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Abstract Quantitative microscopy and digital image anal-
ysis are underutilized in microbial ecology largely because
of the laborious task to segment foreground object pixels
from background, especially in complex color micrographs
of environmental samples. In this paper, we describe an
improved computing technology developed to alleviate this
limitation. The system’s uniqueness is its ability to edit
digital images accurately when presented with the difficult
yet commonplace challenge of removing background pixels
whose three-dimensional color space overlaps the range
that defines foreground objects. Image segmentation is
accomplished by utilizing algorithms that address color and
spatial relationships of user-selected foreground object
pixels. Performance of the color segmentation algorithm
evaluated on 26 complex micrographs at single pixel
resolution had an overall pixel classification accuracy of

99+%. Several applications illustrate how this improved
computing technology can successfully resolve numerous
challenges of complex color segmentation in order to
produce images from which quantitative information can
be accurately extracted, thereby gain new perspectives on
the in situ ecology of microorganisms. Examples include
improvements in the quantitative analysis of (1) microbial
abundance and phylotype diversity of single cells classified by
their discriminating color within heterogeneous communities,
(2) cell viability, (3) spatial relationships and intensity of
bacterial gene expression involved in cellular communication
between individual cells within rhizoplane biofilms, and (4)
biofilm ecophysiology based on ribotype-differentiated radio-
active substrate utilization. The stand-alone executable file
plus user manual and tutorial images for this color segmen-
tation computing application are freely available at http://cme.
msu.edu/cmeias/. This improved computing technology
opens new opportunities of imaging applications where
discriminating colors really matter most, thereby strengthen-
ing quantitative microscopy-based approaches to advance
microbial ecology in situ at individual single-cell resolution.

Introduction

Microscopy and digital image analysis are important
investigative tools in microbial ecology that provide direct
quantitative information on the microbes’ world from their
own perspective and spatial scale without the need for their
laboratory cultivation [4, 6, 7]. Unfortunately, much less
information than actually available in images of microbes
has been obtained using computer-assisted microscopy,
primarily because digital images of microorganisms in their
natural habitats are highly complex, posing major chal-
lenges of image processing required for quantitative image
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analysis [26]. An essential and most difficult task is object
segmentation, which represents all editing steps required to
reduce the image to the foreground objects (microbes) of
interest before analysis. Complexity of image segmentation
is increased even further when the organisms are colored to
reveal important information on their ecological, biochem-
ical, physiological, cytological, and/or phylogenetic char-
acteristics in situ (Fig. 1). As a consequence, information
on the richness, abundance, metabolic activity, and spatial
heterogeneity of microbial populations and communities in
complex environments is often visually described but rarely
quantitated from true bitmap color images, compromising
the potential impact of the study itself.

The challenge of color segmentation is how to separate
foreground pixels from background along fine delineations
of color and location within the complex image. The
underlying problem is that microbial objects of interest in
high definition, digital color images are commonly repre-
sented by pixels with heterogeneous brightness ranges of
red, green, and blue (RGB) that most often also include
colored pixels of background at similar locations, and the
pixels often have shallow gradients of brightness transition
at cell borders resulting in indistinctive boundaries that
contrast gradually with the background. This digital hetero-
geneity may not be noticeable when the image is viewed at 1:1
(100% zoom), but is obvious when magnified to view the
color of individual pixels comprising the microbial objects
(Fig. 2). Solving this challenging segmentation problem is
crucial when any computer-assisted microscopy application
uses color information (Fig. 1) to extract ecologically
relevant quantitative data, especially at the resolution of
individual microbial cells within environmental samples.

Most often, color segmentation of microbial images is
addressed by isolating the foreground object pixels with a
single or narrow RGB color range and/or splitting the color
image into its individual RGB chromatic channels followed
by thresholding the channel that contains the most intense
signals for the targets of interest while suppressing the
intensity of the other channels [28]. This approach has
variable degrees of success when applied to digitally
pseudocolored monochrome images, such as those acquired
as a primary grayscale image using confocal laser scanning
microscopy and then pseudocolor processed for specific
fluorochromes. Implementing other image processing rou-
tines such as dilation/erosion, Gaussian blur, contrast
manipulation, spatial convolution masks, c-means clustering,
classification of pixels into predefined pseudochannel clas-
ses, mean–median filtering, and measurement feature
descriptors for object size and/or shape filtration can
sometimes help to minimize blurred object edges and
complement color channel-based image segmentation of
microbes [1, 2, 9, 11, 13, 24, 25, 29, 30]. However,
combinations of these image processing routines rarely
succeed in segmenting the three-dimensional color space
that accurately defines all foreground pixels of microbial
targets of interest at all locations within complex, true bitmap
color images to analyze their size, shape, abundance, and
spatial location in situ. In addition, underlying assumptions
(e.g., RGB intensities of foreground object pixels are
approximately equal to each other and greater than intensities
of background objects) are not always valid, and the original
true color intensities of the foreground objects are inevitably
lost using these routines since they are typically applied to
the whole image even when only selected areas require them.

Figure 1 Hierarchical organization of various types of epifluores-
cence and transmitted light microscopy that utilize the discriminating
power of color information to reveal significant characteristics of
microorganisms. FISH, fluorescent in situ hybridization, CTC (5-cyano-

2,3-ditolyl-tetrazolium chloride), FITC fluorescein isothiocyanate, Gfp
green fluorescent protein, DTAF 5-(4,6)-dichlorotriazinyl-aminofluores-
cein, DAPI 4′,6-diamidino-2-phenylindole dihydrochloride. ELF™-PO4

and SYTO™ BC are commercial trademarks
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Previously, we described a color segmentation algorithm to
process and mine data from color images of microbes [22, 23].
However, its further testing revealed two significant limita-
tions. The first was its inability to successfully classify
foreground pixels when pixels of background differed only
in spatial density, e.g., populations stained with 4′-6-diami-
dino-2-phenylindole (DAPI), fluorescence in situ hybridiza-
tion (FISH), immunofluorescence, or contained reporter
strains expressing genes encoding fluorescent protein(s) while
colonized on plant roots that exhibited autofluorescence of the
same color but at lower pixel density. The second was that it
could not adequately distinguish different microbial popula-
tions with similar color contents (e.g., red vs. orange
fluorescent bacteria stained with acridine orange).

The objective of this study was to minimize these
limitations by developing a more accurate, efficient, robust,
and versatile algorithm to semi-automate the segmentation of
multicolored microbes in digitized color images that also
contain complex and usually noisy backgrounds and to
implement this improved technology into a well-documented
and user-friendly PC software application. Here, we describe
the computer vision logic of our new system, the accuracy of
its significantly improved color segmentation algorithm, and
examples of its application to solve various complex image
processing challenges commonly encountered in color images
acquired for quantitative microbial ecology studies. This free

computing toolkit will facilitate the integration of microbial
ecology with cutting edge “individual single-cell microbiol-
ogy” at spatial scales directly relevant to the microorganisms
themselves. Portions of this work were described at the 11th
International Society for Microbial Ecology symposium
(2006, Vienna, Austria).

Materials and Methods

Test Images

Brightfield transmitted and epifluorescence microscopies
were used to acquire color images from various complex
microbial communities, including methanogenic anaerobic
bioreactors, activated sludge, rhizoplane, mycorrhizosphere,
canine feces, human nasopharynx, and estuary. When very
high resolution of pixel sampling density was needed, images
were acquired on Kodak Elite Chrome 100- or 400-ASA
photographic slide films using a Zeiss Photomicroscope I
equipped with 100× Neofluor and Planapochromat oil
immersion objective lenses and converted to 24-bit RGB,
uncompressed 1,200 dpi digital Tiff images using an Epson
Perfection 4180 photoscanner. Other color micrographs were
acquired directly using a Cannon 10D digital SLR camera.
Table 1 lists the image name, stain/method and type of light
microscopy used, the cell component or activity that is
differentiated by color, and the source.

Ground truth images were prepared by manually editing
the color images using Adobe Photoshop™ or GNU Image
Manipulation Program (GIMP) so that all foreground pixels of
microbial cells were separated from noise-free background.
Examples of ground truth images are shown in Fig. 3.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 are
presented in color at the Online First webpage of this
Microbial Ecology article.

Software Development and Image Analysis

The software toolkit to implement the color segmentation
algorithm plus accessory image processing routines was
written in Visual C++ using Microsoft™ Visual Studio ver.
6.0. A separate segmentation accuracy analysis tool was
developed in C++ to automate the full pixel-by-pixel color
comparison of test result images and the corresponding
ground truth images, followed by computation of the
accuracy values for each image. For quantitative image
analysis, color-segmented images were converted to 8-bit
grayscale Tif images and analyzed with Center for
Microbial Ecology Image Analysis Software (CMEIAS, 6,
19) operating within UTHSCSA ImageTool (Univ. Texas
Health Science Center, San Antonio, TX. http://ddsdx.
uthscsa.edu/dig/itdesc.html).

Figure 2 Zoomed-in detail of digital images showing variation in
pixels comprising individual bacterial cells and the indistinct
fluorescent halo surrounding their boundaries (due to the bending of
light as it passes through the cell). The color stains and their
corresponding RGB ranges are: a FITC r92-r118, g198-g255, b0; b
DTAF r116-r179, g166-g246, b167-b227; c crystal violet r62-r157,
g0, b167-b227; d DAPI r1-r74, g49-g191, b157-b255; e rhodamine
r124-r217, g0, b1-b8. Bar scales, 0.5 μm
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General Color Segmentation Protocol

Figure 4 presents the general sequence of steps to segment
color images using our new system. First, images are opened
and examined to assess the color heterogeneity of foreground
object pixels and their contrast to background. Six different
cursor designs were provided to optimize the precision of
that evaluation. The RGB values of the pixel under the
cursor automatically display in the status bar, providing the
information used to set the color tolerance on a scale that
defines the range of colors to be included in foreground
pixels near each sampled pixel’s location. Next, “training”
pixels are interactively and carefully sampled from the
objects of interest in each region of similar color within the
active image. The required number of training pixels
depends on their color heterogeneity within the foreground
objects and how isolated are those regions within the image.
Doing this pixel sampling task while viewing the cells in a

Figure 3 Examples of bacterial cells in ground truth images used to
evaluate the performance and accuracy of the color segmentation
algorithm. Fluorescence due to a autofluorescent pigments, b FITC,
c DAPI, and d TRITC

Table 1 24-bit RGB color images used in this study

Image Stain/Microscopy method Sample/Differentiated target Source

AcriOrig-1 Acridine Orange/Epifluorescence Pseudomonas sp./Nucleic acid E. Polone

BacLight-1 LiveDead BacLight/Epifluorescence Micrococcus luteus, B. cereus/Via. Molec. Probes

BacLight-2 LiveDead BacLight/Epifluorescence Yersinia pestis/Via. T. Marsh

BcFitcTritc-1 FITC + TRITC/Epifluorescence Bacillus cereus/spore proteins G. McFeters

DAPI-1 DAPI/Epifluorescence Pseudomonas sp./Nucleoid This study

DAPI-2 DAPI/Epifluorescence Pseudomonas sp./Nucleoid This study

DAPI-3 DAPI/Epifluorescence Pseudomonas sp./Nucleoid This study

DAPI-4 DAPI/Epifluorescence Pseudomonas sp./Nucleoid This study

DAPI-5 DAPI/Epifluorescence Pseudomonas sp./Nucleoid This study

DAPI-6 DAPI/Epifluorescence Anaerobic bioreactor/Nucleoid S. Dolhopf

DAPI-7 DAPI/Epifluorescence Pseudomonas sp./Nucleoid R. Schumann

DAPI-Fish-1 DAPI + FISH epifluorescence Pseudomonas sp./Nucleoid + 16S rRNA This study

Fish-2 FISH epifluorescence Spirochete + Clostridium/16S rRNA S. Dolhopf

Fish-3 FISH epifluorescence Spirochete + Clostridium/16S rRNA S. Dolhopf

Fish-4 FISH epifluorescence Spirochete + Clostridium/16S rRNA S. Dolhopf

Fish-5 FISH epifluorescence Spirochete + Clostridium/16S rRNA S. Dolhopf

Fish-6 FISH epifluorescence Spirochete + Clostridium/16S rRNA S. Dolhopf

GeneExp-1 Gfp + Rfp expression/Epifluorescence P. putida—roots/Reporter gene S. Gantner

GeneExp-2 Gfp + Rfp expression/Epifluorescence P. putida—roots/Reporter gene S. Gantner

GeneExp-3 Gfp + Rfp expression/Epifluorescence P. putida—roots/Reporter gene S. Gantner

GS-1 Gram stain/Brightfield Bacteremia/Cell wall ASM

GS-3 Gram stain/Brightfield Canine diarrhea/Cell wall This study

GS-5 Gram stain/Brightfield Nasopharynx/Cell wall This study

IFM-1 FITC-antibody/Epifluorescence Rhizobium leguminosarum Surface antigen This study

NatAuto-1 Autofluorescence/Epifluorescence Algae + Cyanobacteria Chorophyll A This study

NatAuto-2 Autofluorescence/Epifluorescence Algae + Cyanobacteria Chorophyll A This study

MRZ-Com Fish Multiprobe/Epifluorescence Mycorrhizal fungus + Multiprobe

16S rRNA + autofluorescence M. Schmid

Fish-Mar Fish Epifluor. Microautoradiography Nitrospira sp./16S rRNA H. Daims

Gfp green fluorescent protein, Rfp red fluorescent protein, Via. viability–membrane integrity, ASM American Society for Microbiology Image
Archive
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zoom mode can be helpful. The time required to complete
this step will depend on the size and complexity of the
image, number of foreground sample points needed to
represent the target group, and whether the foreground signal
and background noise of the currently active image are
sufficiently similar to previously segmented images whose
array of sampled training pixels had been saved.

Once these interactively trained inputs are registered, the
color segmentation algorithm is activated to analyze the
image, pixel-by-pixel, using the color and spatial ranges
specified by the user-selected training pixels and the input
of the threshold value that defines their three-dimensional
color space to determine which pixels are to be included as
foreground objects. The computing time to run the segmen-
tation algorithm is reported in milliseconds in the status bar
and was typically less than 2 s for each test image included
in this study (computer specs: Pentium 4, 3.00 GHz CPU,
2 GB RAM). After the pixel classification is completed, the
system automatically creates and displays a new color
segmentation output image with the pixels of foreground
objects retained in their original color and position and the
non-foreground pixels painted either black or white (user-
specified) to create the optimally contrasted, noise-free
background. Subsequent iterations of this sequence plus
combinations of other image post-processing features in the
system (Fig. 4) can be applied as necessary to refine the
results of the output image and produce the final image
segmentation desired. When displayed, the segmented
24-bit RGB output image or its 8-bit grayscale image
derivative can be saved directly as is or copied to the
Window’s clipboard.

Testing the Color Segmentation Algorithm

Measurement of the accuracy of the color segmentation
algorithm was based on the degree to which its automatic
classification output of colored pixels made solely using
user-selected training pixels matched their accepted assign-
ments for the corresponding target objects in a pixel-by-
pixel comparison to the ground truth images. Color
segmentation errors were of two types (Fig. 5). In our
computer vision-based approach, we assigned a false
dismissal (i.e., false negative) error to any pixel that was
classified as background in the output image but treated as
foreground at the corresponding location in the ground truth
image [27]. In this case, the foreground object pixel is
missing in the output image. Conversely, we assigned a
false alarm (i.e., false positive) error to any pixel that was
included as foreground in the segmented output result
image but was classified as background at the same location
in the ground truth image [27]. The error rate of the color
segmentation functionality was calculated as the sum of all
incorrectly classified pixels divided by the total number of
pixels in the same image, reported as the total percent of
error.

Results and Discussion

The System Logic of CMEIAS Color Segmentation

At the core of this improved computing technology is the
color segmentation algorithm implemented to use “in-
stance-based learning” logic to decide whether each image
pixel was foreground or background. It does this by
evaluating and classifying the local neighborhoods of

Figure 4 General sequence of steps to segment the foreground
objects in images using the CMEIAS color segmentation application

Figure 5 Schematic diagram illustrating the false dismissal (false
negative) and false alarm (false positive) pixel errors that were
differentially measured to evaluate the accuracy of the color
segmentation algorithm

CMEIAS Color Segmentation



pixel-forming patches of related color features in the image
grid. The knowledge it requires to produce the optimal
color segmentation output is provided by carefully sampled
training points whose color and spatial position accurately
represent the range of features of the desired target
group. After sampling, the image is projected into three-
dimensional RGB color space, and the distances between
the specific three color-coordinate positions of each image
pixel and the training sample pixels are measured. Next, the
two-dimensional spatial distance between each image pixel
and its nearest sampled point is measured, followed by
using the distance-weighted similarity function to combine
both the color and spatial distances. Then, the segmentation
routine is performed within a single pass of operation using
these color and spatial comparison analyses to segment the
nearest neighbor (physical location) comparison analysis of
a user-selected pixel in relation to the location of other
pixels within the image. Without these latter components of
the color segmentation algorithm, pixels of background with
color similar to the foreground objects would misclassify as
included and therefore fail to achieve the desired goal. The
unique features of these weighted similarity measurements
provide a level of functionality and flexibility not available
previously or elsewhere, and therefore, this new system
represents an improvement in existing technology that is well
suited to successfully segment the foreground objects in
complex images that contain multiple regions of interest with
different color ranges. The latter complex situation is the
normal case commonly encountered for in situ microbial
community analysis of environmental samples.

The most significant feature added to address the
limitations of our earlier CMEIAS prototypes [22, 23]
was a method enabling the user to specify the threshold of
color inclusion in order to optimize the color segmentation
functionality. This user-define threshold setting controlled
the radial distance of the three-dimensional quasi-spherical
color space that each neighboring pixel in the image could
deviate from the color of the user-selected pixel and still be
included as a foreground pixel in the output result image.
New adjustments in the threshold setting for the color
comparison function either narrow or expand the RGB
color space relative to the previous threshold setting used in
the segmentation algorithm. The “Save/Load Sampled
Pixels” and “Edit Undo/Redo” features facilitate the
optimization of the color tolerance limit using iterations of
trial and error, thereby increasing the accuracy of the final
segmented image output. The added utility to vary the color
similarity tolerance function before implementing color
segmentation is akin to the increased cutting accuracy
achieved using a surgeon’s thin scalpel blade instead of an
axe. Another benefit is its ability to deblur and restore
foreground signals to images with spherical aberration
errors near the edge of the circular microscope field.

Performance Accuracy of Color Segmentation

Thirty image segmentation tests were evaluated on 26
different images, producing a total test sample size of
9,115,165 pixels that were each analyzed and classified
individually. In four cases, two different subpopulations of
microbes within the same image were classified by their
fluorescent colors, e.g., red vs. orange cells using acridine
orange, and combinations of Fitc/Tritc, Gfp/Rfp as reporters
of gene expression and DAPI/FISH.

This new algorithm classified the image foreground
pixels with an overall average segmentation accuracy of
99.343% (Table 2). The error rate ranged from 0.086% to
2.846% per image, with 80% of the images having error
rates of less than 1% and all but one image having error
rates of less than 2%. These results provide a strong
validation of the semi-automated color segmentation algo-
rithm featured in the system.

Detailed comparisons of the ground truth and result
image outputs indicated that the color segmentation
function had a very high signal-to-noise ratio from which
accurate quantitative analysis of the foreground microbial
targets could be extracted. However, occasionally, the
system selected boundaries with an indistinct fluorescent
halo surrounding cells (Fig. 2) that were slightly different
from the boundary defined by human intervention to obtain
ground truth data, even though the shape of the segmented
foreground object remained very similar in both image
outputs. This test result emphasized the importance of
accurately sampling a sufficient number of foreground
training points for every variable region of color to achieve
successful color segmentation of complex images with
minimal error.

Post-processing features were included in the system
(Fig. 4) to correct the segmentation errors when encoun-
tered. For example, color dilation and erosion function-
alities corrected most false alarm errors, and the “Fill Small
Holes” feature corrected most false dismissal errors. The
latter feature automatically converted internal foreground
pixels lost during color segmentation into the object’s
average color, and the upper size limit of the color-
processed hole could be user-specified and optimized.

Applications of this Computing Toolkit in Studies
of Microbial Ecology

The efficacy of this improved computing technology was
examined by evaluating its ability to resolve four major
categories of image segmentation challenges encountered
when using color images in studies of microbial ecology. In
each example, color segmentation could not be adequately
resolved for accurate quantitative image analysis by the
commonly used routines of isolating the foreground pixels

C. A. Gross et al.



of microbial targets using a single or a small range of RGB
value(s) and/or by splitting the color image into its individual
RGB chromatic channels followed by thresholding the
channel(s) that contain(s) the most intense signals for the
targets of interest while suppressing the intensity of the other
channel(s).

The most widespread challenge in segmenting color
images arose when the pixels of foreground objects and
background were similar in color hue but varied in
luminosity. This commonly occurred when microbes were
stained with DAPI, hybridized with fluorescent 16S rRNA-
derived oligonucleotide probes, or expressed autofluores-
cent components like chlorophyll, F420, or Gfp (Fig. 1).
This imaging problem manifested because the target
components (e.g., nucleoids and ribosomes) were hetero-

geneously distributed within the cell when sampled, photo
sensors in the digital camera registered incorrect RGB
values of background under low light conditions, the
background substratum absorbed some stain, and/or the
environmental samples contained similarly autofluorescent
detritus.

Various strategies were used to resolve this category of
image processing challenges depending upon the specific
cause. In the first example, microbial cells stained with
DAPI exhibited heterogeneity in their internal luminosity
(Fig. 6a). This challenge was solved by selecting several
training pixels from neighboring cells, including some that
have a color value located midway between the most
common values of the foreground objects, thereby produc-
ing the color segmented result image that retained the

Table 2 Accuracy testing of the CMEIAS color segmentation algorithm

Image name False (−) dismissal pixels False (+) alarm pixels Total pixels in error Total image pixels % Error

AcriOrg-1a 103 1,363 1,456 304,570 0.478

AcriOrg-1a 677 5,238 5,915 304,570 1.942

BacLite-1 1,824 808 2,632 232,000 1.134

BacLite-2 5,018 3,017 8,036 654,225 1.228

BcFitcTritc-1a 150 642 792 186,835 0.424

BcFitcTritc-1a 462 84 546 186,835 0.292

Dapi-1 779 727 1,506 137,740 1.093

Dapi-2 0 455 455 15,985 2.846

Dapi-3 2 52 54 11,990 0.450

Dapi-4 47 103 150 48,391 0.301

Dapi-5 262 704 966 297,568 0.325

Dapi-6 1,230 615 1,845 388,644 0.474

Dapi-7 264 1,762 2,026 187,982 1.078

DapiFish-1a 141 1 142 128,400 0.111

DapiFish-1a 29 82 111 128,400 0.086

Fish-2 0 164 164 34,322 0.478

Fish-3 117 140 257 49,851 0.516

Fish-4 141 1 142 44,880 0.317

Fish-5 133 168 301 124,033 0.242

Fish-6 1,073 1,076 2,149 328,229 0.655

GeneExp-1 374 1,472 1,846 727,716 0.254

GeneExp-2 92 104 196 54,384 0.360

GeneExp-3a 58 1,585 1,643 727,902 0.226

GeneExp-3a 513 2,887 340 727,902 0.467

Gram-1 253 946 1,199 185,129 0.648

Gram-3 8 259 267 62,444 0.428

Gram-5 54 2,879 3,033 461,660 0.660

IFM-1 188 163 351 57,658 0.609

NatAuto-1 7,465 6,943 14,408 1,610,172 0.895

NatAuto-2 4,243 591 4,834 704,748 0.686

Pertinent information on each image is summarized in Table 1
a Images with multiple populations of cells classified by color segmentation
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number, size, shape, and spatial location of the cells in the
original image. The overall average accuracy rate for color
segmentation of DAPI-stained bacteria using our system
was 99.3% (n=9, Table 2).

The next two examples in this first category of color
segmentation challenge took advantage of the flexible design
of the color similarity tolerance tool. In Fig. 6b, the FISH
image of Clostridium cells in the anaerobic bioreactor was
very noisy, containing foreground pixels afloat in a back-
ground of similarly colored pixels having a different
intensity pattern typical of random static interference.
Accurate color segmentation was achieved by initially setting
a high color threshold level that included all the foreground
pixels and then gradually excluding background pixels from
the result image by subsequent iterations of the color
segmentation routine at progressively lower tolerance levels.

The color segmentation of autofluorescent estuarine
cyanobacteria (Fig. 6c) was the most challenging of the three
examples in this first category. The accurate, desired result
was achieved by selecting two training pixels (yellow
arrows) from the colored regions of foreground objects and
then performing automated segmentation iterations at de-
creasing color tolerance levels starting at 160, followed by
105, 85, and finally 75 to gradually delete background pixels
of autofluorescent detritus and smoothen each cell’s contour.

The second category of image processing challenge
arose when attempting to discriminate populations of
microbial cells whose colors were similar or shared
significant components, i.e., their foreground pixels occu-
pied overlapping color space within the same image. This
category was diagnosed (but not resolved) by splitting the
original image into its individual RGB chromatic channels

using the “Split to RGB Color Model” function (Fig. 4) and
finding (often unexpectedly) that pixels of the same
foreground object(s) were present in two or all three images
of the displayed color channels.

Three examples illustrate this second color segmentation
challenge and its resolution using the improved computing
technology. The first occurred when vital staining of a
bacterial culture with acridine orange revealed a subpopu-
lation that fluoresced red and another that fluoresced
orange. Such was the case for the “AcriOrg-1” test image
(Table 1). The algorithm efficiently discriminated these two
subpopulations within the same image and produced output
images with 99.5% and 98.1% segmentation accuracy of
each cells’ colored pixels, respectively (Table 2).

The second example for this category arose when using
the Molecular Probes Live/Dead® BacLite™ combination
of the green fluorescent Syto9 and the red fluorescent
propidium iodide stains to examine microbial cell viability
based on fluorescent color discrimination as an indicator of
membrane integrity. In theory, live cells should fluoresce
green because their intact cell membranes only allow
passage of Syto9 that ionically bonds to their DNA. In
contrast, dead cells should fluorescence red because
propidium iodide can permeate their damaged and leaky
membranes, and its higher affinity for DNA should displace
the Syto9. In practice, however, this classification of cell
viability is not always straightforward because some “dead”
cells either fluoresce yellow because both stains are
intermixed together in the same region within the cell or
they have distinctly separated red and green regions of
fluorescence within the same cell. The current explanation
of this anomaly is that intercalation of propidium iodide
between stacked bases in DNA does not always displace
the ionic bonding of Syto9 to DNA. Thus, the manufacturer
recommends that any presence of red fluorescence should
indicate a “dead” cell whose membrane integrity is
compromised. Applying the RGB color channel splitting
routine to digital live/dead images commonly indicated that
the pixels of some predominantly green fluorescent cells
actually occupied some red color space (Fig. 7a–d),
indicating leaky membranes allowing propidium iodide to
enter, and therefore, a visual analysis would erroneously
classify them as “live.” Non-localized color thresholding
applied to the entire images of separated red and green
color channels also produced segmented images that
yielded erroneous live/dead ratios. Furthermore, since the
combinational ratio of the RGB color pixels varied within
the individual microbes, selection of a default color range
applied to segment the entire image did not accurately fill
the color and brightness of each cell for each color stain.
CMEIAS image analysis of pixel luminosity per individual
cell in the color segmented BacLight-1 image (Table 1)
indicated that this problem of intracellular heterogeneity in

Figure 6 Image processing sequences to isolate the foreground
objects of interest by color segmentation when the foreground and
background pixels are similar in color hue but vary in luminosity.
Examples (top to bottom) are: a Pseudomonas sp. stained with DAPI
for cell density counting, b FISH of a Clostridium sp. in an anaerobic
bioreactor community, c autofluorescent cyanobacteria in an estuary
sample. Black right arrowheads show the progression of image
processing iterations applied to achieve final segmentation

C. A. Gross et al.



color intensity was more pronounced with objects of “dead”
cells containing some red fluorescent pixels than “live”
cells containing only green pixels (Fig. 8).

This color segmentation challenge was resolved by
processing the original image into two color-segmented
image layers from which the ratio of live/dead cells could
be accurately measured. The first segmented image includ-
ed objects of all “dead” fluorescent cells containing red and
yellow pixels as foreground while excluding “live” cells
containing only green pixels, and the second segmented
image included only objects of green cells as foreground
while excluding yellow (and red) cells. The resultant image
layers of the foreground pixels in the two color-segmented
images were then compared, followed by subtraction of any
cells in the green (live) segmented layer that contain
overlapping red pixels so no cell was counted twice, i.e.,
images of live cells only contained green pixels and dead
cells contained red/yellow, no overlap. The two resultant
segmented images were then flattened and their color-
discriminated foreground objects analyzed to measure each
group’s relative abundance, providing the data to accurately
compute the population’s live/dead ratio.

To illustrate this application, the relative abundance of
live vs. dead cells in a population of Yersinia pestis was
analyzed to examine their survival following storage in
various aqueous environments. The “BacLight-2” image
(Table 1) was segmented with high accuracy (Table 2) into

the corresponding pair of color images containing non-
overlapping foreground objects and then analyzed by
CMEIAS-ImageTool to obtain accurate differential cell
counts. The results indicated that membrane integrity of
Y. pestis cells was preserved in 75.2% of the cells following
7 days of storage in distilled water, yielding a live/dead
ratio of 3.03 (n=133). Unexpectedly, this level of survival
in distilled water surpassed identical treatment of cells
stored in the culture medium (47.5% live, live/dead ratio of
0.90, n=125) or in 20% glycerol (1.4% live, live/dead ratio
of 0.15, n=574).

The most complex example illustrating this second
category of color segmentation challenge arose when using a
combination of multiprobe FISH plus natural autofluores-
cence to classify multiple microbial phylotypes within the
same community image (MRZ-Com), which was a flattened
Z-stack of confocal epifluorescence XY optisections acquired
after applying a multiple-probe FISH protocol to a natural
ectomycorrhizosphere community (Table 1 and Fig. 9a). In
this case, the same hybridization protocol was applied using
several 16S rDNA oligonucleotide probes differing in
fluorochrome label and phylogenetic specificity.

This multiprobe FISH image was more complex than most
in that it contained red, yellow, and blue cells of interest close
to and/or on top of the autofluorescent green fungal hyphae.
Mixed colors displayed when multiple fluorescent probes
bound to the ribosomal rRNA target in the same cell. The
major challenges to accurately segment this image included
the diversity of colors representing four different targets of

Figure 7 Cells of Y. pestis stained with the Live/Dead® BacLite™
reagents to discriminate their viability based on membrane integrity.
Cultures were grown to mid-exponential phase at 37°C in brain heart
infusion broth, harvested by centrifugation, resuspended in distilled
water, stored 7 days at 37°C, stained, and then examined. a Original
digital image; b–d the same image split into its red, green, and blue
chromatic channels, respectively. Bar scale, 2 μm

Figure 8 Heterogeneity in intracellular intensity of green and red
pixels in images of live and dead cells of a Micrococcus luteus and
Bacillus cereus consortium, respectively. The BacLight-1 image
(Table 1) was color-segmented, converted to 8-bit grayscale, and then
digitally analyzed to measure the luminosity of all pixels in each
individual cell (n=418; live/dead ratio of 1:1). Heterogeneity in color
intensity is plotted as the percent frequency distribution of cells at
constant bin intervals of the coefficient of variation in pixel brightness
per cell. The distribution of heterogeneity in luminosity is unimodal in
green (live cells) and multimodal in red (dead) cells

CMEIAS Color Segmentation



foreground cells, their degree of physical and color overlap,
and the broad range of RGB composition for all foreground
color pixels. Since most of the object pixels had values in
multidimensional color space, simple RGB channel splitting
was unable to segment the populations of each phylotype
properly. In addition, subtle challenges to accurate color
segmentation of the image were the varied luminosity of
individual cells, the heterogeneity of colored pixels of the
fungal filament structure, and the bleeding of color from
bright objects located nearby. These less glaring challenges
made selection of a few training pixels insufficient to achieve
successful segmentation of the image because the slight
irregularity in pixel color and intensity of individual cells
caused the segmentation algorithm to include false alarm
errors of unwanted pixels in areas of the image that were not
close to regions of selected pixels and false dismissal errors of
pixels within cells.

This segmentation challenge was solved by careful
interactive selection of a more-than-usual number of
training pixels from all the regions that contain the same
color-discriminated, probe-defined phylotype-specific cells
of interest, combined with repetitive ‘do’ and ‘undo’ edit
testing to optimize the segmentation threshold setting
before evoking the color segmentation algorithm. The color
segmentations of each population within the community in
this complex image are illustrated in Fig. 9b–e.

The user-defined ability to specify the background color of
the segmented output image as either pure black or white
(Fig. 4) provided an additional tactic to facilitate the
segmentation of this complex multiprobe FISH image. When
a background pixel was selected in a training sample, the
segmentation algorithm forced it and all neighboring pixels
to be painted as the background color that extended to the
boundary of another region governed by a different selected
training pixel. In general, this selection event usually occurred
by accident and was easily reversed by the “edit\undo”
routine. However, the consequence of intentionally selecting
a background pixel was useful in suppressing unwanted pixels
from large selected regions in the original image, so long as
they did not contain any foreground objects of interest. That
criterion was satisfied for this image. When applied, this
action successfully excluded noise in large regions of dark
background and was particularly useful in removing green
pixels of the autofluorescent fungal hyphae from the
segmented image of yellow bacteria.

CMEIAS image analysis extracted an abundance of
quantitative information on microbial community structure
from these multiprobe FISH images after they were accurately
color-segmented. Evaluation of the analysis data indicated (1)
an overwhelming dominance of fungal biomass (97.86% of
total), (2) a ranked abundance of different bacterial popula-
tions colonized on the fungal hyphae (percent coverage of the

Figure 9 CMEIAS color seg-
mentation of a beech root
ectomycorrhizosphere communi-
ty differentiated by multiprobe
FISH and autofluorescence.
a Whole community epifluores-
cence micrograph. Bar scale,
10 µm. b–e Color-segmented
output images made by the soft-
ware application showing the in
situ spatial distribution of green
autofluorescent filaments of the
Fagirhiza pallida mycorrhizal
fungus (b); yellow fluorescent
beta-proteobacteria hybridized
with EUB338Mix Cy3 (red) and
Bet42a Fluos (green) probes (c);
red fluorescent bacteria (gamma-
proteobacteria or other non-beta-
proteobacteria) hybridized with
the Gam42a Cy5 and/or
EUB338Mix Cy3 (red) probes
(d); and another unidentified mi-
crobial phylotype that exhibits
blue autofluorescence but did not
hybridize with any of the three
fluorescent 16S rRNA-derived
oligonucleotide probes (e). a is
reproduced with permission from
the American Society for Micro-
biology Press [7]
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fungal substratum by the yellow β-proteobacteria, red γ-
proteobacteria, and blue autofluorescent bacteria were 6.1%,
2.5%, and 1.3%, respectively), and (3) a higher computed
diversity (Simpson’s inverse dominance indices of 2.428 vs.
2.205) and evenness (J evenness indices of 0.808 vs. 0.675) of
this ectomycorrhizosphere community when the microbial
abundance component of the computed index was weighted
by the metric of cumulative cellular biovolume rather than just
cell counts.

These latter results showed that the increased individual
cell size of some prokaryotic phylotypes compensated for their
less numerically abundant populations, with the consequence
that the computed indices of community diversity and
evenness were higher when microbial abundance was weight-
ed by cell biovolume and that CMEIAS-acquired data on both
size and number of individual cells worked well together as
measures of microbial abundance when computing various
indices of microbial community structure. The same trend
occurred when CMEIAS allometric scaling was included in a
polyphasic analysis of microbial community stability and
resilience during ecological succession of methanogenic
bioreactors perturbed by a high nutrient loading [10, 16, 19]
and during the seasonal dynamics of epilithic biofilm
communities in river streambeds [12]. The example reported
here shows how the system processed complex images to
significantly enhance an in situ analysis of microbial
community structure using 16S rRNA-based multiprobe
FISH and autofluorescence combined with CMEIAS quan-
titative image analysis at single-cell resolution.

The third category of challenge in color segmentation
arose when the background was of similar color as
foreground pixels but present at lower density and with
variable luminosity. This type of segmentation problem
occurred when processing color images acquired to study
the in situ spatial scale of Pseudomonas putida cell-to-cell
communication mediated by their production and percep-
tion of N-acylhomoserine lactone (AHL) signal molecules
during early biofilm colonization of autofluorescent, plant
rhizoplane substrata [14]. That study provided direct in situ
evidence indicating that AHL-mediated cell-to-cell com-
munication occurred not only within dense bacterial
populations but also in very small groups and over long
distances between individual bacteria, and therefore, this
cellular activity was more commonplace and effective than
previously predicted [14].

In images used for that study, background pixels of the
autofluorescent root substratum occupied the same color
space as foreground pixels of the red and green fluorescent
reporter bacteria but at less density and luminosity, creating
a very complex challenge in color segmentation for
accurate image analysis that could not be resolved using
previously existing software. Here, the system segmented
the bacteria in those images with a pixel error rate of 0.28±

0.07% (mean ± SD, n=3) in tests to evaluate its perfor-
mance accuracy (Table 2).

Since the Gfp made by the AHL sensor strain is short-
lived in vivo (t1/2=30–120 min) due to rapid protease
degradation, cell-associated green fluorescence represents a
fairly recent reporting of AHL-activated induction of gfp
[14]. In this case, the intensity of green fluorescence due to
intracellular accumulation of Gfp can serve as a quantitative
measure of gfp gene expression by individual bacteria in
situ. Thus, another useful application of this system was to
produce images from which the luminosity of each individual
cell could be accurately measured in situ. An example is
shown in Fig. 10a, b where the AHL-activated green
fluorescent cells in the original image were segmented using
our new system, then converted to their correspond grayscale
objects, thresholded to produce the annotated image with
each object numbered, and finally analyzed to compute the
mean luminosity value of all pixels in each individual cell in
situ. The results (Fig. 11a) indicated that the mean cell
luminosity of green fluorescence (≈intensity of AHL-
activated gfp gene expression) varied considerably among
individual AHL sensor cells (ranging between 100 and 218
on a brightness scale of 0–255) and had a left-skewed
(skewness=−0.64, n=71) distribution containing seven fully
resolved plus three partially resolved subpopulations of cells
sorted according to their mean luminosity value.

Close inspection of the original color and the segmented,
annotated images (Fig. 10a, b, respectively) indicated that
this ecophysiological response to the AHL signal molecules
was stronger when the sensor cells were located near high

Figure 10 a–b Application of the color segmentation system to
produce images for quantitative studies of the in situ spatial scale of
gene expression and cellular communication within young biofilms at
single-cell resolution. a Original image showing cells of the red
fluorescent AHL source strain and the green fluorescent AHL sensor
strain colonized on a tomato root surface. Bar scale, 10 µm. b
Corresponding annotated grayscale image of the color-segmented
AHL sensor bacteria expressing Gfp
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local densities of AHL source cells. For example, green
fluorescent AHL sensor cells assigned the annotated
numbers of 35, 36, 42, 44, 47, and 52 were located near a
high local density of red fluorescent AHL source cells and
had higher mean luminosity values than AHL sensor cells
assigned annotated numbers of 20, 25, 26, 62–64 that were
located in regions of the rhizoplane with lower local densities
of AHL source cells (Fig. 11b, insert). These quantitative data
provide new further evidence supporting the earlier proposed
model predicting that spatial positioning within diffusing
AHL gradients was a major factor governing this type of
cell-to-cell communication for sessile bacteria [14]. These
examples illustrate how this improved computing technology
can facilitate in situ microbial ecology studies designed to
quantitate the spatial scale and intensity of gene expression
and cellular communication within young biofilms, all at
individual single-cell resolution.

Related to the above application, our new system should
be able to facilitate studies that utilize strains engineered
with more stable versions of GFP as “life history reporters”
to measure microbial growth rates in situ. This approach is
based on quantitative measurements of the reduction in
luminosity of GFP per cell (i.e., rate of dilution through cell
doubling) after its inducible synthesis is shut down while
the population continues to grow [18].

The final category of challenge in color segmentation
arose when fluorescence in situ hybridization of 16S rRNA
oligonucleotide probes was combined with microautora-
diography (FISH-MAR) to detect metabolically active,

microbial populations of specific ribotypes within commu-
nities at spatial scales relevant to bacteria, thereby directly
linking their phylogenetic identity and activity in complex
environments [5, 17, 20]. Microautoradiography relies on
the uptake of selected radiolabeled substrates by cells, their
assimilation into macromolecules, and their detection as
decaying radio isotopic products via exposure of a thin
layer of highly sensitive photographic emulsion. Silver
grain clusters surrounding bacterial cells indicate active
cellular incorporation of the radiolabeled substrates that can
be differentiated from neighboring bacteria unable to
metabolize the same labeled substrate.

The crucial steps of image processing required for this in
situ analysis include those described earlier for color
segmentation of probe-defined bacterial ribotypes in FISH
images, plus others required to produce the corresponding
microautoradiographic images with co-localization of fore-
ground clustered silver grains relative to the density of
background silver grains unassociated with the microbial
targets. In the typical protocol, microautoradiography of the
foreground objects and sample background is addressed by
manually inscribing polygons of their cell border on the
digital image, followed by counting the silver grains and
measurement of the enclosed areas within those polygons.
Since commonly performed manually, these crucial steps
can be tedious and inconsistent. In contrast, our system
accurately produced the output FISH images containing only
the foreground object pixels, and then these segmented color
images were used to isolate selected regions of the
corresponding microautoradiography images containing only
the co-localized silver grains of the foreground objects
without having to draw the digital areas of interest manually.
In this way, the tedious and potentially inconsistent manual
steps were eliminated from the protocol, and the segmented
output images accurately retained the size and shape of the
unaltered foreground objects in a noise-free background,
ready for accurate quantitative image analysis.

The pair of FISH-MAR images used to illustrate this
application (Fig. 12a, b) were from an elegant study to
analyze the in situ utilization of [14C]-labeled pyruvate by
two different ribotypes of nitrifying bacteria in a biofilm
developing within a wastewater treatment bioreactor [5]. The
first step was to convert the dual-probed color FISH image
into two color-segmented images: one with the red fluores-
cent probe specifically hybridized to Nitrospira sp. and the
other with the green fluorescent probe hybridized to
ammonia oxidizers. The corresponding red and green color-
to-gray output images with a noise-free background are
shown in Fig. 12c, e, respectively. The interesting imaging
challenge for this first segmentation step was how to address
the yellow-colored pixels in both red and green segmenta-
tions while including the foreground object areas that weakly
fluoresced with only one color. These weaker signals from

Figure 11 a Frequency histogram of the mean luminosity value
extracted from each individual, annotated, green fluorescent AHL
sensor cell in Fig. 10b. b (insert) Bar chart for two groups of cells
(identified by their annotated numbers) differing in cell luminosity.
Brightness values of luminosity reflect the intensity of gene
expression of Gfp in individual cells of the green fluorescent sensor
strain activated by the uptake of external AHL signal molecules as a
measure of bacterial cellular communication
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the foreground objects would have been erroneously
eliminated from both output images if segmentation were
based on an RGB channel splitting and thresholding
procedure, inevitably increasing the error of quantitative

measurements extracted from them. The ability of our new
system to perform local-weighted segmentation made it
possible to selectively include the faint single-colored areas
while simultaneously avoiding the overlapping double-
colored areas, thus ensuring that no fluorescent metabolically
active biomass was omitted because it did not categorize
neatly into either the red or green color channels.

The second step of the improved protocol produced the
final segmented, microautoradiographic images. The separate
red and green output color-segmented images were trans-
formed into corresponding binary masks where the fore-
ground colored pixels were transparent and all other remaining
image pixels were blocked. This “masked” image was the
digital equivalent of physically cutting the areas of a selected
color out of a printed picture, enabling one to see straight
through them. Then, the masked images were layered over
copies of the original microautoradiographic image, so the
areas containing clusters of silver grains derived only from the
colored cells of interest remained in the image while all other
silver grains produced by cells stained with the other probe
plus all background were accurately and fully excluded. This
latter image processing step was performed using the freely
available GIMP imaging application to produce the two final
radiographs made by the corresponding ribotypes in the
community image (Fig. 12d, f).

Typical quantitative measurements extracted from seg-
mented FISH-MAR images are the average diameter and
shape of FISH-positive cell aggregates, silver grain inten-
sity of the background for noise subtraction, and the
number of silver grains per cell, per constant cell length
(for filaments), or per microcolony cluster area [5, 20].
Table 3 lists five additional quantitative biometrics of
ecophysiological relevance to a FISH-MAR analysis that
were extracted by CMEIAS image analysis of the probe-
defined, color-segmented, background-corrected, biofilm
images. The cumulative biovolumes of cell clusters (mostly
spherical) indicated an approximate 1:2 ratio in biomass of
Nitrospira sp. vs. other ammonia oxidizers in this image,
although Nitrospira sp. covered only approximately one
fourth of the biofilm area occupied by all ammonia
oxidizers on the clay bed substratum in this sample.
Correspondingly, the relative amount of pyruvate assimi-
lated by Nitrospira sp. (computed from the sum gray metric

CMEIAS image analysis Nitrospira (A) Other NH3 Oxidizers (B) Ratio A/B
Measurement parameter

Cumulative biovolume (μm3) 1,366 2,929 0.466

% Substratum coverage 4.86 13.93 0.35

Sum gray level 1,490,221 4,193,849 0.355

Microdensitometry index (SumGray*Area) 890,962,900 3,607,133,719 0.247

Grain intensity (SumGray/Area) 2,493 4,876 0.511

Table 3 Ecophysiological char-
acteristics extracted from images
acquired using the FISH-MAR
technique on nitrifier bacteria
assimilating 14C-pyruvate within
biofilms and processed using the
CMEIAS color segmentation
software

Corresponding images are
Fig. 12a–f

Figure 12 a–f Application of the color segmentation system to
process images for in situ FISH-MAR in a flattened stack of confocal
images of a nitrifying biofilm in a wastewater treatment bioreactor. a
Multiprobe FISH image of Nitrospira (red) and other ammonia
oxidizers (green). Bar, 10 μm. b Microautoradiography (MAR) image
of active utilization of [14C]-pyruvate by the biofilm. c, e Binary
images of the red (c) and green (e) fluorescent ribotypes isolated by
color segmentation of the original FISH image. d, f Grayscale images
of silver grain density corresponding to the two distinct ribotypes
isolated from the original MAR image
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applied to an inverted image of the target) was about one
fourth that of the other ammonia oxidizers, reflecting a
combination of its lower integrative microdensitometry
level weighted by its higher silver grain density. These
examples illustrate significant new applications of our
system for preparing images accurately so that they could
be used for quantitative in situ studies of microbial bio-
geography and metabolic activity at spatial scales relevant
to the organisms and their ecological niches.

Concluding Statements

The major challenge of processing color images for
quantitative analysis is the difficulty of separating fore-
ground objects along fine delineations of their color and
location within the image. This study introduces an
improved computing technology that solves—with unprec-
edented accuracy—many of these complex challenges
encountered when using color to discriminate features of
significant importance to microbial ecology in digital
images. Its various utilities broaden the range of complex
color images that can be processed accurately for quanti-
tative analysis of cell size, morphology, abundance,
luminosity, and spatial location, thereby adding to the
arsenal of tools freely available to microbial ecologists to
study their favorite organism or process in situ. The
system’s ability to vary the color tolerance and uniquely
perform localized color segmentation provide the level of
increased flexibility required to process the typically
complex micrograph images acquired from real-world
environmental samples. This flexibility allows the intro-
duced system to succeed in segmenting foreground cells in
color images that other existing software, including our
earlier prototype of this one, deemed unworkable. All these
features reduce the user’s time and labor required to
accurately perform this tedious yet essential image editing
step, hence facilitating the whole process of digital image
analysis. As with all applications of quantitative image
analysis, accuracy depends foremost on the quality of the
acquired primary image and requires that it be high.

This improved color segmentation technology pushes the
interface between investigative computing tools and micro-
bial ecology, and its various applications will inevitably
lead to new questions as it has already begun to answer old
ones [3, 6, 7, 14]. Most importantly, it will assist studies
that use color to reveal important quantitative information
on the ecology of microorganisms at single-cell resolution,
e.g., understanding bacterial individuality to explore the
mechanisms through which ecological systems work, how
individual cells interact with each other and their environ-
ment, and tests of the emerging theory of individual-based
modeling and ecology which predict that individual cell

variation is a major driver of population structure and
function [8, 15]. The importance of accurately defining
microbial processes at the proper spatial scale in which they
occur is recognized more and more as ecological theory is
deployed to gain a full understanding of microbial ecology
[21]. Thus, among the most significant applications of this
improved technology will be its use in computer-assisted
microscopy to define the spatial scale at which ecologically
important events occur among individual, single cells.
Finally, the utility of this system applies not only to micro-
biology but also extends to other disciplines (e.g., eukaryotic
cell biology, biomedical imaging, clinical pathology, diagnos-
tic cytology, forensics, remote sensing, geology, astronomy,
astrobiology, plant and animal ecology, agronomy, turfgrass
science, etc.) where one needs to segment pixel regions of
similar but non-identical colors and use color differentiation/
classification as a basis for extracting accurate information
using digital image analysis.

This improved computing technology is implemented
into a software package ready for public release for
research, diagnostic, and educational applications. The
executable file, user manual, and tutorial images are
provided at http://cme.msu.edu/cmeias. The program is a
component of the CMEIAS© suite of integrated software
whose combined mission is to strengthen microscopy-based
approaches for advancing a greater understanding of
microbial ecology at single-cell resolution and spatial scales
relevant to the organisms themselves.
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