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Abstract—The Expectation Maximization (EM) algorithm is widely used for learning finite mixture models despite its greedy nature.

Most popular model-based clustering techniques might yield poor clusters if the parameters are not initialized properly. To reduce the

sensitivity of initial points, a novel algorithm for learning mixture models from multivariate data is introduced in this paper. The proposed

algorithm takes advantage of TRUST-TECH (TRansformation Under STability-reTaining Equilibria CHaracterization) to compute

neighborhood local maxima on the likelihood surface using stability regions. Basically, our method coalesces the advantages of the

traditional EM with that of the dynamic and geometric characteristics of the stability regions of the corresponding nonlinear dynamical

system of the log-likelihood function. Two phases, namely, the EM phase and the stability region phase, are repeated alternatively in

the parameter space to achieve local maxima with improved likelihood values. The EM phase obtains the local maximum of the

likelihood function and the stability region phase helps to escape out of the local maximum by moving toward the neighboring stability

regions. Though applied to Gaussian mixtures in this paper, our technique can be easily generalized to any other parametric finite

mixture model. The algorithm has been tested on both synthetic and real data sets and the improvements in the performance

compared to other approaches are demonstrated. The robustness with respect to initialization is also illustrated experimentally.

Index Terms—Expectation maximization, unsupervised learning, finite mixture models, dynamical systems, stability regions, model-

based clustering.

Ç

1 INTRODUCTION

IN the field of statistical pattern recognition, finite mixtures
allow a probabilistic model-based approach to unsuper-

vised learning [20]. One of the most popular methods used
for fitting mixture models to the observed data is the
Expectation Maximization (EM) algorithm, which converges
to the maximum likelihood estimate (MLE) of the mixture
parameters locally [7], [27]. The traditional steepest descent,
conjugate gradient, or Newton-Raphson methods are too
complicated for use in solving this problem [39]. EM has
become a popular method since it takes advantage of some
problem specific properties. EM-based methods have been
successfully applied to solve a wide range of problems that
arise in pattern recognition [2], [3], clustering [1], informa-
tion retrieval [22], computer vision [5], data mining [32], etc.

In this paper, we consider the problem of learning the
parameters of Gaussian Mixture Models (GMMs). Fig. 1
shows data generated by three Gaussian components with
different means and variances. Note that every data point has
a probabilistic (or soft) membership that gives the probability
with which it belongs to each of the components. The data

points that belong to component 1 will have a high
probability of membership for component 1. On the other
hand, data points belonging to components 2 and 3 are
not well separated. The problem of learning mixture
models involves not only estimating the parameters of
these components but also finding the probabilities with
which each data point belongs to these components. Given
the number of components and an initial set of para-
meters, the EM algorithm can be applied to compute the
optimal estimates of the parameters that maximize the
likelihood function. However, the main problem with the
EM algorithm is that it is a “greedy” method that converges
to a local maxima on the log-likelihood surface. Hence, the
final solution that the EM algorithm converges to will be
very sensitive to the given initial set of parameters.

This local maxima problem (popularly known as the
initialization problem) is one of the well-studied issues in
the context of the EM algorithm. Several algorithms have
been proposed in the literature to solve this issue. To
overcome this problem, we propose a novel three-phase
algorithm based on stability region analysis [24]. The main
research concerns that motivated the new algorithm
presented in this paper are as follows:

. The EM algorithm for mixture modeling converges
to a local maximum of the likelihood function very
quickly.

. There are many other promising local optimal
solutions in the close vicinity of the solutions
obtained from the methods that provide good initial
guesses of the solution.

. Model selection criteria usually assumes that the
global optimal solution of the log-likelihood function
can be obtained. However, achieving this is compu-
tationally intractable.
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. Some regions in the search space do not contain any
promising solutions. The promising and nonpromis-
ing regions coexist and it becomes challenging to
avoid wasting computational resources to search in
nonpromising regions.

Of all the concerns mentioned above, the fact that most of
the local maxima are not distributed uniformly [35] makes it
important for us to develop algorithms that not only help us
to avoid searching in the low-likelihood regions but also
emphasize the importance of exploring promising sub-
spaces more thoroughly. This subspace search will also be
useful for making the solution less sensitive to the initial set
of parameters. In this paper, we propose a novel stability
region-based algorithm for estimating the parameters of
mixture models. Using concepts from the dynamical
systems literature and the EM algorithm simultaneously
to exploit the problem specific features of mixture models,
our algorithm tries to obtain the optimal set of parameters
by systematically searching multiple local optimal solutions
on the likelihood surface.

The rest of this paper is organized as follows: Section 2
gives some relevant background about various methods
proposed in the literature for solving the problem of learning
mixture models. Section 3 discusses some preliminaries
about mixture models, the EM algorithm, and stability
regions. Section 4 describes our new framework, along with
the details of our implementation and the complexity.
Section 5 shows the experimental results of our algorithm
on synthetic and real data sets. Finally, Section 6 concludes
the work and discusses future research directions.

2 RELEVANT BACKGROUND

Although EM and its variants have been extensively used
for learning mixture models, several researchers have
approached the problem by identifying new techniques
that give good initialization. More generic techniques like
deterministic annealing [31], [35] and genetic algorithms
[23], [17] have been applied to obtain a good set of
parameters. Although these techniques have asymptotic
guarantees, they are very time consuming and, hence,
cannot be used in most practical applications. Some

problem specific algorithms like split and merge EM [36],

component-wise EM [9], greedy learning [37], incremental

version for sparse representations [21], and parameter space

grid [15] have also been proposed in the literature. Some of

these algorithms are either computationally very expensive

or infeasible when learning mixture models in high-

dimensional spaces [15]. In spite of the high computational

cost associated with these methods, very little effort has

been made to explore promising subspaces within the

larger parameter space. Most of these algorithms eventually

apply the EM algorithm to move to a locally maximal set of

parameters on the likelihood surface. Simpler practical

approaches like running EM from several random initiali-

zations and then choosing the final estimate that leads to the

local maximum with the highest value of the likelihood

have also been successful to a certain extent [12], [30].
Even though some of these methods apply other

additional mechanisms (like perturbations [8]) to escape

out of the local optimal solutions, systematic methods are

yet to be developed for searching the subspace. The

dynamical system of the log-likelihood function reveals

more information on the neighborhood stability regions and

their corresponding local maxima [6]. Hence, the difficulties

in finding good solutions when the error surface is very

rugged can be overcome by adding stability region-based

mechanisms to escape out of the convergence zone of the

local maxima. Although this method might introduce some

additional cost, one has to realize that the existing

approaches are much more expensive due to their stochastic

nature. There appears to be a minor similarity between our

method and some of the approaches available in the

literature [36], [9], [37] in terms of moving to different

basins of attraction in the neighborhood of the current local

maximum. In fact, some of these methods [36], [37] change

the number of components in this process of searching for

different regions. The main distinction of our work is the

use of the theory of stability regions to develop an efficient

computational method that can search for neighborhood

local maxima.
For a problem of this nature where there is a nonuniform

distribution of local maxima, it is difficult for most of the

methods to search neighboring regions [40]. For this reason,

it is more desirable to apply the TRUST-TECH-based

Expectation Maximization (TT-EM) algorithm after obtain-

ing some point in a promising region. The main advantages

of the proposed algorithm are that it

. explores most of the neighborhood local optimal
solutions unlike traditional stochastic algorithms,

. acts as a flexible interface between the EM algorithm
and other global methods,

. allows the user to work with existing clusters
obtained from other standard approaches and
improves the quality of the solutions based on the
maximum likelihood criteria,

. helps in truncating some of the expensive global
methods during their early stages, and

. exploits the fact that promising solutions are
obtained by faster convergence of the EM algorithm.
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Fig. 1. Data generated by three Gaussian components. The problem of

learning mixture models is to obtain the parameters of these Gaussian

components and the membership probabilities of each datapoint.



3 PRELIMINARIES

We now introduce some necessary preliminaries on mixture

models, the EM algorithm, and stability regions. First, we

describe the notation used in the rest of the paper

(Table 1).

3.1 Mixture Models

Let us assume that there are k Gaussian components in the

mixture model. The form of the probability density function

is as follows:

pðxxj�Þ ¼
Xk
i¼1

�ipðxxj��iÞ; ð1Þ

where xx ¼ ½x1; x2; . . . ; xd�T is the feature vector of

d dimensions. Throughout this paper, bold notation indi-

cates that it is a vector quantity unless otherwise explicitly

stated. The �is represent the mixing weights. The symbol �

represents the parameter set ð�1; �2; . . .�k; ��1; ��2; . . . ; ��kÞ and

p is a d-variate Gaussian density parameterized by ��i (that is,

��i and �i):

pðxxj��iÞ ¼
j�ij�

1
2

ð2�Þd=2
e�

1
2ðxx���iÞ

T��1ðxx���iÞ: ð2Þ

It should also be noticed that, being probabilities, �i
must satisfy

0 � �i � 1; 8i ¼ 1; . . . ; k; and
Xk
i¼1

�i ¼ 1: ð3Þ

Given a set of n independent and identically distributed

(i.i.d.) samples X ¼ fxxð1Þ; xxð2Þ; . . . ; xxðnÞg, the log-likelihood

corresponding to a mixture is

log pðXj�Þ ¼ log
Yn
j¼1

pðxxðjÞj�Þ

¼
Xn
j¼1

log
Xk
i¼1

�i pðxxðjÞj��iÞ:
ð4Þ

The goal of learning mixture models is to obtain the

parameters b� from a set of n data points that are samples

from a distribution with density given by (1). The MLE is

given by

b�MLE ¼ argmax
�
f log pðXj�Þ g; ð5Þ

where � indicates the entire parameter space. Since this

MLE cannot be found analytically for mixture models, one

has to rely on iterative procedures that can find the global

maximum of log pðXj�Þ. The EM algorithm described in the

next section has been successfully used to find the local

maximum of such a function [18].

3.2 EM

The EM algorithm considers X to be observed data. The

missing part, termed hidden data, is a set of n labels Z ¼
fzð1Þ; zð2Þ; . . . ; zðnÞg associated with n samples, indicating

that component which produced each data point [18]. Each

label zðjÞ ¼ ½zðjÞ1 ; z
ðjÞ
2 ; ::; z

ðjÞ
k � is a binary vector, where z

ðjÞ
i ¼ 1

and zðjÞm ¼ 0 8m 6¼ i means the sample xxðjÞ was produced by

the ith component. Now, the complete log-likelihood, that

is, the one from which we would estimate � if the complete

data Y ¼ fX ;Zg were known, is

log pðX ;Zj�Þ ¼
Xn
j¼1

log
Yk
i¼1

½�i pðxxðjÞj��iÞ�z
ðjÞ
i ; ð6Þ

log pðYj�Þ ¼
Xn
j¼1

Xk
i¼1

z
ðjÞ
i log ½�i pðxxðjÞj��iÞ�: ð7Þ

The EM algorithm produces a sequence of estimates

fb�ðtÞ; t ¼ 0; 1; 2; . . .g by alternately applying the following

two steps until convergence:

. E-Step. Compute the conditional expectation of the
hidden data, given X and the current estimate b�ðtÞ.
Since log pðX ;Zj�Þ is linear with respect to the
missing data Z, we simply have to compute the
conditional expectation W � E½ZjX ; b�ðtÞ� and plug
it into log pðX ;Zj�Þ. This gives the Q-function as
follows:

Qð�jb�ðtÞÞ � EZ ½log pðX ;ZÞjX ; b�ðtÞ�: ð8Þ

Since Z is a binary vector, its conditional expectation

is given by

w
ðjÞ
i �E ½z

ðjÞ
i jX ; b�ðtÞ�

¼ Pr ½zðjÞi ¼ 1jxðjÞ; b�ðtÞ�
¼ b�iðtÞpðxðjÞjb�iðtÞÞPk

i¼1 b�iðtÞpðxðjÞjb�iðtÞÞ ;
ð9Þ

where the last equality follows from Bayes law (�i is

the a priori probability that z
ðjÞ
i ¼ 1), whereas w

ðjÞ
i is

the posteriori probability that z
ðjÞ
i ¼ 1 given the

observation xxðjÞ.
. M-Step. The estimates of the new parameters are

updated using the following equation:

b�ðtþ 1Þ ¼ argmax
�
fQð�; b�ðtÞÞg: ð10Þ
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3.3 EM for GMMs

Several variants of the EM algorithm have been extensively

used to solve this problem. The convergence properties of

the EM algorithm for Gaussian mixtures are thoroughly

discussed in [39]. The Q-function for GMM is given by

Qð�jb�ðtÞÞ ¼Xn
j¼1

Xk
i¼1

w
ðjÞ
i ½log

j�j�
1
2

ð2�Þ
d
2

� 1

2
ðxxðjÞ � ��iÞ

T��1ðxxðjÞ � ��iÞ þ log �i�;

ð11Þ

where

w
ðjÞ
i ¼

b�iðtÞjc�iðtÞj�
1
2e�

1
2ðxðjÞ�b��iðtÞÞT jb�iðtÞj�1ðxðjÞ�b��iðtÞÞPk

i¼1 b�iðtÞjc�iðtÞj�
1
2e�

1
2ðxxðjÞ�b��iðtÞÞT jb�iðtÞj�1ðxxðjÞ�b��iðtÞÞ : ð12Þ

The maximization step is given by the following

equation:

@

@�k
Qð�jb�ðtÞÞ ¼ 0; ð13Þ

where �k is the parameters for the kth component. Because

the posterior probabilities in the E-step now appear in the

Q-function as given constants and, therefore, resemble the

Gaussian likelihood when the components are prespecified,

maximizing this function in the M-step becomes trivial. The

updates for the maximization step in the case of GMMs are

given as follows:

��iðtþ 1Þ ¼
Pn

j¼1 w
ðjÞ
i xx

ðjÞPn
j¼1 w

ðjÞ
i

;

�iðtþ 1Þ ¼
Pn

j¼1 w
ðjÞ
i ðxxðjÞ � ��iðtþ 1ÞÞðxxðjÞ � ��iðtþ 1ÞÞTPn

j¼1 w
ðjÞ
i

;

ð14Þ

�iðtþ 1Þ ¼ 1

n

Xn
j¼1

w
ðjÞ
i :

3.4 Stability Regions

This section mainly deals with the transformation of the

original log-likelihood function into its corresponding

nonlinear dynamical system and introduces some terminol-

ogy pertinent to comprehend our algorithm. Let us denote

the number of unknown parameters as s. This transforma-

tion gives the correspondence between all of the critical

points of the s-dimensional likelihood surface and that of its

dynamical system. For the case of a simple spherical

Gaussian mixture with k components, we have s ¼ 3k� 1.

It should be noted that only ðk� 1Þ � values are considered

in the gradient system because of the unity constraint. The

dependent variable �k is written as follows:

�k ¼ 1�
Xk�1

j¼1

�j: ð15Þ

For the case of a general full covariance d-variate Gaussian
mixture with k components, contribution to s stems from the
kd parameters through the component means ��i,

1
2 kdðdþ 1Þ

parameters through the k covariances �i, and the k� 1
mixing weights �i. Altogether, s is therefore given by
s ¼ kdþ 1

2 kdðdþ 1Þ þ ðk� 1Þ ¼ k½12 ðdþ 1Þðdþ 2Þ� � 1. F o r
convenience, the maximization problem is transformed into
a minimization problem as follows:

max
�
flog pðXj�Þ g ¼ min

�
f�log pðXj�Þg ¼ min

�
fð�Þ: ð16Þ

In our construction of the dynamical system correspond-
ing to the s-dimensional likelihood surface, we require that
fð�Þ be twice continuously differentiable. The following
simple lemma asserts this result.

Lemma 1. fð�Þ is C2ð<s;<Þ.
Proof. Note from (4) that we have

fð�Þ ¼ � log pðXj�Þ ¼ �
Xn
j¼1

log
Xk
i¼1

�i pðxxðjÞj��iÞ

¼ �
Xn
j¼1

log
Xk
i¼1

�i
j�ij�

1
2

ð2�Þd=2
e�

1
2ðxx���iÞ

T��1ðxx���iÞ:

ð17Þ

Each of the simple functions which appear in (17) are
twice differentiable and continuous in the interior of the
domain over which fð�Þ is defined (in fact, they are
infinitely differentiable). The function fð�Þ is composed
of arithmetic operations of these simple functions and,
from the basic results in the analysis, we can conclude
that fð�Þ is twice continuously differentiable. tu

Definition 1. �� is said to be a critical point of (16) if it satisfies
the following condition:

rfð��Þ ¼ 0: ð18Þ

A critical point is said to be nondegenerate if, at the critical
point �� 2 <s, ddTr2fð��Þdd 6¼ 0 ð8dd 6¼ 0Þ. We construct the
following gradient system in order to locate critical points of
the objective function (16):

_�ðtÞ ¼ F ð�Þ ¼ �rfð�Þ; ð19Þ

where the state vector � belongs to the euclidean space<s and
the vector field F : <s ! <s satisfies the sufficient condition
for the existence and uniqueness of the solutions. The solution
curve of (19) starting from � at time t ¼ 0 is called a trajectory
and it is denoted by �ð�; �Þ : < ! <s. A state vector � is called
an equilibrium point of (19) ifF ð�Þ ¼ 0. An equilibrium point is
said to be hyperbolic if the Jacobian of F at point �� has no
eigenvalues with zero real part.

Lemma 1 and the preceding arguments guarantee the
existence of the gradient system associated with fð�Þ and
allow us to construct the following dynamical system:

_�ðtÞ ¼ _��1ðtÞ :: _��kðtÞ _�1ðtÞ :: _�kðtÞ _�1ðtÞ :: _�k�1ðtÞ½ �T¼ �rfð�Þ

¼ � @f

@��1

::
@f

@��k

@f

@�1
::

@f

@�kdðdþ1Þ=2

@f

@�1
::

@f

@�k�1

� �T
:

ð20Þ
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From the implementation point of view, it is not required
to define this gradient system. However, to understand the
details of our method and its theoretical foundations, it is
necessary to obtain this gradient system. This will enable us to
define concepts like stable equilibrium point (SEP), stability
region, and stability boundary, all of which will be described
here briefly. In this paper, we introduce a novel computa-
tional technique that uses these concepts and build a few
approximations to make this method work well in practice.

Definition 2. A hyperbolic equilibrium point is called a
(asymptotically) stable equilibrium point (SEP) if all of
the eigenvalues of its corresponding Jacobian have negative
real part. Conversely, it is an unstable equilibrium point if
some eigenvalues have a positive real part.

An equilibrium point is called a type-k equilibrium point if
its corresponding Jacobian has exact k eigenvalues with
positive real part. The stable ðWsð~xÞÞ and unstable ðWuð~xÞÞ
manifolds of an equilibrium point, say, ~x, are defined as

Wsð~xÞ ¼ fx 2 <s : lim
t!1

�ðx; tÞ ¼ ~xg; ð21Þ

Wuð~xÞ ¼ fx 2 <s : lim
t!�1

�ðx; tÞ ¼ ~xg: ð22Þ

The task of finding multiple local maxima on the log-
likelihood surface is transformed into the task of finding
multiple stable equilibrium points on its corresponding
gradient system. The advantage of our approach is that
this transformation into the corresponding dynamical
system will yield more knowledge about the various
dynamic and geometric characteristics of the original
surface and leads to the development of a powerful
method for finding improved solutions. In this paper, we
are particularly interested in the properties of the local
maxima and their one-to-one correspondence to the stable
equilibrium points. To comprehend the transformation,
we need to define the concept of an energy function. A
smooth function V ð�Þ : <s ! < satisfying _V ð�ð�; tÞÞ < 0, [a
vector of zeros], 8 x 62 fset of equilibrium points ðEÞg, and
t 2 <þ is termed as the energy function.

Theorem 3.1 [6]. fð�Þ is a energy function for the gradient
system (20).

Definition 3. A type-1 equilibrium point xd ðk ¼ 1Þ on the
practical stability boundary of a stable equilibrium point xs is
called a decomposition point.

Our approach takes advantage of TRUST-TECH (TRans-
formation Under STability-reTaining Equilibria CHaracter-
ization) to compute neighborhood local maxima on
likelihood surface using stability regions. Originally, the
basic idea of our algorithm was to find decomposition
points on the practical stability boundary. Since each
decomposition point connects two local maxima uniquely,
it is important to obtain the saddle points from the given
local maximum and then move to the next local maximum
through this decomposition point [25]. Although this
procedure gives a guarantee that the local maximum is
not revisited, the computational expense for tracing the
stability boundary and identifying the decomposition point

is high compared to the cost of applying the EM algorithm
directly using the exit point without considering the
decomposition point. In a particular direction away from
the local maximum, the point where the value of the energy
function reaches the maximum is called an exit point (x1, x2,
and x3 in Fig. 4a). One can use the saddle point tracing
procedure described in [25] for applications where the local
methods like EM are more expensive.

Definition 4. Tier-1 local maximum is a neighborhood local
maximum obtained by integrating the gradient system after a
small perturbation along the eigenvector direction correspond-
ing to the positive eigenvalue of the Jacobian at the
decomposition point on the stability boundary of any given
local maximum.

Definition 5. The practical stability region of a stable
equilibrium point xs of a nonlinear dynamical system (19),
denoted by ApðxsÞ, is the interior of closure of the stability
region AðxsÞ, which is given by

AðxsÞ ¼ fx 2 <s : lim
t!1

�ðx; tÞ ¼ xsg: ð23Þ

The boundary of the practical stability region is called the
practical stability boundary of xs and will be denoted by
@ApðxsÞ. Theorem 3.2 asserts that the practical stability
boundary is contained in the union of the closure of the
stable manifolds of all the decomposition points on the
practical stability boundary. Hence, if the decomposition
points can be identified, then an explicit characterization of
the practical stability boundary can be established using
(24). This theorem gives an explicit description of the
geometrical and dynamical structure of the practical
stability boundary.

Theorem 3.2 (Characterization of practical stability
boundary) [14]. Consider a negative gradient system
described by (19). Let �i i ¼ 1; 2; . . . be the decomposition
points on the practical stability boundary @ApðxsÞ of a stable
equilibrium point, say, xs. Then,

@ApðxsÞ ¼
[

�i2@Ap

Wsð�iÞ: ð24Þ

Fig. 2 gives an example of a Tier-1 local maximum. The
EM algorithm converges to a local maximum ðLMiÞ. By
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Fig. 2. Demonstration of Tier-1 local maximum. The original local

maximum is LMi. �1 is a decomposition point on the stability boundary

of LMi. Another local maximum ðnewjÞ can be obtained through the

saddle point.



tracing the stability boundary, one can find a decomposition
point ð�1Þ using the procedure described in [25]. The
eigenvector direction corresponding to the positive eigen-
value of the Jacobian evaluated at �1 will connect two local
maxima. Hence, a new local maximum ðnewjÞ can be
obtained by following the gradient after perturbing in that
eigenvector direction toward the opposite side of the
existing local maximum ðLMiÞ.

3.5 Model Selection Criterion

Another important issue in mixture modeling is the selection
of the number of components that is usually unknown in real-
world problems. A mixture with too many components will
overfit the data, while a mixture with too few components
will be too simple to approximate the underlying distribu-
tion. Most of the methods available in the literature for model
selection add a penalty term in the objective function that can
potentially penalize more complex models. A detailed review
of different criteria used to penalize complex models is given
in [19]. Bayesian approaches are also successful in identifying
the number of components [30]. The methods of model
selection can be divided into two families. One is based on a
random sampling mechanism, for example, Markov Chain
Monte Carlo (MCMC) methods [11], [28], [29]. The main
disadvantage of these methods is the computational expense
in attaining the global optimal solution. The other one is based
on some deterministic criteria similar to the minimum
message length (MML) criterion [9]. A review of cross
validation schemes for mixture modeling can be seen in [33].

We will be able to incorporate any model selection
criterion in our method by merely modifying the likelihood
function. The proposed method works in the same way as
before, except that the likelihood function will have some
additional terms. Our method deals with the nonlinearity of
the likelihood surface directly and, hence, it is independent
of the number of components chosen in the model. In fact,
the improvements in the likelihood will be bigger in this
case because of the additional terms that create more
nonlinearity of the surface. We would like to emphasize that
the main focus of our work is to reduce or solve the
initialization problem associated with the learning of
mixture models and not the automatic selection of the
number of components. However, we justify that, using our
methodology, we can exploit the maximum potential of the

given number of mixture components by trying to find
better estimates of the likelihood. In other words, solving
the initialization issue will indirectly impact the choice of
the number of components.

4 TRUST-TECH-BASED ALGORITHM

Our framework consists of three phases. The first phase is
the global phase in which the promising solutions in the
entire search space are obtained. The second phase is the
local phase (or the EM phase), where the promising
solutions obtained from the previous phase are refined to
the corresponding locally optimal parameter set. The third
phase, which is the main contribution of this paper, is the
stability region phase. The exit points are computed and the
neighborhood solutions are systematically explored
through these exit points in this phase. Fig. 3 shows the
block diagram of our algorithm. The EM phase and the
stability region phase are repeated alternatively in the
promising regions of the parameter search space.

This approach can be treated as a hybrid between global
methods for initialization and the EM algorithm, which
gives the local maxima. One of the main advantages of our
approach is that it searches the parameter space more
systematically. This approach differs from traditional local
methods by computing multiple local solutions in the
neighborhood region. This also enhances user flexibility
by allowing the users to choose between different sets of
good clusterings. Although global methods give promis-
ing subspaces, it is important to explore this subspace
more thoroughly, especially in problems like this one.
Algorithm 1 describes our approach.

Fig. 4 shows the different steps of our algorithm in both
in the parameter space (Fig. 4a) and the function space
(Fig. 4b). In order to escape this local maximum, our
method needs to compute certain promising directions
based on the local behavior of the function. One can realize
that generating these promising directions is one of the
important aspects of our algorithm. Surprisingly, choosing
random directions to move out of the local maximum works
well for this problem. One might also use other directions
like eigenvectors of the Hessian or incorporate some
domain-specific knowledge (like information about priors,
approximate location of cluster means, user preferences on
the final clusters, etc.), depending on the application that
they are working on and the level of computational expense
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Fig. 3. Block diagram of our algorithm. The global method gives some initial promising subspaces. The EM algorithm, along with the stability region

phase, can obtain a set of promising neighborhood local maxima on the likelihood surface.



that they can afford. We used random directions in our
work because they are very cheap to compute. Once the
promising directions are generated, exit points are com-
puted along these directions. Exit points are points of
intersection between any given direction and the practical
stability boundary of that local maximum along that
particular direction. If the stability boundary is not
encountered along a given direction, it is very likely that
one might not find any new local maximum in that
direction. With a new initial guess in the vicinity of the
exit points, the EM algorithm is applied again to obtain a
new local maximum.

Algorithm 1 TT_EM Algorithm

Input: Parameters �, Data X , tolerance � , Step Sp
Output: b�MLE

Algorithm:

Apply global method and store the q promising solutions

�init ¼ f�1;�2; ::;�qg
Initialize E ¼ 	
while �init 6¼ 	 do

Choose �i 2 �init, set �init ¼ �initnf�ig
LMi ¼ EMð�i;X ; �Þ E ¼ E [ fLMig
Generate promising direction vectors dj from LMi

for each dj do

Compute Exit Point ðXjÞ along dj starting from LMi

by evaluating the log-likelihood function given by (4)

Newj ¼ EMðXj þ 
 � dj;X ; �Þ
if newj 62 E then

E ¼ E [Newj
end if

end for

end whileb�MLE ¼ maxfvalðEiÞg

4.1 Implementation Details

Our program is implemented in Matlab and runs on a

Pentium IV 2.8 GHz machine. The main procedure imple-
mented is TT EM, described in Algorithm 2. The algorithm

takes the mixture data and the initial set of parameters as
input, along with step size for moving out and the tolerance
for convergence of the EM algorithm. It returns the set of
parameters that correspond to the Tier� 1 neighboring local
optimal solutions. The procedure eval returns the log-
likelihood score given by (4). The Gen Dir procedure
generates promising directions from the local maximum.
Exit points are obtained along these generated directions. The
procedure update moves the current parameter to the next
parameter set along a given kth direction Dir½k�. Some of the
directions might have one of the following two problems:
1) Exit points might not be obtained in these directions.
2) Even if the exit point is obtained, it might converge to a less
promising solution. If the exit points are not found along these
directions, the search will be terminated after Eval MAX

number of evaluations. For all exit points that are successfully
found, the EM procedure is applied and all of the
corresponding neighborhood set of parameters are stored in
the Params½ �. To ensure that the new initial points are in
different stability regions, one should move along the
directions “
” away from the exit points. Because the
parameters will be of different ranges, care must be taken
while computing the step sizes. It is important to use the
current estimates to get an approximation of the step size with
which one should move out along each parameter in the
search space. Finally, the solution with the highest log-
likelihood score among the original set of parameters and the
Tier-1 solutions is returned.

4.2 Complexity of the Algorithm

We will now analyze the time complexity of the TRUST-
TECH-EM algorithm presented in the previous section. An
extensive discussion on the rate of convergence of the EM
algorithm is available in [7]. This rate depends on the
proportion of information available in the observed data.
Consider the case of a full covariance d-variate GMM with
k components and n data points. Let us summarize the cost
of each EM step. The E-step in (9) requires operations of
order Oðnk�Þ, where � is the cost of computing the density
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Fig. 4. Various stages of our algorithm in (a) Parameter space—the solid lines indicate the practical stability boundary. Points highlighted on the

stability boundary ð�1; �2Þ are the decomposition points. The dotted lines indicate the convergence of the EM algorithm. The promising directions,

labeled as dj, are generated at the local maximum LMi. The dashed lines indicate the stability region phase. The points x1, x2, and x3 are the exit

points on the practical stability boundary. (b) Different variables in the function space and their corresponding log-likelihood values.



of a multivariate normal at a given point pðxxðjÞj��iÞ. The
M-step from (14) requires operations of order OðnkdÞ due to
the calculation of the component means, of order Oðnkd2Þ
from calculations of the component covariance matrices and
of order OðkÞ from calculation of the mixing weights. The
computational cost of the EM step for each iteration is
therefore of the order Oðnk�þ nkd2Þ. For higher dimen-
sional problems, � is negligible compared to d2 and d2 � n.
Hence, the cost of EM will be Oðn2Þ, which is quadratic in n.

We will now quantify the additional cost incurred due to
the stability region phase of the TRUST-TECH method. This
phase allows us to escape out of the local maximum and it
basically requires the evaluation of the log-likelihood
function at several points along a particular direction. The
evaluation of the log-likelihood function value during the
stability region phase requires nk�þ 2nkþ 2n operations
(see (4)). Assuming that there are a maximum of c number
of function evaluations ðEval MAXÞ along a particular
direction, the total complexity of the stability region phase
will be Oð2cknÞ (since k << n). This is linear in terms of n.
Hence, the stability region phase requires a negligible
additional cost compared to the EM phase. Finally, the
overall cost of the TRUST-TECH-EM method will be equal
to Oðbn2Þ, where b is the number of directions chosen. This
quantity is the same as the cost of using b random starts and
applying the EM algorithm for each of the starts.

Algorithm 2 Params[ ] TT EMðPset;Data; Tol; StepÞ
V al ¼ evalðPsetÞ
Dir½ � ¼ Gen DirðPsetÞ
Eval MAX ¼ 500

for k ¼ 1 to sizeðDirÞ do

Params½k� ¼ Pset ExtPt ¼ OFF
Prev V al ¼ V al Cnt ¼ 0

while ð!ExtPtÞ&&ðCnt < Eval MAXÞ do

Params½k� ¼ updateðParams½k�; Dir½k�; StepÞ
Cnt ¼ Cntþ 1

Next V al ¼ evalðParams½k�Þ
if ðNext V al > Prev V alÞ then

ExtPt ¼ ON
end if

Prev V al ¼ Next V al
end while

if count < Eval MAX then

Params½k� ¼ updateðParams½k�; Dir½k�; ASCÞ
Params½k� ¼ EMðParams½k�; Data; TolÞ

else

Params½k� ¼ NULL
end if

end for

Return maxðevalðParams½ �ÞÞ

5 RESULTS AND DISCUSSION

Our algorithm has been tested on both synthetic and real
data sets. The initial values for the centers and the
covariances were chosen to be uniformly random. Uniform
priors were chosen for initializing the components. For real
data sets, the centers were chosen randomly from the
sample points.

5.1 Results on Synthetic and Real-World Data Sets

A simple synthetic data with 40 samples and 5 spherical
Gaussian components was generated and tested with our
algorithm. Priors were uniform and the standard deviation
was 0.01. The centers for the five components are given
as follows: �1 ¼ ½0:3 0:3�T , �2 ¼ ½0:5 0:5�T , �3 ¼ ½0:7 0:7�T ,
�4 ¼ ½0:3 0:7�T , and �5 ¼ ½0:7 0:3�T .

The second data set was that of a diagonal covariance
case containing n ¼ 900 data points. The data generated
from a two-dimensional three-component Gaussian mixture
distribution with mean vectors at ½0� 2�T ; ½0 0�T ; ½0 2�T and
the same diagonal covariance matrix with values 2 and 0.2
along the diagonal [35]. All three mixtures have uniform
priors. The true mixtures with data generated from these
three components are shown in Fig. 5. The data points
appear to be in three well-separated Gaussian clusters.

Fig. 6 shows various stages of our algorithm and
demonstrates how the clusters obtained from existing
algorithms are improved using our algorithm. The initial
clusters obtained are of low quality because of the poor
initial set of parameters. Our algorithm takes these clusters
and applies the stability region step and the EM step
simultaneously to obtain the final result. Fig. 7 shows the
value of the log-likelihood during the stability region phase
and the EM iterations.

To demonstrate the performance of our algorithm on
high-dimensional problems, we extended the elliptical data
set to higher dimensions (50, 100, and 200). The centers
were generated by simultaneously repeating the following
3-by-2 matrix: [0 rand; rand 0; 0 rand], and the covariance
matrix is obtained by repeating the following 3-by-2 matrix:
[200*rand 20*rand; 200*rand 20*rand; 200*rand 20*rand].
Here, rand indicates a uniform random variable between 0
and 1. To improve the running time, we used only
90 datapoints with uniform mixing weights. The number
of search directions ð¼ 20Þ is a constant in all three cases.

In the third synthetic data set, more complicated over-
lapping Gaussian mixtures are considered [9]. The para-
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Fig. 5. True mixture of the three Gaussian components with 900 samples.



meters are as follows: �1 ¼ �2 ¼ ½�4 � 4�T , �3 ¼ ½2 2�T , and

�4 ¼ ½�1 � 6�T . �1 ¼ �2 ¼ �3 ¼ 0:3 and �4 ¼ 0:1.

�1 ¼
1 0:5

0:5 1

� �
; �2 ¼

6 �2

�2 6

� �
;

�3 ¼
2 �1

�1 2

� �
; �4 ¼

0:125 0

0 0:125

� �
:

Originally, there were 1,000 samples generated, as

shown in Fig. 8. However, we have conducted experiments

to show the performance improvements of our algorithm by

increasing the number of data points.
Two real data sets obtained from the UCI Machine

Learning repository [4] were also used for testing the

performance of our algorithm. The widely used Iris data
with 150 samples, 3 classes, and 4 features was used. The
wine data set with 178 samples was also used for testing.
The wine data had 3 classes and 13 features. For these real
data sets, the class labels were deleted, thus treating it as an
unsupervised learning problem. Table 2 summarizes our
results over 100 runs. The mean and the standard
deviations of the log-likelihood values are reported. The
traditional EM algorithm with random starts is compared
against our algorithm on both the synthetic and real data
sets. Our algorithm not only obtains a higher likelihood
value but also produces it with higher confidence. The low
standard deviation of our results indicates the robustness of
obtaining higher likelihood values. In the case of the wine
data, the improvements with our algorithm are not much
more significant compared to the other data sets. This might
be due to the fact that the data set might not have Gaussian
components. Our method assumes that the underlying
distribution of the data is a mixture of Gaussians. Finally,
the performance of our algorithm on high-dimensional data
is also shown. With a fixed number of search directions, the
dimensionality of the data is increased and the improve-
ments in the average MLE are shown.

Table 3 gives the results of TRUST-TECH compared with
other methods proposed in the literature like split and
merge EM and k-means+EM [41]. MRS+EM indicates the
multiple random starts experiment, which includes the
same number of starts as the number of valid directions in
the case of the TRUST-TECH method. The multiple starts
are made only in the promising regions. RS+EM is just a
single random start and is given here to illustrate the lower
bound on the performance of our method empirically.

5.2 Discussion

It will be effective to use our algorithm for those solutions
that appear to be promising. Due to the nature of the
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Fig. 7. Graph showing likelihood versus evaluations. A corresponds to
the original local maximum ðL ¼ �3235:0Þ. B corresponds to the exit
point ðL ¼ �3676:1Þ. C corresponds to the new initial point in the
neighboring stability region ðL ¼ �3657:3Þ after moving out by “
.” D
corresponds to the new local maximum ðL ¼ �3078:7Þ.

Fig. 6. Parameter estimates at various stages of our algorithm on the
three component GMM. (a) Poor random initial guess. (b) Local
maximum obtained after applying EM algorithm with the poor initial
guess. (c) Exit point obtained by our algorithm. (d) The final solution
obtained by applying the EM algorithm to the initial point in the
neighboring stability region.

Fig. 8. True mixtures of the more complicated overlapping Gaussian

case with 1,000 samples. This data set was used to show the

improvements in the performance by varying the number of data points.



problem, it is very likely that the nearby solutions
surrounding the existing solution will be more promising.
One of the primary advantages of our method is that it can
be used along with other popular methods already
available and thus improve the quality of existing solutions.
In clustering problems, it is an added advantage to perform
refinement of the final clusters obtained. As shown in Fig. 6,
our algorithm can help in improving the quality of existing
clusters. Even in such a simple case, the initial algorithm
identified only one of the three clusters correctly. Our
algorithm used the existing solution and identified three
distinct clusters that are identical to the true mixtures. Most
of the focus in the literature has been on new methods for
initialization or new clustering techniques, which often do
not take advantage of the existing results and completely
start the clustering procedure “from scratch.” Though shown
only for the case of multivariate Gaussian mixtures, our
technique can be effectively applied to any parametric finite
mixture model.

A closer examination of that in Table 2 indicates that, for
the high-dimensional examples (Elliptical 50, 100, 200), the
variance does not necessarily go up with increasing
dimensionality. This might be due to the limited number
of initial starts and the associated inherent inability to
explore vast higher dimensional spaces with these relatively
fewer number of starts. This could possibly lead to the same
likelihood values from different initial starts, thus reducing
the variance. A detailed investigation of this is beyond the
scope of this paper but could shed further light on the
properties of trust-tech-EM and other methods in high-
dimensional examples.

Table 4 summarizes the average number of iterations
taken by the EM algorithm for convergence to the local
optimal solution. We can see that the most promising
solution produced by our TRUST-TECH-EM methodology
converges much faster. In other words, our method can
effectively take advantage of the fact that the convergence

of the EM algorithm is much faster for high-quality

solutions. This is an inherent property of the EM algorithm

when applied to the mixture modeling problem. We exploit

this property of the EM for improving the efficiency of our

algorithm. Hence, for obtaining Tier-1 solutions using our

algorithm, the threshold for the number of iterations can be

significantly lowered.
Using stability regions, we have a systematic approach to

obtain neighboring local maxima as opposed to widely used

stochastic methods (like data perturbation, annealing,

mutations in genetic algorithms, etc.). These stochastic

methods never guarantee the presence of a new stability

region. Our algorithm not only guarantees that a new local

maximum obtained is different from the original solution

but also confirms that we will not miss a solution in any

particular direction. Also, this algorithm provides the

flexibility in choosing these directions, thus avoiding some

standard problems of using EM algorithm like the

boundary space problem. The standard EM algorithm

might sometimes converge to the boundary of the para-

meter space. The boundary space problem (popularly

known as the singularity problem) occurs when one of the

unconstrained covariance matrices approaches zero. This

can be solved by using some soft constraints over the

covariance matrices. In addition to that, we can take an

extra step to generate directions that will not lead the

parameters of these covariances matrices toward zero.
Our algorithm can be easily extended to the popularly

used k-means clustering technique [20]. The proposed

algorithm works not only for mixture models but also for

more general nonlinear likelihood surfaces. The TRUST-

TECH based EM algorithm has been successfully applied to

a real-world example in bioinformatics, namely, the motif

finding problem, where EM is one of the popularly used

algorithms for motif refinement [26].
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TABLE 2
Performance of our Algorithm on an Average of 100 Runs on Various Synthetic and Real Data Sets

TABLE 3
Comparison of TRUST-TECH-EM with Other Methods

TABLE 4
Number of Iterations Taken for the Convergence

of the Best Solution



6 CONCLUSION AND FUTURE WORK

A novel TRUST-TECH-based EM algorithm has been
introduced for estimating the parameters of mixture
models. The EM phase and the stability region phase are
applied alternatively in the context of the well-studied
problem of learning mixture models. The concept of a
stability region helps us to understand the topology of the
original log-likelihood surface. Our method computes the
neighborhood local maxima of likelihood surfaces using
stability regions of the corresponding nonlinear dynamical
system. The algorithm has been tested successfully on
various synthetic and real-world data sets and the
improvements in the performance are clearly manifested.

Our algorithm can be easily extended to the popularly
used k-means clustering technique. In the future, we plan to
work on applying these stability-region-based methods for
other widely used EM related parameter estimation
problems like training Hidden Markov Models [38],
Mixtures of Factor Analyzers [10], Probabilistic Principal
Component Analysis [34], Bayesian Networks [13], etc. We
also plan to extend our technique to MCMC strategies like
Gibbs sampling for the estimation of mixture models.
Constraints might be added based on some prior informa-
tion about the samples and a TRUST-TECH-based con-
strained EM algorithm can be developed [16].
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