similarity of the items.

3 Preliminaries

In this section, we will provide several important definitions that are needed to comprehend
our algorithm: biclusters, neighboring biclusters, siblings, and smallest bicluster.

3.1 Biclusters

Let K denotes a matrix with rows corresponding to users and columns corresponding to
items. If a user u# has no interaction with item i (such as purchasing, browsing, rating etc),
then K(u, i) = 0. If there is any interaction between user u and item i, K(u, i) > 0. In this
paper, as with previous works on implicit feedback recommendations, we consider the binary
case, in which all the real values are simply converted to ‘1’s. The top-n recommendation
problem is to produce a ranked list of items for user u from those items that u does not
currently interact with. Let U and I denote subsets of users and items respectfully, we define
a bicluster as the following:

Definition 1 A bicluster is a pair (U, I) such that K(u,i) > 0 VYu € U, i € I and the
submatrix K[U, I] is maximal. Maximal indicates that the addition of any additional user
or item will introduce a zero element.

Note that # and i need not to be adjacent on the matrix in order to form a bicluster.
Intuitively, biclusters represent small clusters of users who are similar only with respect
to a small cluster of items and vice versa. Thus, biclusters capture the notion of local or
conditional similarity of users and items. Note that, under this definition of a bicluster, all
formulations apply dually to rows and columns [10]; hence, all statements made in the sequel
apply dually to item recommendations and user recommendations.

3.2 Neighboring biclusters

Formal Concept Analysis (FCA) [10] further stipulates a complete mathematical framework
for ordering and structuring sets of biclusters. The set of biclusters in matrix K are ordered by
the hierarchial order; under this ordering the set of biclusters form a complete lattice. Using
this formulation identifying neighborhoods of closely related biclusters is a well-defined task
and several efficient algorithms exist to identify these neighborhoods [5] in a local fashion.

Definition 2 Given biclusters (Uy, I1) and (U, I2), then (U1, I1) < (Ua, 1) if and only if
Uy C Up and I} D I. This ordering relation is referred to as the hierarchical ordering. A
bicluster (Uy, 1) is a minimum bicluster if there does not exist (U, I») suchthat (U, I}) >
(U, I). A bicluster (Uy, I1) is a maximum bicluster if there does not exist (U, I») such
that (Uy, I1) < (U, I).
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@ iy Iy I3 I4 s
78] o o0 1 0 1
u, |0 1 0 1 0
U3 o 0 1 1 O

ug |11 0 0 1
us |0 0 1 1
ug |11 0 0
w7 |0 0 1 1
ug |11 0 0

Ug 1 0 1 0 1
up |11 0 0

Fig.1 Running example: a a simple synthetic dataset containing 10 users and 5 items, b a lattice of biclusters
corresponding to the synthetic dataset

Please note that the size of the users and the size of the items go in the opposite direction
in the hierarchy. A bicluster in the higher order has more users and fewer items. We further
define the upper and lower neighbors of a bicluster.

Definition 3 A bicluster (Uy, I1) is an upper neighbor of (U,, D) if (Uy, I1) > (Ua, 1),
and there doest not exist bicluster (U3, I3) satisfying (Uy, I1) > (U3, I3) > (Ua, I).

Definition 4 A bicluster (Uy, 1) is a lower neighbor of (U, 1) if (Uy, I1) < (Ua, Ip),
and there doest not exist bicluster (Us, I3) satisfying (U1, 1) < (Us, I3) < (Ua, D).

Note that an upper (or lower) neighbor of a bicluser is not unique. There can be several upper
neighbors as illustrated in Fig. 1.

3.3 Sibling and smallest bicluster

We will now define the siblings of a bicluster and the smallest bicluster.
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Definition 5 A bicluster (Uy, I7) is a sibling of (U,, I) if there exists a bicluster (U3, I3)
such that (Us, I3) is an upper (or lower) neighbor of both (Uy, I1) and (Ua, I»).

We are interested in mapping a user to the smallest bicluster that contains this user.

Definition 6 Givenuseru and u € Uy, abicluster (U, 1) is the smallest bicluster for user
u if there does not exist a bicluster (U, I2) such that (U, I) < (Uy, I1) and u € Us.

The smallest bicluster for a user u corresponds to the bicluster that contains user u and the
greatest number of items. It is easy to prove that the smallest bicluster for a given user is
unique and will contain the fewest number of users. But note that the smallest bicluster
may not be a minimum cluster. For example, in Fig. 1, the smallest bicluster for user u¢ is
({ug, ue, ug, u10}, {i1, i2}). But it is not a minimum cluster.

Intuitively, neighboring biclusters are assumed to be similar. This intuition has been for-
malized and exploited to extract knowledge in both binary and real-valued [2,3,25] contexts.
In the next section, we will illustrate how exploring bicluster neighborhoods yields suitable
candidates for top-n recommendation.

4 Bicluster neighborhood collaborative filtering

The bicluster neighborhood framework (BCN) for collaborative filtering consists of three
basic steps:

1. Given user u, map u to the smallest bicluster C = (U, I) that contains u.
2. Identify candidate set / of items for recommendation by exploring the bicluster neigh-
borhood of 1.

3. Rank items in / by combining global and bicluster neighborhood similarity.

The proposed approach initially maps each user u € U to a bicluster C. Then, more similar
users to u are identified by exploring the bicluster neighborhood of C while simultaneously
building up a candidate set of items for recommendation. This is done by appending those
items in the neighboring biclusters to the candidate set. Finally, the candidate set of items
are ranked by combining bicluster similarity and global similarity measures. These steps are
illustrated below using the sample synthetically generated dataset and the bicluster lattice
depicted in Fig. 1.

4.1 Mapping users to biclusters

We start by mapping a user u to the smallest bicluster (U, I') that contains . This is achieved
via a two-step procedure: First, the set of all items / that u interacts with are identified. Next,
the set of users U that all i € I jointly interact with are computed via set intersection. For
example, user u3 in Fig. 1 is mapped to the bicluster ({u3, us, u7}, {i3, ia}).

4.2 Creating candidate set

As shown in Proposition 1, the items most similar to the items in / with respect to the user
set U are located in the lower bicluster neighborhood of C. As a result, items of the lower
bicluster neighborhood form suitable candidates for top-n recommendation.

Proposition 1 Given the smallest bicluster C = (U, I) for user u, and lower neighbor
biclusters (Uj, I}), let J denote the Jaccard index defined over user set U. Then, for all
ie€landalli’ e \I:
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argmax J (i,i") € U I 4.1)
l/
Ui, I

where all (Uj, 1)) are lower neighbor biclusters of (U, I).

Proof Two cases are possible: (1) C is a minimal bicluster or (2) C is not a minimal bicluster.

1. In this case, all items i’ have no interactions with users in U; equivalently K(u, i) = 0
for any u € U. This holds true by definition of a bicluster and the fact that C in minimal.
As result, for any item i’, J (i, i") = 0. Hence, the proposition is vacously true.

2. We will prove this case by contradiction. Let ;4 denote arg max;: J(i,i") and I.qng
denote U(Uz,lz) I;. For any i* € Iy, assume that ix ¢ [I.,,q. Recall that J (i, ix)
defined over the user set U is defined as:

|U; NUix NU|

_ 4.2)
[(U; UUis) N U

where U; is the set of all users who interact with i, and U;, be the set of users who
interact with i . By the definition of a bicluster and hierarchical order, U; is a superset of
U; therefore, the denominator of the Jaccard index is always |U|. As a result, computing
J (i, ix) can be reduced to computing |U; N U;x N U|. However, by definition of lower
neighbors, the item(s) that maximize |U; N U;, N U] are only contained in the lower
neighbor(s) of C. Hence, i* cannot be in 1,4 O

In the special case when a bicluster C is a minimum bicluster, we cannot use lower
neighbors for getting additional items to make recommendation.

Hence, we need to take the extra step of computing the lower neighbors of the upper
neighbors of C, or the siblings of C.

Example 1 Consider the example in Fig. 1. If we want to make recommendation to u3, the
smallest bicluster for usz is ({u3, us, u7}, {i3, i4}). Since this bicluster is also a minimum
bicluster, the sibling biclusters ({u1, uo}, {i3, is}) and ({u2}, {i2, i4}) reveal items {is} and
{i»} as candidate items.

The procedure outlined above may be applied recursively to each neighboring bicluster
to generate a greater number of candidates. As will be discussed in the experimental results
section, we found that it is typically sufficient to apply at most two levels of candidate
generation.

4.3 Ranking candidate items

In the final step of the framework, the candidate items are ranked by combining global and
bicluster neighborhood similarity. Three principles guide the ranking process:

1. The global similarity of each candidate item to the initial items should be considered.

2. The similarity of the minimum bicluster to the neighborhood biclusters containing a
candidate item should be considered.

3. The ranking score should be monotonic with respect to the number of biclusters shared
between candidate items and initial items.

The first criterion reflects the guiding principle of traditional collaborative filtering methods;
global similarity refers to similarity computed across the entire data matrix. The second prin-
ciple captures local similarities between locally similar users and items. Finally, notice that
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each candidate item may in fact belong to several of the neighborhood biclusters. Naturally,
the more biclusters that initial items and candidate items share should, at a minimum, not
decrease the rank score of a candidate item.

Abiding by the principles outlined above we propose three simple ranking functions.
Let C = (U, I) be the smallest bicluster and C be the set of all neighboring biclusters
C’ = (U', I) from which the candidate items are drawn. The ranking score of a candidate
item i with respect to user u is computed generally as

r(u,i’y =g,i’) xI(u,i’) 4.3)

where g(-) calculates the average global distance between user u and item i/, and /(-) returns
the local distance based on bicluster similarity. Computing bicluster similarity is an integral
part of ranking the candidate items. We will now elaborate more on these different similarity
measures and provide implementation details along with some analysis.

4.3.1 Global similarity

We are only interested in items belonging to biclusters. Let (U, I) and (U’, I) be two
biclusters, and item i € I and item i’ € I’. The global distance between user u and item i’
is defined as:

et I

4.4
] 4.4

gu,i’) =
where J (i, i) is the Jaccard index, which is defined over all users who interact with i and
those who interact with i’. Let U; be the set of all users who interact with i, and U;s be the
set of users for i’

_UinUy|

J " .’ —
VAV

4.5)

4.3.2 Bicluster similarity

Bicluster similarity measures have been proposed earlier in our previous work [4]. Let C =
(U, I)and C’ = (U’, I') be two different biclusters.

We define the union of these two biclustersas D = (UUU’, IUI"), then the zeros-induced
similarity measure is

D
b(C.Cy =1 — rostD) (4.6)
|D]
where |D| = |U U U’| % |I U I'| and zeros(D) is the number of zeros occurring in the

submatrix D. Clearly, the fewer the zeros the more similar C and C’ are deemed to be.
Assume that C is our initial cluster, and C’ is a lower neighbor or sibling of C. By definition,
at least one zero must be in D.

4.3.3 Local similarity
The rank of a candidate item is computed by aggregating the bicluster similarity of all

biclusters in which i occurs to the minimum bicluster. More rigorously, we propose utilizing
the three aggregating functions of summation, average, and maximum. Mathematically,
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lu,i) = Z b(C,C) 4.7
C'ez
1
lu,i) = — > b(C.C) (4.8)
|Z| C'eZ
l(u,i’) = maxb(C,C’) (4.9)
C'eZ

The aggregator functions for global similarity are dually defined. The guiding principles
hold true for all three aggregating functions, with the exception that the average aggregating
function is not guaranteed to be monotonic with respect to the number of biclusters shared
between candidate items and initial items. Selection of the appropriate aggregating function
is explored in the experimental results section.

Example 2 We want to make recommendation to user ug. The smallest bicluster for ug is
({ua, ug, ug, uio}, {i1, i}), which has a lower neighbor ({u4}, {i1, i2, is}). One candidate
item is is. Then, ranking score for is is:

r(ug, is) = g(ue, is) x max b(C, C’)
C'eZ

0.142 +0.33 3
= — ) x (1 - —
2 12

=0.1773

4.4 Implementation and analysis

Input: uy: user to perform recommendation for
Input: K: full data matrix

Input: n: desired num of recommendations
Result: Return a size n list of recommended items

1 begin

2 C <« (U, I) < Smallest bicluster of uy C; < LowerNeighbors(C) ;
3 Cs < Siblings(C) ;

4 cands < 0 ;

5 for C; € C; do

6 | cands < cands U \I

7 for Cy € Cg do

8 L cands < cands U Ig\I

9 for i € cands do

10 | Compute r(u, i)

11 | Return top n items in cands ranked by r(u, i)

12 end

Algorithm 1: The BCN framework for top-n recommendation

The bicluster neighborhood BCN framework for recommendations is depicted in Algo-
rithm 1. The major computational burden of BCN is computing the lower and sibling biclusters
of the minimum bicluster. Given minimum bicluster C = (U, I), let |U| = n, |I| = m, and
let |U| = N, |I| = M, the algorithm described in [5] prescribes a method to compute the
neighboring biclusters in

OM x N+ O((N—n)xm)xM+M x (N+ M) (4.10)
In the worst case scenario, this may amount to O (M 2 4+ N); in this case the number of

neighbors is assumed to be O (M) and the number of interactions per item is assumed to
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Table 1 Real-world datasets used for evaluating the performance of the proposed BCN algorithm

Dataset No. of users No. of items No. of transactions Density (%)
Paypal_big 15,000 156,992 674,223 0.000286
Paypal_small 30,000 5,576 134,059 0.0008
delic_bookmarks 1,867 69,226 104,799 0.0081
lastfm_friends 1,476 2,100 21,852 0.07

lastfm 1,883 18,745 92,834 0.33

be in O(N). Clearly, in sparse data, this is not the case. Hence, the complexity is typically
O(N x n x m?). Computing the global similarity of candidate items amounts to O(N x
m). Therefore, it does not effect the overall computational complexity. Computing bicluster
similarity is an O(1) operation due to the properties of the bicluster lattice. For a given
bicluster C = (U, I) and lower neighbor C; = (Uj, I;), from the definition of a bicluster
the sub-matrix K[U;\U, I'\I;] only contains zeros. As these set differences are computed
while the bicluster neighbors are identified, the bicluster similarity requires no additional
computation; the number of zeros in the union of the bicluster is simply the product of the
user and item set differences.

4.4.1 Scalability

Bicustering neighborhood is scalable with respect to number of users and individual rec-
ommendation time. Notice that, computing the recommendation list for each user can be
accomplished independently from all the other users. Initially, computing the recommen-
dation for each user requires access to the entire data matrix; however, once the minimum
bicluster is computed, only a small submatrix of the original matrix is required for each user.
This fact allows BCN to be implemented in an embarrassingly parallel manner when com-
puting recommendations for a large set of users. Moreover, since BCN is not a model-based
approach, and bicluster computation is performed “on-demand”, the incremental change in
time to perform a single recommendation is also scalable. As more users are added to the
data matrix, BCN still takes advantage of this new information without requiring the costly
step of retraining a model. This computational aspect is investigated more closely in the
experimental section.

5 Experimental results
5.1 Real-world datasets
The performance of the BCN framework was evaluated on five real-world datasets on implicit
feedback; the characteristics of these are shown in Table 1. The Paypal datasets correspond

to the user buying patterns at different online stores. The lastfin dataset represents user
listening preferences with respect to different artists, while lastfin_friends contains friendship
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connections between users! [6]. Finally, delic_bookmarks contains users along with urls that
they have bookmarked? [6].

5.2 Evaluation methodology

Five-time Leave-One-Out cross validation (LOOCYV) is used to evaluate the BCN framework.
Each dataset was split into a training and testing set by randomly selecting one of the nonzero
entries of each user and placing it into the testing set. The recommendation algorithm is
applied to the training dataset, and n recommendations are produced. The results we report
here correspond ton = 10 and n = 1.

Recommendation quality is measured by the Hit Rate (H R) and the Average Reciprocal
Hit-Rank (ARH R). If an item in the test set occurs in the n-size recommendation list of a
user u;, then a “hit” occurs. Using this definition, the hit rate is defined as the proportion of
total hits to total users. Formally, let N be the number of users, and /4 be the number of hits,

HR=" 5.1)
= ,

ARHR is a weighted version of H R that rewards hits that occur closer to the top of n-size
recommendation list. Let p; be the position of a hit for user u;, then

h 1
Shy L
N

ARHR = (5.2)

5.3 Experimental results

The performance of the BCN framework was compared with three algorithms: SLIM [16],
WRMF [12], and basic Item CF [7], as described in the related work section. For SLIM,
we used the source code provided by the authors of the original paper. For WRMF, we
implemented a version based on the description provided in the corresponding paper. For
Item CF, the mahout implementation was utilized (https://cwiki.apache.org/MAHOUT/
recommender-documentation.html). BCN was implemented in C++ utilizing the three dif-
ferent similarity combination approaches described previously (BCN-Sum, BCN-Avg, BCN-
Max) and was set to explore two levels of neighbors. All experiments were run on a Linux-
based 6-core 17 Intel PC with 24 GB of main memory.

The results of the experiments are displayed in Table 2. With the exception of the lastfin
dataset, BCN approaches outperform all other approaches. Traditional Item-based collabo-
rative filtering performed significantly worse than all three methods; we believe this is due to
the effect of sparsity in the data. Conversely, BCN methods performed best in sparse datasets
and comparable to SLIM and WRMF in denser datasets. Notice that paypal and delicious
datasets are each at least one order of magnitude sparser than the lastfim datasets. Additionally,
in each of these sparser datasets, the best performing BCN method was BCN-Sum.

We find that the number of shared biclusters among the items played an important role in
producing better recommendations. In sparse data, the number of neighboring biclusters is
small. On the other hand, in dense datasets, the number of neighboring biclusters to initial
biclusters tended to be quite large and this actually played a negative role in recommendation.
The large number of neighboring bicluster seemed to cloud over significantly similar items
by biasing the algorithm only toward frequently occurring items in neighbors. For this reason,

1 http://lastfm.com.
2 http://delicious.com.
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Table 2 Experimental results on real-world datasets demonstrating recommendation quality using top 10
HR,ARHR andtop 1 HR

Dataset Algorithm HR-Top 10 (%) ARHR HR-top 1 (%)
paypal_big Item CF 3.59 1.33 1.65
WRMF 4.46 1.07 0.77
SLIM 6.68 3.02 1.7
BCN-Sum 8.12 347 1.89
BCN-Avg 8.03 3.32 1.83
BCN-Max 8.01 3.29 1.81
paypal_small Item CF 1.17 0.94 0.2
WRMF 4.01 1.2 0.64
SLIM 5.24 2.28 1.26
BCN-Sum 6.66 1.47 2.77
BCN-Avg 6.18 1.3 2.5
BCN-Max 6.13 1.25 2.34
delic Item CF 1.31 0.16 0.35
WRMF 1.05 0.17 0.42
SLIM 1.05 0.53 0.87
BCN-Sum 5.38 2.15 3.27
BCN-Avg 5.01 242 3.44
BCN-Max 5.32 2.39 3.46
lastfm_friends Item CF 3.59 1.23 1.33
WRMF 17.08 6.66 3.23
SLIM 13.8 5.88 3.14
BCN-Sum 17.38 6.91 2.59
BCN-Avg 16.75 6.35 2.85
BCN-Max 17.63 6.70 2.99
lastfm Item CF 0.26 0.005 0.001
WRMF 21.4 9.81 5.59
SLIM 22.0 10.8 6.82
BCN-Sum 19.85 10.22 6.46
BCN-Avg 21.37 10.58 6.79
BCN-Max 20.45 10.28 6.56

The best results are highlighted in bold

we believe that the best BCN scores in these datasets came from BCN-Max. Interestingly,
setting the BCN framework to explore only a single level of neighboring biclusters performed
on par with two-level search in the sparse datasets.

However, in dense datasets, there was a significant decline in performance. In the dense
datasets, users were mapped to initial biclusters that contained a large number of items. In turn,
this implied that no lower neighbors were available for exploration and that sibling biclusters
also contained large numbers of sparsely related items. In effect that advantage of exploring
localized biclusters was eliminated. Exploring one additional level of the lattice quickly
filtered out the non-similar biclusters leading to much improved recommendation quality.
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Fig. 2 The effect of sparsity on the recommendation quality

5.4 Effect of data sparsity

In order to further examine the effect of sparsity on BCN, we synthetically “sparsified” the
lastfm dataset. Sparsity was added by randomly removing transactions with probability p,
where p ranges from O to 1. Figure 2 illustrates the results of this experiment. We can see
that as sparsity in the data increases, the performance of the once dominant SLIM method
deteriorates at a quicker rate, while WRMF and BCN methods tend to be on equal footing.
Additionally, we also find that (not shown in the chart), BCN-Sum takes over as the dominant
BCN method among the 3 BCN methods as sparsity increases. This result reaffirms the
observations made in the previous section.

5.5 Incremental scalability

An important aspect of BCN is its ability to scale-up incrementally. In other words, as real-
world datasets grow dynamically overtime, it is desirable for the total CPU running time to
make a single recommendation to scale-up in a reasonable manner. The actual total time to
make a single recommendation between BCN framework and SLIM is not comparable (see
Fig. 3a); clearly, BCN is orders of magnitude faster as there is no training involved for a
single recommendation even as the dataset grows. On the other hand, SLIM or other matrix
factorization methods would have to re-train their models.

In light of this, experiments were conducted to assess the growth rate of the total CPU time
with respect to the growth in the number of users. The paypal_large dataset was scaled up
incrementally by factors of 2 x users while maintaining the same sparsity level; this represents
the real-world situation of more users joining the system but the overall distribution of data
not changing. The final metric we measured was the ratio of total CPU time to make a single
recommendation in the modified datasets to total CPU time in the original dataset. This
metric was computed after applying BCN with level 1 and level 2 neighbors and the SLIM
algorithm. Figure 3b illustrates the incremental growth rate of the CPU times. While all the
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Fig. 3 Experimental results on the scalability of different algorithms on real-world datasets. a Actual total
CPU time to make a single recommendation. b Total CPU time scaling with respect to the user growth

three algorithms tend to have steep growth rates, the BCN methods increased at most by a
factor of 4.21, while SLIM increased by a factor of 10.4 with respect to number of users.

6 Conclusions
We proposed a novel collaborative filtering method based on BCN framework. The frame-

work is designed for implicit feedback data and tested for the top-n recommendation task. Our
framework takes advantage of the biclustering neighborhood of the smallest bicluster asso-
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ciated with each user to perform localized collaborative filtering and combines it with global
similarity measure. Borrowing ideas from the field of Formal Concept Analysis, we build
user-specific biclusters that are “more personalized” to the users of interest. Our method is eas-
ily scalable and efficiently makes recommendations in large-scale datasets. Our experiments
show that this method generates better recommendation than the state-of-the-art algorithms,
especially in sparse data. Furthermore, the scalability of the BCN method with respect to
the number of users and incremental changes in the dataset was illustrated both theoretically
and experimentally. The weakness of our BCN method is with dense datasets, where we
were slightly outperformed by existing SLIM method. However, our method remains strong
relative to other traditional collaborative filtering methods.

In our future work, we want to address the cold start problem in which a user has only
a few interactions. In such cases, the smallest bicluster may not have enough neighbors to
form suitable candidates. One possibility is to incorporate additional data sources from an
information network such as social media. A second direction is to extend this algorithm to
real-valued data by developing novel bicluster similarity measures.
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