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Abstract. Predicting event occurrence at an early stage in longitudi-
nal studies is an important problem which has high practical value. As
opposed to the standard classification and regression problems where
a domain expert can provide the labels for the data in a reasonably
short period of time, training data in such longitudinal studies must
be obtained only by waiting for the occurrence of sufficient number of
events. The main objective of this work is to predict the event occur-
rence in the future for a particular subject in the study using the data
collected at the initial stages of a longitudinal study. In this paper, we
propose a novel Early Stage Prediction (ESP) framework for building
event prediction models which are trained at early stages of longitudi-
nal studies. More specifically, we develop two probabilistic algorithms
based on Naive Bayes and Tree-Augmented Naive Bayes (TAN), called
ESP-NB and ESP-TAN, respectively, for early stage event prediction by
modifying the posterior probability of event occurrence using different
extrapolations that are based on Weibull and Lognormal distributions.
The proposed framework is evaluated using a wide range of synthetic and
real-world benchmark datasets. Our extensive set of experiments show
that the proposed ESP framework is able to more accurately predict
future event occurrences using only a limited amount of training data
compared to the other alternative approaches.

Keywords: Prediction · Regression · Longitudinal data · Survival
analysis

1 Introduction

Developing effective prediction models to estimate the outcome of a particular
event of interest is a critical challenge in various application domains such as
healthcare, reliability, engineering, etc. [12]. In longitudinal studies, event pre-
diction is an important area of research where the goal is to predict the event
occurrence during a specific time period of interest [9]. Obtaining training data
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for such a time-to-event problem is a daunting task. As opposed to the standard
supervised learning problems where a domain expert can provide labels in a rea-
sonable amount of time, training data for longitudinal studies must be obtained
only by waiting for the occurrence of sufficient number of events. Therefore, the
ability to leverage only a limited amount of available information at early stages
of longitudinal studies to forecast the event occurrence at future time points is
an important and challenging research task.

Let us consider an illustrative example shown in Fig. 1. In this example, a
longitudinal study is conducted on 5 subjects and the information for event
occurrence until time tc is recorded, where only subjects B and E have experi-
enced the event. The goal of our paper is to predict the event occurrence by the
time tf where tf is much greater than tc. It can be seen that, except subjects B
and E, all the remaining subjects are considered to be censored at tc (marked by
red ‘x’) and the event will occur for subject A within the time period tf . This sce-
nario is applicable for many real-world applications where it is critical to obtain
early stage time-to-event predictions. For example, in the healthcare domain,
let us say that there is a new treatment option (or drug) which is available and
one would like to study the effect of such a treatment on a particular group of
patients in order to understand the efficacy of the treatment. This patient group
is monitored over a period of time and an event here corresponds to the patient
being hospitalized (or occurrence of death) because the treatment has failed.
The effectiveness of this treatment must be estimated as early as possible when
there are only a few hospitalized patients.

Fig. 1. An illustration to demonstrate the problem of early stage event prediction for
time tf using the information of event occurrence until time tc.

This practical problem clearly emphasizes the need to build algorithms that
can effectively predict events using the training data that contains only the event
information at an early stage of a longitudinal study. It should be noted that
the previous research in the field of statistics mainly focuses on the prediction
of survivability up to a certain specific time point. Predicting events at future
timepoints using the available information at the initial phases of the study
remains to be a relatively unexplored area of research. Thus, in this paper,
we develop prediction models using the data collected at earlier time points in
longitudinal studies. More specifically, the contributions of this paper are as
follows:
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– Propose an Early Stage Prediction (ESP) framework which estimates the
probability of event occurrence for a future timepoint using different extrap-
olation techniques.

– Develop a probabilistic algorithms based on Naive Bayes and Tree-Augmented
Naive Bayes (TAN), called ESP-NB and ESP-TAN, respectively, for early-
stage event prediction by modifying the posterior probability of event occur-
rence.

– Evaluate the proposed algorithms using several synthetic and real-world
benchmark datasets.

This paper is organized as follows. In Sect. 2, we present a summary of existing
works on using survival analysis and machine learning methods for longitudinal
data. In Sect. 3, we explain the problem formulation and describe two proba-
bilistic classifiers, namely, Naive Bayes and Tree-Augmented Naive Bayes. In
Sect. 4, we introduce the proposed extrapolation methods and then explain our
novel Early Stage Prediction (ESP) framework based on Naive Bayes and TAN
algorithms. In Sect. 5, the results of the proposed methods along with those of
the competing algorithms on various synthetic and real-world datasets are pre-
sented. In the last section, we conclude our paper with a summary of the main
results of the proposed work.

2 Related Work

Survival analysis is a subfield of statistics where a wide range of techniques have
been proposed to model time-to-event data (e.g., failure, death, admission to
hospital, emergence of disease, etc.) [13]. For such a time-to-event prediction
problem, there have also been many attempts using different machine learning
methodologies that were modified and applied to this problem [19,21]. On the
other hand, longitudinal data cannot be modeled solely using traditional clas-
sification or regression approaches since certain observations have event status
and the rest have an unknown status up until that specific time of study.

Several machine learning approaches have been adapted to handle the con-
cept of censoring in survival data [15]. Modifications of decision trees [8,17],
artificial neural networks [6] and support vector machines [11,18] represent some
of the works on this topic. Another popular choice in the predictive modeling
literature is the Bayesian approach. However, there was only a little work in the
literature using Bayesian methods for survival data [1,14,20].

The work that is being developed in this paper is significantly different from
the above mentioned algorithms since none of the existing works perform fore-
casting of event occurrence at future points in the context of survival data. They
basically use the training data that is collected at the same time point as the
test data. The basic idea of the proposed model is to develop Naive Bayes and
its extension Tree-Augmented Naive Bayes (TAN), to build a predictive prob-
abilistic model which will allow us to adapt the prior probability of events for
forecasting the event occurrence at different points of time in the future. It is
important to note that discriminative models are not suitable for the forecasting
framework due to the lack of the prior probability component.
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3 Preliminaries

The aim of our work is to address the following question: “when will a subject
in longitudinal study experience an event?” The fundamental challenge here is
to determine which subject in the study will experience the event at a certain
timepoint based on event occurrence information that is available only until prior
points of time (usually much earlier than the timepoint used during estimation).
Before describing the details of the proposed model, we formalize the problem
and transform it to a binary classification task. Then, we describe two well-
known probabilistic classification approaches, namely, Naive Bayes and Tree-
Augmented Naive Bayes (TAN). Table 1 describes the notations used in this
paper.

Table 1. Notations used in this paper

Name Description

n Number of samples

m Number of features

x n×m data matrix

T n × 1 vector of event times

C n × 1 vector of last follow-up times

O n × 1 vector of observed time which is min(T, C)

δ n × 1 binary vector of censored status

tc Specified time until which information is available

tf Desired time at which the forecast of future events is made

yi(t) Event status for subject i at time t

3.1 Problem Formulation

Let us consider a longitudinal study where the data about n independent
subjects are available. Let the feature vector for sample i be represented by
xi = 〈xi1, ..., xim〉 where xij is the jth feature for subject i. For each subject i,
we can define Ti as the event time, and Ci as the last follow-up time or censoring
time (the time after which the subject has left the study). For all the subjects
i = {1, ..., n}, Oi denotes the observed time which is defined as min(Ti, Ci).
Then, the event status can be defined as δi = I{Ti ≤ Ci}. Thus, a longitudinal
dataset can be represented as (xi, Ti, δi) where xi ∈ Rm, Ti ∈ R+, δi ∈ {0, 1}.

It should be noted that we only have the information for few events until
the time tc. Our aim is to predict the event status at time tf where tf > tc.
Let us define yi(tc) as event status for subject i at time tc. We consider tc to be
less than the observation time since we aim to forecast the event occurrence at
early stage of the study. Suppose, among n subjects in the study, only n(tc) will
experience the event at time tc. For each subject i we can define

yi(tc) =

{
1 if Oi ≤ tc and δi = 1,

0 otherwise
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Fig. 2. An illustration of the basic structure of (a) Naive Bayes and (b) TAN classifier.

In this transformed formulation, given the training data (xi, yi(tc)), we can build
a binary classifier using yi(tc) as the class label. If yi(tc) = 1, then the event has
occurred for subject i and if yi(tc) = 0, the event has not occurred. It should be
noted that a new classifier will have to be built to estimate the probability of
event occurrence at tf based on the training data that is available at tc.

3.2 Naive Bayes Method

Naive Bayes is a well-known probabilistic model in the machine learning domain.
Assume we have a training set in Fig. 1 where the event occurrence information
is available up to time tc. Based on the binary classification transformation
explained above, using Naive Bayes algorithm, the event probability can be esti-
mated as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=

P
(
y(tc) = 1, t ≤ tc

) ∏m
j=1 P

(
xj | y(tc) = 1

)
P (x, t ≤ tc)

(1)

The first component of the numerator is the prior probability of the event occur-
rence at time tc. The second component is a conditional probability distribution
which can be estimated as follows:

P
(
xj | y(tc) = 1

)
=

∑n
i=1

(
yi(tc) = 1, xij = xj

)∑n
i=1(yi(tc) = 1)

(2)

where xij is the value of attribute j for subject i. Thus, it is a natural estimate
for the likelihood function in Naive Bayes to count the number of times that
event occurred at time tc in conjunction with jth attribute that takes a value of
xj . Then we count the number of times the event occurred at time tc in total
and finally take the ratio of these two terms. This formula is valid for discrete
attributes; However, it can be easily adapted for continues variables as well [10].

3.3 Tree-Augmented Naive Bayes Method

A prominent extension of Naive Bayes is the Tree-Augmented Naive Bayes
(TAN) where the independence assumption between the attributes is relaxed
[7]. The TAN algorithm imposes a tree structure on the Naive Bayes model by
restricting the interaction between the variables to a single level. This method
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allows every attribute xj to depend upon the class as well as at most one other
attribute, xp(j), called the parent of xj. Illustration of the basic structure of the
dependency in Naive Bayes and TAN is shown in Fig. 2. Given the training set
(x, y(tc)), firstly the tree for the TAN model should be constructed based on the
conditional mutual information between two attributes [7].

I
(
xj,xk | y(tc)

)
=

∑
xj,xk,y(tc)

P
(
xj,xk, y(tc)

) P
(
xj,xk | y(tc)

)
P

(
xj | y(tc)

)
P

(
xk | y(tc)

) (3)

Then, a complete undirected graph in which the vertices correspond to the
attributes xj is constructed. Using Eq. (3), the weight of all the edges can be
computed. A maximum weighted spanning tree is built and finally, an undirected
tree is transformed into a directed one by randomly choosing a root variable and
setting the direction of all the edges outward from the root. After the construc-
tion of the tree, the conditional probability of each attribute on its parent and
the class label is calculated and stored. Hence, the probability of event at time
tc, can be defined as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=

P
(
y(tc) = 1, t ≤ tc

) ∏m
j=1 P

(
xj | y(tc) = 1,xp(j)

)
P (x, t ≤ tc)

(4)

The numerator consists of two components; the prior probability of the event
occurrence at time tc and the conditional probability distributions which can be
estimated using the maximum likelihood estimation (MLE).

4 The Proposed ESP Framework

In this section, we describe the proposed Early Stage Prediction (ESP) frame-
work. First, we describe our proposed prior probability extrapolation based
method using different distributions and then we will introduce ESP-NB and
ESP-TAN algorithms which utilize the extrapolation method.

4.1 Prior Probability Extrapolation

In order to predict event occurrence in longitudinal data, we develop a technique
that can estimate the ratio of event occurrence beyond the original observation
range or in other words, compute the extrapolation for prior probability of event
occurrence. This extrapolation approach will be based on Weibull and Lognormal
distributions which are used widely in the literature for modeling the time-
to-event data [3,16]. We will integrate such extrapolated values later with the
proposed learning algorithms in order to make predictions at future timepoints.

Weibull: We estimate the shape and scale parameters, αtc
and βtc

, in Weibull
distribution, by fitting the distribution to data obtained until tc and then
making the following extrapolation

p(tf ) =
tf

α−1

βα
exp

( − (tf/β)α
)

(5)
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Lognormal: We can also assume that the time to event follows a log-normal
distribution, and then we can estimate μtc

and σtc
, mean and standard devi-

ation of log-normal distribution, from the training data. The extrapolation is
given as follows:

p(tf ) =
1√

2πσtc
tf

exp−
(
log(tf )−μtc

)2

/2σ2
tc

. (6)

4.2 The ESP Algorithm

We will now describe the ESP Algorithm which consists of two phases. In the
first phase, the conditional probability distribution is estimated using training
data which is obtained until time tc (see Sects. 3.2 and 3.3). In the second phase,
we extrapolate the prior probability of event occurrence for time tf which is
beyond the observed time using different extrapolation techniques as follows:

P
(
y(tf ) = 1, t ≤ tf

)
= p(tf ) (7)

It should be noted that the Eq. (7) can be estimated using Eqs. (5) and (6). Thus,
the posterior probability for event occurrences at time tf can be estimated as:

ESP-NB:

P
(
y(tf ) = 1 | x, t ≤ tf

)
=

p(tf )
∏m

j=1 P
(
xj | y(tc) = 1

)
P (x, t ≤ tf )

. (8)

ESP-TAN:

P
(
y(tf ) = 1 | x, t ≤ tf

)
=

p(tf )
∏m

j=1 P
(
xj | y(tc) = 1,xp(j)

)
P (x, t ≤ tf )

. (9)

Algorithm 1 outlines the proposed ESP method. In the first phase (lines 1–4),
for each attribute j, the algorithm estimates the conditional probability using
the data available until time tc. In the second phase, a probabilistic model is
built to predict the event occurrence at tf . In lines 5–7, the prior probability for
event occurrence at time tf is estimated using different extrapolation techniques.
Then, in lines 8–12, for each subject i, we adapt the posterior probability of event
occurrence at time tf . The time complexity of the ESP algorithm follows the time
complexity of the learning method that is chosen. It should be noted that the
complexity of the extrapolation component is a constant and does not depend
on either m or n. Hence, for ESP-NB, the overall complexity is O(mn) and for
ESP-TAN, it is O(m2n), where n is the total number of subjects and m is the
number of features in the dataset.

5 Experimental Results

In this section, we will describe the datasets that are used for evaluating the
proposed methods along with the comparisons of the proposed algorithms with
various baseline prediction methods.
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Algorithm 1. Early Stage Prediction (ESP) Framework

Require: Training data D(tc) =
(
x, y(tc), T

)
, tf

Output: Probability of event at time tf

Phase 1: Conditional probability estimation at tc

1. for j = 1, ..., m
2. Naive Bayes: P

(
xj | y(tc) = 1

)
(Eq. (2))

3. TAN: P
(
xj | y(tc) = 1, xp(j)

)
(Eq. (3))

4. end
Phase 2: Predict probability of event occurrence at tf

5. Estimate P
(
y(tf ) = 1, t ≤ tf

)

6. Weibull: tf
α−1

/βαexp
(− (tf/β)α

)
(Eq. (5))

7. Lognormal: 1/
√
2πσtc tfexp−

(
log(tf )−μtc

)2
/2σ2

tc
(Eq. (6))

8. for i = 1, ..., n
9. Estimate P

(
yi(tf ) = 1 | xi, t ≤ tf

)

10. ESP-NB: Eq. (8)
11. ESP-TAN: Eq. (9)
12. end
13: return P

(
y(tf ) = 1 | x, t ≤ tf

)

5.1 Dataset Description

We evaluated the performance of the models using both synthetic and real-world
survival datasets which are summarized in Table 2.

Synthetic Datasets: We generated synthetic dataset in which the feature vec-
tors x are generated based on a normal distribution N(0, 1). Covariate coefficient
vector β is generated based on a uniform distribution Unif(0, 1). Thus, T can
be generated using the method described in [2]. Given the observed covariates
xi for observation i, the failure time can be generated by

Ti = −
(

log(Unif(0, 1))
λėxp(β′xi)

)ν

(10)

In our experiments, we set λ = 0.01 and ν = 2.

Real-World Survival Datasets: Several real-world survival benchmark
datasets were used in our experiments. We used primary biliary cirrhosis (PBC),
breast and colon cancer datasets (available in the survival data repository1)
which are widely used in evaluating longitudinal studies. We also used Framing-
ham heart study dataset which is publicly available [4]. In addition, we also used
two in-house proprietary datasets. One is the electronic health record (EHR)
data from heart failure patients collected at the Henry Ford Health System in
Detroit, Michigan. This data contains patient’s clinical information such as pro-
cedures, medications, lab results and demographics and the goal here is to predict
the number of days for the next readmission after the patient is discharged from

1 http://cran.rproject.org/web/packages/survival/.

http://cran.rproject.org/web/packages/survival/
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Table 2. Number of features, instances and events. T50 and T100 corresponds to the
time taken for the occurrence of 50 % and 100 % of the events, respectively.

Dataset #Features #Instances #Events T50 T100

Syn1 5 100 50 1014 3808

Syn2 20 1000 602 943 7723

Breast 8 673 298 646 2659

Colon 13 888 445 394 3329

PBC 17 276 110 1191 4456

Framingham 16 5209 1990 1991 5029

EHR 77 4417 3479 50 4172

Kickstarter 54 4175 1961 21 60

the hospital. Another dataset was obtained from Kickstarter, a popular crowd-
funding platform. Each project has been tracked for a specific period of time.
If the project reaches the desired funding goal within deadline date then it is
considered to be a success (or event occurred). On the other hand, the project
is considered to be censored if it fails to reach its goal within the deadline date.

5.2 Performance Evaluation

The performance of the proposed models is measured using following metrics,

– AUC is the area under the receiver operating characteristic (ROC) curve. The
curve is generated by plotting the true positive rate (TPR) against the false
positive rate (FPR) by varying the threshold value.

– F-measure is defined as a harmonic mean of precision and recall. A high value
of F -measure indicates that both precision and recall are reasonably high.

F − measure =
2 × Precision × Recall

Precision + Recall
.

Implementation Details: The proposed ESP-NB and ESP-TAN methods are
implemented using e1071 package available in the R programming language [5].
The same package used for comparison results from Naive Bayes and TAN clas-
sification model. The coxph model in the survival package is employed to train
the Cox model. The source code of the proposed algorithms in R programming
environment is available at http://dmkd.cs.wayne.edu/codes/ESP.

5.3 Results and Discussion

For performance benchmarking, we compare the proposed ESP-NB and ESP-
TAN algorithms using Weibull and Lognormal distributions as extrapolation
techniques with Cox regression, Naive Bayes (NB) and Tree-Augmented Naive
Bayes (TAN) classification methods which are trained at time when only 50 %

http://dmkd.cs.wayne.edu/codes/ESP
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Table 3. Comparison of AUC values for Cox, NB and TAN with proposed ESP-NB
and ESP-TAN methods using Weibull (W) and Lognormal (L) extrapolation methods
(with standard deviation values).

Data AUC

Cox NB TAN ESP-NB(W) ESP-NB(L) ESP-TAN(W) ESP-TAN(L)

Syn1 0.697 0.702 0.713 0.865 0.841 0.865 0.849

(0.004) (0.007) (0.002) (0.003) (0.003) (0.001) (0.001)

Syn2 0.703 0.699 0.705 0.818 0.811 0.821 0.817

(0.003) (0.009) (0.005) (0.002) (0.003) (0.002) (0.002)

Breast 0.612 0.621 0.632 0.655 0.633 0.662 0.635

(0.011) (0.009) (0.004) (0.001) (0.003) (0.007) (0.005)

Colon 0.601 0.615 0.617 0.621 0.617 0.627 0.619

(0.024) (0.011) (0.014) (0.013) (0.014) (0.009) (0.011)

PBC 0.665 0.643 0.679 0.765 0.761 0.768 0.763

(0.009) (0.003) (0.01) (0.001) (0.004) (0.003) (0.001)

Framingham 0.863 0.945 0.953 0.953 0.959 0.961 0.971

(0.006) (0.002) (0.005) (0.007) (0.003) (0.004) (0.002)

EHR 0.612 0.633 0.638 0.654 0.624 0.649 0.628

(0.022) (0.019) (0.025) (0.018) (0.021) (0.011) (0.026)

Kickstarter 0.761 0.811 0.816 0.821 0.825 0.822 0.831

(0.018) (0.022) (0.025) (0.024) (0.023) (0.019) (0.018)

of events have occurred and the event prediction is done at the end of study.
Tables 3 and 4 summarize the comparison result in AUC and F-measure evalu-
ation metrics, respectively. We used stratified 10-fold cross-validation and aver-
age values (along with the standard deviations) of the results on all the ten
folds are being reported. For all of the datasets, our results evidently show that
the proposed ESP-based methods using either Weibull or lognormal distribu-
tion will provide significantly better prediction results compared to the other
methods. The choice of the optimal distribution will depend on the nature of
the dataset being considered, in particular, the distribution that the event occur-
rence follows. Furthermore, ESP-NB build on independence assumption between
the attributes which does not hold in many survival applications. Thus, the intro-
duced ESP-TAN relaxed the independence assumption which leads to improved
AUC and F-measure values in almost all of the results.

The results clearly show that our models can obtain practically useful results
using the data collected at an early stage of the study. This is due to the fact that
classification methods do not have the ability to predict the event occurrence
for a time beyond the observation time. Also, in the Cox regression model,
the baseline hazard is undefined after the observation time tc. Thus, from our
experiments, we can conclude that the proposed framework is able to obtain
practically useful results at the initial phases of a longitudinal study and can
provide good insights about the event occurrence by the end of the study.

In Fig. 3, we present the prediction performance of different methods by vary-
ing the percentage of event occurrence information that is available to train the
model for the PBC dataset. For example, 20 % on the x-axis corresponds to the
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Table 4. Comparison of F-measure values for Cox, NB and TAN with proposed ESP-
NB and ESP-TAN methods using Weibull (W) and Lognormal (L) extrapolation meth-
ods (with standard deviation values).

Data F-measure

Cox NB TAN ESP-NB(W) ESP-NB(L) ESP-TAN(W) ESP-TAN(L)

Syn1 0.632 0.753 0.762 0.775 0.771 0.785 0.785

(0.023) (0.021) (0.026) (0.021) (0.022) (0.019) (0.023)

Syn2 0.629 0.638 0.647 0.764 0.763 0.777 0.769

(0.025) (0.034) (0.023) (0.025) (0.029) (0.02) (0.021)

Breast 0.628 0.543 0.555 0.712 0.653 0.723 0.679

(0.031) (0.053) (0.034) (0.039) (0.042) (0.039) (0.039)

Colon 0.496 0.523 0.529 0.619 0.606 0.626 0.623

(0.163) (0.169) (0.184) (0.145) (0.151) (0.148) (0.15)

PBC 0.603 0.529 0.535 0.709 0.664 0.715 0.698

(0.141) (0.121) (0.11) (0.11) (0.109) (0.098) (0.114)

Framingham 0.755 0.787 0.798 0.865 0.873 0.894 0.905

(0.079) (0.085) (0.073) (0.073) (0.093) (0.069) (0.056)

EHR 0.672 0.616 0.623 0.781 0.750 0.798 0.781

(0.125) (0.156) (0.198) (0.126) (0.206) (0.16) (0.12)

Kickstarter 0.672 0.713 0.719 0.747 0.742 0.762 0.775

(0.084) (0.058) (0.067) (0.034) (0.054) (0.048) (0.032)

training data obtained when only 20 % of the events have occurred and predic-
tion of the event occurrences was made for the end of the study period. From this
plot we can see that the AUC values improve when there is more information on
the event occurrence in the training data. For all the cases, our proposed ESP
framework gives better prediction performance compared to other techniques.
Furthermore, it should be noted that the improvements of the proposed meth-
ods are more significant over the baseline methods when there is only a limited
amount (20 % or 40 %) of training data. Also, when 100 % of the training data is
available, the performance of the proposed methods will converge to that of the
standard Naive Bayes and TAN methods since the prior probabilities in both
scenarios will be the same and fitting a distribution will not have any impact
when evaluated at the end of the study. The proposed prediction framework is an
extremely useful tool for domains where one has to wait for a significant period
of time to collect sufficient amount of training data. The practical implication
of this result is the fact that using the proposed models, one can obtain an
approximate result and gain insights about the problem within the early stage
of the study. Thus, it is not needed to wait until the end of the study to obtain
the model performance. Also, we can observe that, in many real-world datasets,
50 % of the events typically occur within 25 % of the total study time. Such an
early stage model building is an extremely useful tool for domains where one has
to wait for longer time periods to collect the required training data.
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Fig. 3. AUC values of different methods obtained by varying the percentage of event
occurrence information for the PBC and Kickstarter dataset (Color figure online).

6 Conclusion

In many real-world application domains, it is important to be able to forecast
the occurrence of future events by only using the data collected at early stages in
longitudinal studies. In this paper, we developed event prediction algorithms by
extending Bayesian methods through fitting a statistical distribution to time-
to-event data with fewer available events at the early stages. This enables us
to have a reliable prediction of event occurrence for future time points. Our
extensive experiments using both synthetic and real datasets demonstrate that
the proposed ESP-based algorithms are more effective than Cox model and
other classification methods in forecasting events at future time points. Also,
we investigated different kinds of extrapolation approaches by fitting various
distributions such as Weibull and log-normal. Though motivated by biomedical
and healthcare application scenarios (primarily for estimating survival), the pro-
posed algorithms are also applicable to various other domains where one needs
to predict event occurrences at early stage of analysis when there are only a
relatively fewer set of events that have occurred until a certain time point.
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