@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Padhukasahasram B, Reddy CK, Levin AM,
Burchard EG, Williams LK (2015) Powerful Tests for
Multi-Marker Association Analysis Using Ensemble
Learning. PLoS ONE 10(11): €0143489. doi:10.1371/
journal.pone.0143489

Editor: Chuhsing Kate Hsiao, National Taiwan
University, TAIWAN

Received: March 3, 2015
Accepted: November 5, 2015
Published: November 30, 2015

Copyright: © 2015 Padhukasahasram et al. This is
an open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by grants from
the American Asthma Foundation (LKW), the Fund
for Henry Ford Hospital (LKW), the National Science
Foundation (I1S-1231742 and 11S-1242304 to CKR),
the Flight Attendant Medical Research Institute
(EGB), RWJF Amos Medical Faculty Development
Award (EGB), the Sandler Foundation (EGB), and
the following institutes of the National Institutes of
Health: National Cancer Institute (R21CA175974 to
CKR; R25CA113710 to EGB), National Heart Lung
and Blood Institute (R01HL088133, RO1HL078885,

RESEARCH ARTICLE

Powerful Tests for Multi-Marker Association
Analysis Using Ensemble Learning

Badri Padhukasahasram'*, Chandan K. Reddy?, Albert M. Levin®, Esteban G. Burchard*®,
L. Keoki Williams'®

1 Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan,
United States of America, 2 Department of Computer Science, Wayne State University, Detroit, Michigan,
United States of America, 3 Department of Public Health Sciences, Henry Ford Health System, Detroit,
Michigan, United States of America, 4 Department of Medicine, University of California San Francisco, San
Francisco, California, United States of America, 5 Department of Bioengineering and Therapeutic Sciences,
University of California San Francisco, San Francisco, California, United States of America, 6 Department of
Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America

* bpadhuk1 @hfhs.org

Abstract

Multi-marker approaches have received a lot of attention recently in genome wide associa-
tion studies and can enhance power to detect new associations under certain conditions.
Gene-, gene-set- and pathway-based association tests are increasingly being viewed as
useful supplements to the more widely used single marker association analysis which have
successfully uncovered numerous disease variants. A major drawback of single-marker
based methods is that they do not look at the joint effects of multiple genetic variants which
individually may have weak or moderate signals. Here, we describe novel tests for multi-
marker association analyses that are based on phenotype predictions obtained from
machine learning algorithms. Instead of assuming a linear or logistic regression model, we
propose the use of ensembles of diverse machine learning algorithms for prediction. We
show that phenotype predictions obtained from ensemble learning algorithms provide a
new framework for multi-marker association analysis. They can be used for constructing
tests for the joint association of multiple variants, adjusting for covariates and testing for the
presence of interactions. To demonstrate the power and utility of this new approach, we first
apply our method to simulated SNP datasets. We show that the proposed method has the
correct Type-1 error rates and can be considerably more powerful than alternative
approaches in some situations. Then, we apply our method to previously studied asthma-
related genes in 2 independent asthma cohorts to conduct association tests.

Introduction

Genome wide association studies (GWAS) have generated a wealth of information about genes
and genetic variants influencing various diseases and traits. [1] The vast majority of GWAS
have focused on single-marker analysis and tests for significance were “corrected” for multiple
hypotheses testing to obtain the correct false positive rates. Because the number of markers
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tested in such studies is large, a single nucleotide polymorphism (SNP) needs to have a strong
effect or the sample size needs to be large enough to cross the stringent genome wide signifi-
cance thresholds. Furthermore, many complex traits are thought to result from the interplay of
multiple genetic and environmental factors, which are not captured by single SNP association
tests. Given these limitations of single-marker analysis, many multi-marker approaches for
association testing have been proposed and are increasingly being used to complement single
SNP analyses [2-11].

Genes are the basic functional units of the genome and multiple polymorphisms within or
near a gene can jointly affect its products. Thus, multi-marker association tests can realistically
model the multiplicity that occurs biologically. While individual causal variants might show
only a marginal signal of association, jointly utilizing all informative SNPs within a gene may
detect their manifold effects. Testing genes also reduces the burden of multiple testing from
millions of individual SNP tests to around 20,000 genes. Gene-based methods may also be less
sensitive to differences in allele frequency and linkage disequilibrium patterns between popula-
tion groups (and, therefore, may produce more replicable results).

To date many gene-based association tests have been proposed [4-10]. Most of these
approaches first assign a subset of SNPs to a particular gene based on their location in the
genome; they then seek to calculate a gene-based p value based on the individual SNP associa-
tion tests. Versatile gene-based association study (VEGAS) is a gene-based method that com-
bines the chi-square test statistics of individuals SNPs, while accounting for their dependence
[5]. Li et al. proposed a gene-based association test that uses an extended Simes procedure
(GATES). This method obtains a gene-based p value by integrating the p values of individual
variants while accounting for pairwise correlations between variants when calculating the effec-
tive number of independent tests [7]. SKAT is a logistic kernel machine based test that can
account for non-linear effects when determining the gene-level significance [6,8].

Generally, the methods used for combining p values in gene-based tests can be divided into
2 categories: best-SNP picking and all SNP aggregating tests. Best-SNP picking tests use only
one SNP-based p value after accounting for multiple testing adjustment. GATES is an example
of a testing method that falls within this category. All-SNP aggregating tests, such as VEGAS--
SUM and SKAT, attempt to accumulate the effects of all SNPs into a test when determining the
overall p value. HYST is a recently developed hybrid method that use both these kinds of
approaches in its calculations [10].

Many existing gene-based approaches either use the minimum p value for variants within a
gene or integrate the p values or test statistics from individual variants to determine the overall
gene-level p values. However, this may not be optimal in terms of utilizing the information
available in the data [11] and it may be better to determine the joint association of multiple pre-
dictive SNPs rather than to use individual SNP measures. In addition, many existing methods
do not account for non-linear effects. Our main goal here is to develop an accurate method for
multi-marker association analysis that can incorporate pairwise and higher order interactions
between variables. We use phenotype prediction algorithms as a basis for constructing such
association tests. Since the underlying genetic architecture of a trait and the optimal model
structure for combining the association information across multiple markers are not usually
known before testing, we propose a machine learning approach for this purpose. The main
novelty of our approach is the use of an ensemble of diverse learning models to generate phe-
notype predictions. In this approach, we feed the initial predictions generated from many indi-
vidual learning algorithms into a second-level learning algorithm which weights their
contributions suitably to generate a final prediction [12-16]. Thus, our approach involves
blending the results of different learning algorithms by using a “meta-level” learning algorithm.
We also use additional variables called “meta-features” (e.g. age, gender, body mass index,
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individual genotypes and ancestry) as inputs to guide this blending procedure [15]. In princi-
ple, such a combination of models can allow us to better approximate (on average) the true
underlying relationships between the input variables and phenotype across multiple sets of
SNPs. Of note, this method allows the relationships between different groups of SNPs and the
phenotype to be non-linear, complex, and variable.

We propose to use Random Forests [12-13], Support Vector machines [17-18] and linear
or logistic regression as components in our ensemble learning framework. The first 2 of these
methods have been widely used in numerous applications and are among the best performing
prediction tools. Random forests is an ensemble learning method based on decision trees that
can be used for both classification and regression. Such methods stratify the predictor space
into a number of simple regions and predict using the training observations from the region to
which the test observation belongs. The main idea of random forests is to build a large number
of decision trees on bootstrap samples drawn from the training data. However, when building
these decision trees, each time a split in a tree is considered, a random sample of m predictors
is chosen as split candidate from the full set of p predictors. The split is then allowed to use
only one of these m predictors. This has the effect of decorrelating the trees and predictions
from many trees are averaged to generate the final prediction. Random forests can model non-
linear relationships and interaction effects between input variables.

Support Vector Machines are supervised learning algorithms that can be used for both clas-
sification and regression. Formally, a support vector machine constructs a hyperplane in high-
dimensional space based on the training data and this can be used to perform classification,
and regression. Informally, the objective is to find a hyperplane that has the largest distance to
training data points from any class. The larger this margin, the better is the accuracy of the clas-
sifier. In addition, SVMs have the ability to perform a non-linear classification using kernels
that implicitly map their inputs into high-dimensional feature spaces.

Here, we show how machine learning algorithms can be used to construct powerful tests for
multi-marker association analysis. We then show how to construct tests of association in the
presence of genetic or non-genetic covariates and how to construct a multi-marker test of inter-
actions under this framework. We first apply our method to simulated datasets to demonstrate
its power and correctness. Lastly, we apply our method to previously studied asthma-related
genes in two independent asthma cohorts to conduct gene-based association tests.

Materials and Methods
Ethics approval

The Henry Ford Health System Institutional Review Board approved this study. Patient rec-
ords and information were anonymized and de-identified prior to use in this analysis.

Approach for predicting phenotypes

Here, we present an overview of our approach to predict phenotypes from genetic and clinical
variables through the use of multiple machine learning algorithms. First, we create a list of all
genetic variants and clinical covariates that can potentially influence the phenotype of interest
such as a disease or drug response. Next, we perform a feature selection step where we identify
a subset of variables, which are useful for building a predictive model (i.e., associated with the
phenotype). This can be done in many ways such as using variable importance scores from a
random forest algorithm or Pearson’s correlation coefficient with the phenotype. Different
machine learning algorithms (e.g., random forests [12-13], support vector machines [17-18]
and logistic regression) are then trained using this subset of informative variables. Subse-
quently, we use the predictions from these individual models along with the selected features as
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inputs in a “meta-level” random forest algorithm. Lastly, we assess prediction accuracy by test-
ing the model on an “outside the training set” and through 20-fold cross-validation.

The training and test set are created using the standard k-fold cross-validation. We ran-
domly split a dataset with n samples into k roughly equal parts. One of these k parts becomes
the test set, while the rest of the samples (k -1 parts) are used for training the algorithm and
learning the model parameters. Subsequently, this model is applied to generate phenotype pre-
dictions for the samples in the test set. This process is repeated for each of the k parts to gener-
ate phenotype predictions for all the samples.

Ensemble learning algorithm for phenotype prediction

Ensemble learning variation 1.
1. Generate a set of all genetic variables.

2. Perform feature selection on the training data in order to identify an informative subset of
variables (fj, f. . .f,) for phenotype prediction. This can be performed using either pairwise
correlation coefficients between variables and phenotype or by using random forest variable
importance scores to rank the variables. Then, we can use the top 10-30% of the variables in
a prediction model.

3. Train k independent machine learning approaches on the training data using the selected
features and generate model predictions Py, P,. . .Py.

4. Use the predictions from step 3, Py, P,.. .Pand f, f,. . .f;, as inputs and train a “meta-level”
learning algorithm using random forests. Note that this is a key step in the algorithm and
generates a final prediction by blending many individual predictions in a possibly non-lin-
ear manner. The main goal is to learn the best model to combine individual models from
the training data so that we can predict the phenotype as well as possible. The non-linear
combination of models along with the meta-features gives us a more general predictive
framework, which can accommodate different model structures and also allows the model
to vary across the multi-dimensional parameter space.

5. Generate predictions Pyenq; in test data using the models trained in steps 3 and then 4.
Repeat for all cross-validation folds to obtain phenotype predictions for all samples.

In S1 Appendix of supporting information, we describe other variations and generalizations of
this algorithm. For all calculations involving power and Type-1 error rates for our gene-based
test, we use ensemble learning variation 1 with the following components: multiple linear
regression or logistic regression (for quantitative or case-control traits respectively), support
vector machine with linear kernel and random forests with my, = 1 and n.. = 1000. myy is the
number of SNPs to consider when creating a tree node in a random forest and ny is the num-
ber of trees used in the model. Feature selection is based on the pairwise Pearson’s correlation
coefficient between variables and phenotype and we use the top 30% of the variables for con-
structing prediction models. The “meta-level” learning algorithm is also a random forests algo-
rithm with m, = 1 and ny.. = 1000 and non-linearly combines features as well as initial
phenotype predictions.

The choice of my,, was based on testing the random forests algorithm on an empirical data-
set from an asthma cohort at the Henry Ford Health System (Details can be found in [19]). We
considered a large number of gene-regions from this genotype data and generated predictions
for asthma drug (short-acting beta-agonist) response phenotype (a continuous variable) for
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varying values of my,,. We choose the value that maximized the prediction accuracy (R?) on
“out of the bag” samples (i.e. those not used in training) for asthma drug response.

The choice of component algorithms and parameters/settings within the ensemble learning
framework is usually guided by the relative prediction accuracy (e.g. R* or Mean Squared Error
between observed and predicted values) for the dataset under consideration. In general, the
goal is to maximize the prediction accuracy (or minimize prediction error) while maintaining a
reasonable computing time and roughly correct false positive rate. We chose the parameters
for each component algorithm (e.g. Random Forests, Support Vector machines) by maximiz-
ing the marginal prediction accuracy. However, there are no hard and fast rules for choosing a
set of machine learning algorithms and we expect that many different variations under the
ensemble learning framework (e.g. see S1 Appendix) will generate valid association tests.

Multi-marker tests of association

Once we have estimated a model using any of the algorithms described in the previous section
and predicted phenotypes for all individuals using cross-validation, we can construct tests of
association in the following manner. For continuous traits, we can calculate the Pearson’s cor-
relation coefficient between predicted (Pgp,) and observed (P,cqua) Values and determine the
corresponding p values. For case-control studies, we perform a standard logistic regression that
uses all genetic variables as well as Py, as explanatory variables and P, ., as response. A chi
square based likelihood ratio test can then be used with respect to a null model with no vari-
ables to generate p values. If lik denotes the log likelihood of a model, the test statistic is given
by: 2(likg,y—lik,,;) which follows a chi square distribution with g + 1 degrees of freedom
where g is the number of genetic markers.

Note that the final test statistic that we calculate, makes use of all the samples in our data
and not just the testing set. The first step in our multi-marker association test is generating
phenotype predictions (Pg,,) for all the samples in our data. This prediction is generated using
k-fold cross-validation as described previously. For case-control phenotype, the test statistic is
based on a standard logistic regression model that uses all the SNPs as well as Py, as explana-
tory variables making use of all the samples. For continuous phenotype, we perform a test of
correlation between Pg,,,; the predicted phenotype value and Pgpserveq the actual phenotype val-
ues using all the samples.

Alternate methods used for comparison

Let p(;) denote the p value for the 7™ SNP and assume that values are in ascending order. Let m
denotes the total number of SNPs in the gene. We perform simulation studies to compare the
Type-1 error rate and statistical power of the ensemble learning approach with the following
alternative gene-based tests:

Logistic regression. Each SNP is coded as 0, 1, or 2 for the number of copies of the minor
allele in the genotype and the response variable is the disease status coded as 1 (case) or 0 (con-
trol). The gene-based p value is calculated using a chi square test statistic that is based on the
log likelihood ratio comparing the full model with all available SNPs and null model with
none.

Fisher combination test. The test statistic is given by T = —2XInp ;), where the summation
is from 1 to m. This statistic has a chi-square distribution with 2m degrees of freedom under
the null hypothesis. m denotes the total number of SNPs in the gene and the tests are assumed
to be independent. [20]
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Original Simes test. In this test, gene-based p value is given by Ps = min(mpy; / j). For
independent tests, Pg is uniformly distributed between 0 and 1 under the null hypothesis [21].
When markers are positively correlated, the test is expected to be conservative.

GATES. GATES is a rapid gene-based association test that uses extended Simes procedure
[7]. The test is an improvement over the original Simes procedure to account for dependency
between the different SNP variables within the gene. For m SNPs in a gene, the overall gene-
based p value is given by: Pg = min(m.p;) / m,;), where m, is the effective number of indepen-
dent p values among the m SNPs and m.; is the effective number of independent p values
among the top j SNPs. j can vary between 1 and m. The effective number of tests is calculated
using a formula that uses the correlation coefficients between SNP-based association test results.

VEGAS. A versatile gene-based test for genome-wide association studies (VEGAS) was
recently proposed in [5]. The test combines SNP-based chi-square test statistics within a gene
to give a gene-based test statistic. An empirical null distribution can be generated through sim-
ulation of multivariate standard normal random vectors with correlations equal to those
between the SNPs in the gene. 2 versions of the VEGAS test were used here, one based on the
sum of all the SNP-based chi-square statistics in the gene (VEGAS-Sum) and one based on just
the largest statistic (VEGAS-Max).

SKAT. This test [6, 8] uses a logistic kernel machine based framework to evaluate the joint
effects of multiple SNPs on a phenotype to generate a gene-based p value. The test also allows
adjustment for covariates. The kernel machine has the ability to model complex and non-linear
relationships between dependent and independent variables.

Testing multi-marker associations in the presence of covariates

Association testing in the presence of covariates (e.g., age, gender, BMI and smoking status) can
be done in the following manner. First, consider both non-genetic covariates and genetic vari-
ables together for phenotype prediction according to any of the ensemble learning algorithms
described earlier. Let Pgyq a1 be the predicted phenotype values. Then, remove the SNP variables
and rerun the phenotype prediction algorithm. Let Pga1 covariates D€ the predicted phenotype val-
ues. For continuous traits, we first calculate the Pearson’s correlation coefficient for these pre-
dicted variables with the true phenotypes (P,cwa1)- The strength of association for the genetic
variables with continuous traits can then be calculated using the Steiger’s Z test [22] for the dif-
ference between the 2 calculated correlation coefficients. Let r;, and r;; denote the Pearson’s cor-
relations between the true phenotype (Pactuar) and Pinal covariates a0d Pinai_an respectively. Let 1,3
denote the Pearson’s correlation between Pgy,a1_covariates a11d Prnaran- The Steiger’s test computes p
values based on the following test statistic that is assumed to be standard normally distributed:

Z=(Zy— Zy)VN-3/ \/ 2h(1 —ry)

Here, Z,, and Z,; are Fisher’s transformations of r;, and r;3, and
h=(1-1)/(1-r)wheref = (1 —r1y)/(2—2r)andr? = (3, +12)/2

For case-control studies we can use both non-genetic covariates, genetic variables, Pgp,a1 an
and P covariates @S €Xplanatory variables in a logistic regression model. We then use a chi
square likelihood ratio test to compare the former model with a model without any genetic var-
iables (i.e. non-genetic covariates and Pgn.1_covariates ONIY) to calculate a p value for the genetic
contribution. If lik denotes the log likelihood of a model, the chi square test statistic is 2(lik,;—
lik ovariates) fOr case-control data, which follows a chi square distribution with g + 1 degrees of
freedom where g is the number of genetic markers.
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Multi-marker tests for interactions

We can test for interactions between a set of markers in the following manner. First, consider
all of the SNPs together in a linear or logistic regression model (for continuous or case-control
phenotype respectively) and generate phenotype predictions using cross-validation for all indi-
viduals. Let Pj;p,; be the predicted phenotype values. Then, generate phenotype predictions for
all individuals using any of the ensemble learning algorithms described previously. Let Peysemble
denote the predicted phenotype values. For continuous traits, we will use all markers as well as
Pensemble and Py as explanatory variables in a multiple regression model (Model 1) and per-
form a F test with a model (Model 0) without interactions (i.e. one with all markers and Pjipear
only) to calculate the p value. We compare the sum of the squared errors (SSE) of prediction to
construct an F statistic with (1, N=Vy4e1—1) degrees of freedom. Here:

F = [SSEModeIO - SSEModell][N - VModell - 1}/SSEM0dell

N denotes the number of samples and Vyjoqe1 denotes the total number of explanatory vari-
ables in model 1. For case-control studies, we will use all markers as well as P, cemble and Plinear
as explanatory variables in a logistic regression model and perform a chi square likelihood ratio
test with a model without interactions (i.e. one with all markers and Py, only) to calculate
the p value. The test statistic has 1 degree of freedom. Note that this test assumes normality of
residuals and homoscedasticity. Violation of any of these assumptions may affect the Type-1
error rates for the test.

Power and Type-1 error rates of gene-based association tests for data
simulated under multiplicative and additive models

We tested the performance of the proposed gene-based test by simulating genotype data for 30
biallelic SNPs assuming Hardy Weinberg equilibrium. We assumed the following 3 scenarios
of linkage disequilibrium (LD) for the 30 SNPs: i) SNPs are within blocks with high LD (r = 0.9
or 0.8 within blocks); ii) SNPs are within blocks in moderate LD (r = 0.5 or 0.4); and iii) SNPs
are completely independent of one another and in linkage equilibrium. The choice of simula-
tion settings were similar to what has been used previously [7] (Also see S1 and S2 Tables in
supporting information). For each LD scenario, we considered 3 different gene sizes with the
first 3, first 10 and all 30 SNPs with 1, 2 and 6 causative SNPs respectively. For each gene size,
we tested the following models: i) a null model with no disease loci ii) an additive model where
one SNP in each LD block had a minor allele that increased the risk additively by 0.14; and iii)
a multiplicative model where one SNP in each LD block had a minor allele that increased the
risk by a factor of 1.14. Disease prevalence was assumed to be 0.1. For each scenario, we used a
sample of 1,500 cases and 1,500 controls drawn from a simulated population of 100,000 indi-
viduals. Type-1 error rates and statistical power for our method were obtained from 5,000 and
500 simulated case-control datasets, respectively and were based on the fraction of datasets for
which the gene-based association test generated significant p values (i.e. p < 0.05).

Power and Type-1 error rates of a gene-based association test for
models with epistasis

The simulations in the previous section assumed that the effect of various disease susceptibility
SNPs were independent of one another and that they increased the risk additively or multipli-
catively. To explore the effect of pairwise and higher order interactions between genetic vari-
ants, we also compared the performance of methods for data simulated under models with
interactions. We simulated a quantitative trait for many different models with one or more
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interactions among variants in addition to main effects. In addition, we also considered scenar-
ios where there is pure epistasis (i.e. where the effect of a group of SNPs is simply due to their
interactions and there are no main effects). We simulated samples of 3,000 individuals and
genes with 5 or 10 SNPs assuming linkage equilibrium (See S3 Table for SNP details). The phe-
notype was drawn from a complex distribution involving the sum of a standard normal ran-
dom variable and some multivariable function involving many SNP variables. SNP variables
are coded as 0, 1 or 2. Power and Type-1 error rates were estimated based on 500 and 5,000
simulated datasets, respectively. We calculated the fraction of simulated datasets for which the
gene-based method generated a significant p value (p < 0.05). We compared our result with a
gene-based test using multiple linear regression, a gene-based test using GATES [7] and a
gene-based test using SKAT [6, 8]. For the gene-based test with multiple linear regression, p
values were obtained using a F test statistic.

Power and Type-1 Error rates for a multi-marker test for interactions

For all the models simulated in the previous section, we also constructed a multi-marker test
for interactions as described previously and estimated the power of such a test. We simulated
samples of 3,000 individuals and genes with 5 or 10 SNPs assuming linkage equilibrium. The
phenotype was drawn from a complex distribution involving the sum of a standard normal
variable and interaction terms involving many SNPs. Power and Type-1 error rates were esti-
mated based on 1,000 simulated datasets. For each model with interactions, we calculated the
fraction of simulated datasets for which the multi-marker test of interactions generated a sig-
nificant p value (p < 0.05); p values were based on an F test statistic with two parameters as
described previously.

Datasets

We applied the methods developed in this paper to data from 2 independent studies (S1 and S2
Archives in supporting information). The studies included the Study for Asthma Phenotypes
and Pharmacogenomic Interactions by Race-ethnicity (SAPPHIRE) and the Genes-environ-
ments and Admixture in Latino Americans (GALA II). Recruitment for both studies is
ongoing.

SAPPHIRE is population-based study which seeks to understand the genetic underpinnings
of both asthma and asthma medication response. Study individuals included in this analysis
were recruited from a single large health system serving the southeast Michigan and the Detroit
metropolitan area. Enlisted patients with asthma met the following criteria: age 1256 years, a
physician diagnosis of asthma, and no recorded diagnosis of chronic obstructive pulmonary
disease or congestive heart failure. Control individuals without asthma were recruited from a
similar geographic region and were 12-56 years of age, but they did not have a prior recorded
diagnosis of asthma, chronic obstructive pulmonary disease, or congestive heart failure.
Genome wide genotyping was performed using the Axiom Genome-Wide AFR array (Affyme-
trix, Santa Clara, CA). After data quality control, genotype information was available on
586,952 SNPs for 1,099 individuals with asthma and 328 healthy controls [19]. All of the indi-
viduals from the SAPPHIRE cohort included in this analysis were African American by self-
report.

The GALAII study is a case control study to identify gene-environment interactions con-
tributing to asthma. Children of Latino descent age 8-21 years were recruited from New York
City, Chicago, San Francisco, Houston, and Puerto Rico. Children with asthma had a physician
diagnosis of asthma and either a 12% increase in forced expiratory volume at one second fol-
lowing the administration of albuterol or a positive methacholine challenge test. Genome wide
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genotype data was available on 3,772 individuals (1,891 with asthma and 1,881 without). Geno-
mic DNA was genotyped on the Axiom Genome-Wide LAT array. After data cleaning, infor-
mation was available for 747,075 SNPs genome wide.

Assumptions

The following are the assumptions made in simulations for our multi-marker association test:

1.
2.

We assume that the samples are unrelated and that there is no population stratification.

For simulations in Tables 1-3, we assume that there are no interactions between SNPs, the

genetic model is additive/multiplicative and the number of causal SNPs is small (< = 6).

For simulations in Tables 1-3, we assume differing levels of linkage disequilibrium between

SNPs.

For models with epistasis (Table 4), we include both additive and recessive effects for SNPs.

For models with epistasis, the markers are assumed to be in linkage equilibrium.

For Type-1 error rates, we assume that phenotype is normally distributed for continuous

traits.

Results
Multiplicative and Additive models-Comparisons

Tables 1-3 shows comparisons for the performance of various methods for disease case-control
datasets simulated under additive and multiplicative models. We can see that the performance

Table 1. Comparison of empirical power and Type-1 error rates of gene-based association tests for simulated datasets assuming linkage

equilibrium.

#SNP
(#DSL)

Linkage Equilibrium

Type-1 Error
Type-1 Error
Type-1 Error
Power Additive
Power Additive
Power Additive
Power

Multiplicative
Power
Multiplicative
Power
Multiplicative

3(0)
10(0)

30(0)

Logistic
Regression

4.66 [3.4-6.0]
5.10 [3.8-6.7]
5.26 [4.0-6.8]

43.71[40.7-
46.8]

56.88 [53.8—
59.9]

65.32 [62.4—
68.2]

46.61 [43.5—
49.8]

69.00 [66.0—
71.9]

93.45 [91.8—
94.9]

Fisher

4.67 [3.4—
6.0]

5.00 [3.7—
6.5]

4.96 [3.7-
6.4]

41.79
[38.7-44.8]
53.32
[50.3-56.4]
61.5 [58.4—
64.5]
4472
[41.6-47.8]
65.25
[62.3-68.2]
91.44
[89.6-93.1]

Vegas-Sum

470 [3.4-
6.2]
5.04 [3.8—
6.5]

4.97 [3.7-
6.4]

42,67 [39.6-
45.7]
54.56 [51.5—
57.6]

63.28 [60.2—
66.2]

4554 [42.5—
48.7]

66.88 [63.9—
69.7]

92.28 [90.5—
93.8]

Original
Simes

4.61[3.5-
6.1]

5.06 [3.8—
6.5]

4.97 [3.7-
6.4]

45.28 [42.2—
48.3]
54.76 [51.7—
57.8]

47.18 [44.1—
50.3]

48.39 [45.3—
51.5]
67.00 [64.0—
69.9]

82.21[79.8—
84.5]

Vegas-Max

4.62[3.5-
6.1]

5.07 [3.8—
6.5]

5.04 [3.8—
6.5]

45.22 [42.2—
48.3]

54.00 [50.9—
57.1]

45.62 [42.6—
48.8]

48.3 [45.2—
51.5]

66.26 [63.3—
69.1]

80.18 [77.6—
82.5]

GATES

4.61[3.5-
6.1]

5.06 [3.8—
6.5]

4.97 [3.7-
6.4]

45.28 [42.2—
48.3]
54.76 [51.7—
57.8]

47.18 [44.1—
50.3]

48.39 [45.3—
51.5]
67.00 [64.0—
69.9]

82.21 [79.8—
84.5]

SKAT

5.15 [4.7—
5.6]

4.82 [4.4-
5.3]

4.86 [4.5-
5.3]

45.1 [42—
48.2]

60.8 [57.7—
63.9]

69.8 [66.8—
72.6]

43.3[40.2-
46.4]

70.9 [68—
73.7]

94.3 [92.7-
95.7]

Machine-Learning
Ensemble

5.94 [5.3-6.6]

6.29 [5.6—7.0]

4.22 [3.7-4.8]
56.00 [51.5—-60.4]
57.60 [53.1-62]
69.00 [64.7-73.0]
53.00 [48.5-57.5]
69.00 [64.7-73.0]

94.60 [92.2-96.4]

DSL denotes the number of disease susceptibility markers. Machine learning test is based on ensemble learning variation 1 with the following
components: logistic regression, support vector machine with linear kernel and random forests with my, = 1 and nyee = 1000.

doi:10.1371/journal.pone.0143489.t001
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Table 2. Comparison of empirical power and Type-1 error rates of gene-based association tests in simulated datasets for moderate linkage

disequilibrium.

Linkage Disequilibrium

Type-1 Error
Type-1 Error
Type-1 Error
Power Additive
Power Additive
Power Additive
Power

Multiplicative
Power
Multiplicative
Power
Multiplicative

#SNP
(#DSL)

3(0)
10(0)
30(0)
3(1)

10(2)
30(6)
3(1)

102)

30(6)

Logistic
Regression

4.86 [3.7-6.3]
4.88[3.7-6.3]
5.63 [4.4-7.2]

44.59 [41.5—
47.6]

56.25 [53.2—
59.3]

65.47 [62.5—
68.4]

46.52 [43.5—
49.7]
68.42 [65.5—
71.3]
93.68 [92.0—
95.0]

Fisher

717 [5.7-
8.9]

9.8[8.0-
11.8]

11.09 [9.2—
13.1]

Vegas-Sum

4.91[3.7-
6.4]
4.83[3.7-
6.3]

5.03 [3.8—
6.5]

49.36 [46.3—
52.5]

61.36 [58.3—
64.3]

71.96 [69.1—
74.7]

50.98 [47.9—
54.0]
72.48 [69.6—
75.2]

95.59 [94.1—
96.7]

Original-
Simes

454 [3.4-
6.0]

4.55[3.4-
6.0]

4.97 [3.7-
6.4]

49.71 [46.7—
52.9]

58.39 [55.3—
61.4]

53.29 [50.2—
56.3]
51.19 [48.1—
54.2]
70.66 [67.8—
73.4]
86.07 [83.8—
88.1]

Vegas-Max

4.81[3.7-
6.3]

4.92 [3.7-
6.4]

5.29 [4.0-
6.8]

50.51 [47.5—
53.6]

59.12 [56.1—
62.2]

52.24 [49.2—
55.3]

52.00 [48.9—
55.1]

70.9 [68.0—
73.7]

84.34 [82.0—
86.5]

GATES

4.98[3.7-
6.4]
5.00 [3.7-
6.5]

5.56 [4.3—
7.1]

51.23 [48.2—
54.3]
60.72 [57.7—
63.7]

55.65 [52.6—
58.7]

52.65 [49.6—
55.7]

72.4[69.5—
75.2]

87.52 [85.4—
89.5]

SKAT

471[4.3-
5.1]

4.70 [4.3-
5.1]

5.05 [4.6—
5.5]

46.9 [43.8-
50.1]

64.2 [61.1—
67.2]

74.3 [71.5-
77

48.0 [44.9-
51.2]

75.8 [73.0—
78.4]

94.7 [93.1-
96.0]

Machine-Learning
Ensemble

6.02 [5.4-6.7]

6.16 [5.5-6.9]
3.80[3.3-4.4]
55.20 [50.7-59.6]
63.80 [59.4-68.0]
68.00 [63.7—-72.1]
53.40 [48.9-57.8]
70.20 [66-74.2]

94.70 [92.5-96.4]

DSL denotes the number of disease susceptibility markers. Machine learning test is based on ensemble learning variation 1 with the following
components: logistic regression, support vector machine with linear kernel and random forests with my, = 1 and nyee = 1000.

doi:10.1371/journal.pone.0143489.t002

of the newly proposed method based on an ensemble of machine learning algorithms is compa-
rable to other approaches and the Type-1 error rates produced by all methods are close to what
is expected. Note that when there are no disease-related SNPs in the data, we expect to see p
values < 0.05, in around 5% of the simulated datasets due to chance alone. For the ensemble
learning and logistic regression methods, we can also see that power is not strongly sensitive to

the strength of linkage disequilibrium. Thus, for both additive and multiplicative models,
power estimates do not appear to change much across Tables 1-3 for these methods. The run-
ning time per simulated dataset for the ensemble learning based association test was ~ 33, 43
and 49 seconds for the datasets with 3, 10 and 30 SNPs respectively on an Intel core 2.6 GHz
processor machine. In S6, S7 and S8 Tables in supporting information, we show power based
on the empirical values of the test statistic for the ensemble learning method.

In S4 Appendix, we have compared the distribution of the test statistic of interest for case-
control data with the chi square distribution using QQ plots. These plots suggest that the chi
square distribution with g+1 degrees of freedom (where g is the number of SNPs) approximates
the empirical distribution of the test statistic reasonably well.

Note that for models with moderate or strong LD, the Fisher’s combination test has signifi-
cantly inflated Type-1 error rate and therefore is no longer a valid test. In contrast, the

VEGAS-SUM test shows the correct Type-1 error in all scenarios and appears to be signifi-

cantly more powerful than the ensemble learning approach and logistic regression, when LD is
strong. However, note that LD based pruning or principal component analysis can reduce the
number of variables (and degrees of freedom when constructing association tests) and improve
the power for both our approach (See S8 Table in supporting information) and logistic regres-
sion when markers are so strongly correlated.
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Table 3. Comparison of empirical power and Type-1 error rates of gene-based association tests on simulated datasets for strong linkage

disequilibrium.

Linkage Disequilibrium

Type-1 Error
Type-1 Error
Type-1 Error
Power Additive
Power Additive
Power Additive
Power

Multiplicative
Power
Multiplicative
Power
Multiplicative

#SNP
(#DSL)

3(0)
10(0)
30(0)
3(1)

10(2)
30(6)
3(1)

102)

30(6)

Logistic
Regression

4.96 [3.73-6.43]
5.33 [4.08-6.88]
5.57 [4.26-7.10]
45.03 [42-48.1]

57.20 [54.1—
60.3]

65.56 [62.6—
68.5]

47.13 [44.1—
50.3]

68.45 [65.5—
71.3]

93.4 [91.7-94.9]

Fisher

11.49 [9.6—
13.5]

15.68
[13.5-18.0]

17.9 [15.6—
20.4]

Vegas-Sum

5.23 [3.99—
6.76]
4.84[3.7-
6.3]
4.89[3.7-
6.3]

58.81 [55.8—
61.9]

75.74 [73~
78.3]

86.3 [84—
88.4]

60.88 [57.8—
63.8]

84.89 [82.5—
87]

99.2 [98.4—
99.7]

Original-
Simes

3.88[2.8-
5.2]
3.37 [2.4-
4.6]

3.38 [2.4-
4.6]

53.88 [50.8—
56.9]
66.39 [63.4—
69.2]
62.84 [59.8—
65.8]
56.28 [53.2—
59.3]
7714 [74.5—
79.7]

91.42 [89.6—
93.1]

Vegas-Max

5.22 [4.0-
6.8]

4.88 [3.7-
6.3]

4.89 [3.7-
6.3]

58.2 [55.1—
61.3]

71.71 [68.9—
74.5]

66.80 [63.8—
69.7]

60.74 [57.7—
63.7]

80.59 [78—
82.9]

92.24 [90.5—
93.8]

GATES

5.35 [4.1—
6.9]
5.34 [4.1—
6.9]

5.64 [4.4—
7.2]

60.43 [57.4—
63.5]

74.3 [71.5-
77]

72.75 [69.9—
75.4]

62.77 [59.7-
65.7]

83.00 [80.5—
85.3]

95.38 [93.9—
96.5]

SKAT

4.86 [4.5—
5.3]

5.03 [4.6—
5.5]

5.04 [4.6—
5.5]

57.1 [54—
60.2]
77.9[75.2-
80.4]

86.0 [83.7—
88.1]

59.7 [56.6—
62.8]

88.1 [85.9—
90]

98.8 [97.9—
99.4]

Machine learning
ensemble

6.05 [5.4-6.7]
5.05 [4.5-5.7]
3.78 [3.3-4.4]
61.00 [56.6-65.3]
59.00 [54.6-63.4]
65.80 [61.5-70]
65.00 [60.6-69.2]
74.40 [70.3-78.2]

94.00 [91.5-95.9]

DSL denotes the number of disease susceptibility markers. Machine learning test is based on ensemble learning variation 1 with the following
components: logistic regression, support vector machine with linear kernel and random forests with my, = 1 and nyee = 1000.

doi:10.1371/journal.pone.0143489.t003

Models with epistatic effects

In Table 4, we show the power of the ensemble learning based multi-marker association test

using a simulated quantitative trait for models with interactions. We compare the ensemble learn-
ing approach with a gene-based test constructed using SKAT, multiple linear regression and the
extended Simes procedure (the latter implemented by GATES). Table 4 shows that our approach
compares favorably with other approaches (S9 Table in supporting information shows power
based on empirical value of test statistic) and that the estimated gain in power can be substantial.

In Table 5, we show the power and Type-1 error rates of a multi-marker test for interactions

using the same models as in Table 4. These results demonstrate the ability of the ensemble learn-
ing approach to detect the presence of interactions by testing for deviations from a linear model.
Note that the improved power of the ensemble learning approach for models with epistasis
comes from its ability to model non-linearity and interactions between features. The models
learned under the ensemble learning framework incorporate pairwise and possibly higher
order interactions and when such effects are actually present, the machine learning based asso-
ciation test can be considerably more powerful than other simpler approaches which do not
incorporate interactions. The predicted phenotype variable (Pg,,1) includes the effects of inter-
actions and is always used when constructing the final association test and determining p val-

ues for both continuous traits and case-control data.

Application to real datasets

We applied the proposed gene-based association test to an empirical dataset consisting of
1,427 African American individuals (1,099 individuals with asthma and 328 individuals without
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Table 4. Comparison of empirical Power and Type-1 error rates of gene-based association tests for a quantitative trait simulated under models
with interactions.

Value

Type-1
error

Type-1
error

Power
Power
Power
Power
Power
Power

Power

Power

Phenotype distribution #SNP
(#TAS)

P ~ N(©,1) 5(0)

P ~ N(0,1) 10(0)

P~N(0,1)+0.20*snp1*snp2*snp9*snp10 10(4)

P~N(0,1)+0.002%*snp1 +0.002*snp2 +0.12*snp1*snp2 5(4)

+ 0.18*snp3*snp4

P~N(0,1)+0.25*snp1*snp2*snp3 5(3)

P ~N(0,1)+0.3*snp1*snp2*snp3 5(3)

P~N(0,1)+0.35%snp2*snp3*snp4 5(3)

P~N(0,1)+0.65*snp1*snp2*snp3*snp8*snp9*snp 10 10(6)

P~N(0,1)+0.002*snp1 +0.002*snp2 + [0.2%(1+snp1)/(1+snp2)]  5(4)

+ 0.3*snp4*snp5

P~N(0,1)+0.002%*snp1 +0.002*snp2 +0.3*snp1*snp2 5(4)

+ 0.2*snp3*snp4

GATES

468[4.11-
5.30]

5.02 [4.43—
5.66]

4.0 [2.46-
6.11]

99.6 [98.56—
99.95]

8.2 [5.95—
10.96]

8.6 [6.29—
11.41]

8.8 [6.47—
11.63]

7.0 [4.92—
9.60]
98.2[96.61—
99.17]

99.8 [98.89—
99.99]

Linear
Regression

5.12 [4.53-5.77]
5.02 [4.43-5.66]
6.6 [4.59-9.14]
99.6 [98.56—
99.95]

9.0 [6.64—11.86]
8.6 [6.29-11.41]
9.8 [7.34-12.75]
5.6 [3.75-7.99]
98.4 [96.87—

99.31]

100.0 [99.26—
100]

SKAT

4.96 [4.37-
5.60]
4.84[4.26—
5.47]

5.4 [3.59—
7.76]

100 [99.26—
100]

17.6 [14.36—
21.23]
18.2[14.91—
21.87]

26.4 [22.59—
30.50]
7.4[5.26—
10.06]

98.6 [97.14—
99.44]

100.0 [99.26—
100]

Machine
Learning

5.02 [4.43—
5.66]

4.22[3.68—
4.81]

9.0 [6.64—
11.86]

97.4 [95.59—
98.61]

34.2 [30.05—
38.54]

42,0 [37.63-
46.46]

55.4 [50.92—
59.81]

5.6 [3.75-7.99]

92.4 [89.72—
94.57]

100.0 [99.26—
100]

TAS denotes the number of trait associated SNPs. Machine learning test is based on ensemble learning variation 1 with the following components:
multiple linear regression, support vector machine with linear kernel and random forests with my, = 1 and nyee = 1000.

doi:10.1371/journal.pone.0143489.t004

asthma) from the SAPPHIRE cohort and 3,772 Latino children (1,891 individuals with asthma
and 1,881 individuals without asthma) from the GALA II study. S4 and S5 Tables in supporting
information show the sample characteristics of these populations.
We tested 9 previously studied asthma-related genes [23-25] to see if these are also associated
with asthma status in our datasets. Although hundreds of genes have been implicated in asthma
[25], only a few have been reliably replicated in multiple groups. Therefore, to demonstrate the

Table 5. Empirical Power and Type-1 error rate of a gene-based test of interactions for a simulated quantitative trait.

Value Phenotype distribution #SNP (#TAS) Machine learning ensemble
Type-1 error P ~ N(,1) 5(0) 6.10 [4.70-7.77]
Type-1 error P ~ N(,1) 10(0) 5.10 [3.82—6.65]
Power P~N(0,1)+0.20*snp1*snp2*snp9*snp10 10(4) 14.8 [12.66-17.15]
Power P~N(0,1)+0.002*snp1 +0.002*snp2 +0.12*snp1*snp2 + 0.18*snp3*snp4 5(4) 56.3 [53.16-59.40]
Power P~N(0,1)+0.25*snp1*snp2*snp3 5(3) 30.8 [27.95-33.76]
Power P ~N(0,1)+0.3*snp1*snp2*snp3 5(3) 41.0 [37.93-44.12]
Power P~N(0,1)+0.35*snp2*snp3*snp4 5(3) 59.4 [56.28-62.46]
Power P~N(0,1)+0.65%*snp1*snp2*snp3*snp8*snp9*snp 10 10(6) 14.7 [12.56-17.05]
Power P~N(0,1)+0.002*snp1 +0.002*snp2 + [0.2*(1+snp1)/(1+snp2)] + 0.3*snp4*snp5 5(4) 94.4 [92.79-95.74]
Power P~N(0,1)+0.002*snp1 +0.002*snp2 +0.3*snp1*snp2 + 0.2*snp3*snp4 5(4) 95.8 [94.36-96.96]

TAS denotes the number of trait associated SNPs. Machine learning test is based on ensemble learning variation 1 with the following components:
multiple linear regression, support vector machine with linear kernel and random forests with my, = 1 and nyee = 1000.

doi:10.1371/journal.pone.0143489.1005
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Table 6. Gene-based p values for previously reported asthma-related genes in 1,427 African American individuals from the SAPPHIRE cohort.

Chromosome Gene Length in
base pairs

1 PYHINT 45513

2 ILTRL1 7466

5 TSLP 6333

9 IL33 42198

17 GSDMB 14056

5 IL13 2937

15 SMAD3 57175

5 SLC22A5 25906

5 RAD50 87698

doi:10.1371/journal.pone.0143489.1006

Number of SNPs Gene-based p value from Gene-based p value from Gene-based p value
tested Ensemble Learning Logistic Regression from GATES
13 0.198 0.230 0.130
6 0.982 0.982 0.832
5 0.063 0.064 0.533
12 0.408 0.180 0.130
15 0.401 0.401 0.870
3 0.156 0.164 0.387
23 0.323 0.323 0.359
15 0.0095 0.162 0.0076
34 0.010 0.010 0.367

Table 7. Gene-based p values for previously reported asthma-related genes in 3,772 Latino individuals from the GALA study.

Chromosome Gene Length in
base pairs

1 PYHINT 45513

2 ILTRLT 7466

5 TSLP 6333

9 IL33 42198

17 GSDMB 14056

5 IL13 2937

15 SMAD3 57175

5 SLC22A5 25906

5 RAD50 87698

doi:10.1371/journal.pone.0143489.t007

Number of SNPs Gene-based p value from Gene-based p value from Gene-based p value
tested Ensemble Learning Logistic Regression from GATES
15 0.320 0.320 0.530

16 0.038 0.038 0.046

7 0.270 0.270 0.250

14 0.0014 0.095 0.069

13 2.33E-09 4.20E-08 6.24E-11

10 0.280 0.280 0.100

28 0.464 0.464 0.063

12 0.838 0.838 0.956

33 0.217 0.217 0.050

performance of our method, we restricted our analysis to a small subset of asthma genes identi-
fied (and replicated in some cases) in well-powered, high-quality studies. This also reduces the
burden of multiple testing. When constructing gene-based association tests, we adjusted for age,
gender and the first 10 principal components in both study groups and used all available markers
without performing feature selection in the ensemble learning algorithm. Principal component
analysis was performed using the prcomp function in R using a random set of 10,000 markers.
Tables 6 and 7 show the results of our ensemble learning gene-based association test in the SAP-
PHIRE and GALA II study populations, respectively. The results are compared with those
obtained using the GATES method and logistic regression. At a Bonferroni adjusted significance
threshold of 0.0027 (= 0.05/18 [i.e., 9 genes assessed twice]), we found that the ensemble learning
gene-based test identified more statistically significant results when compared with the other
gene-based methods. Specifically, IL33 was significantly associated with asthma in Latino chil-
dren using the ensemble learning gene-based test, but this gene was of borderline significance
using the other 2 approaches. Analysis of local ancestry for all these tested gene-regions did not
indicate any unusually high correlations with phenotypes for both the African American and
Latino population samples used in this study (Results not shown here).

Discussion

We have introduced a new method for assessing gene-based associations using genome wide
genotype data. This method uses diverse machine learning algorithms to construct predictive
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models for the phenotype using the SNP variation within a gene and then uses these predic-
tions to construct tests of association. Machine learning algorithms represent powerful tools
for inferring the relationship between multiple explanatory variables and a phenotype while
accounting for high-order interactions between the former. Because the “true” multivariable
relationship between a set of variables and a trait like disease or drug response is not known in
advance, we can better approximate this relationship by first learning from the data. The use of
ensemble learning-based predictions leads to novel multi-marker tests of association. In addi-
tion to gene-based tests of association, these methods could also be applied for pathway-based
analysis (by using phenotype predictions from individual genes as inputs) or to any other set of
polymorphic variants defining a region of interest or a functional class.

There are three key advantages of using our gene-based approach compared to existing
approaches. First, our method does not make a priori assumptions about the genetic model for
a SNP (i.e. additive, recessive or dominant). When constructing our tests, we can include 3 var-
iables for each SNP where the variants are encoded according to these 3 models (i.e. additive,
recessive, dominant). Thus, we can include heterogeneous effects across SNPs. A second
advantage is the ability to include any number of covariates (genetic or non-genetic) and
model higher level interactions between them. This feature makes machine learning particu-
larly suited for assessing gene-environment or gene-gene interactions. Third, creating an
ensemble of diverse multivariate models with meta-features makes our method less restrictive
and capable of approximating the phenotype more accurately. Collectively, these novel aspects
can boost statistical power and result in novel genetic discoveries.

It should be noted that the ensemble learning based association test is not affected by the rel-
ative direction of effect of the different variants in the genes. Since the ensemble learning
approach is based on generating phenotype predictions, in principle the direction of effect of
particular SNPs is not expected to adversely influence the accuracy of this variable. As long as a
gene contains SNPs that are associated with the phenotype, we expect that it will add to the
overall prediction accuracy of the models that are learned and help us to detect associations
with a gene-region. Furthermore, since the overall goal of multi-marker association tests is to
find regions associated with phenotype, it is desirable to construct tests that can look at the
combined effects of all variants, both common and rare [26]. Incorporating the effects of rare
variants when constructing ensemble learning based multi-marker association test will be the
topic of future work. One simple approach might be to combine p values obtained from our
ensemble learning based test of common variants with any currently used rare variant multi-
marker tests (e.g. SKAT) using Fisher’s method or the Original Simes procedure. Ideally, we
want to include both common and rare variants (as well as structural and epigenetic variants)
in an ensemble learning based phenotype prediction framework and subsequently construct
association tests based on such predictions.

Extensions of these methods towards the case of multiple correlated phenotypes should also
be straightforward. If instead of a single phenotype, we are interested in many phenotypes that
are correlated with one another in some manner, we can construct a joint association test for
all of them in the following manner. First, we will apply the ensemble learning based gene-
based association test to each phenotype individually and obtain their corresponding p values.
Subsequently, we can obtain an overall p value from these individual p values using the TATES
multi-trait association method [27], which is analogous to the extended Simes procedure of
GATES developed for testing multi-marker associations.

We applied our method to both simulated and empirical datasets to demonstrate its power
and utility. For models without interactions between variables, the ensemble learning approach
worked similarly when compared with other previous gene-based association tests. In contrast,
for models dominated by interactions, our simulation studies suggested that the ensemble
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learning test can be considerably more powerful than other methods. Thus, for situations
where epistatic or gene-environment effects are likely to be important, our association test is
more likely to detect associations as compared to many of the alternative methods described.

There are a number of potential limitations to our approach that require mentioning. First,
computational time can be a limitation factor when applying an ensemble learning algorithm
based association test to thousands of genes. LD based pruning of SNPs, dimensionality reduc-
tion using principal component analysis within haplotype/LD blocks, and parallelization
(when computing clusters are available) can all help to boost computational efficiency so that
gene-based association tests can be implemented within a reasonable time. LD based pruning
of SNPs or principal component analysis also ensures that the top selected features are not
highly correlated with one another. When samples used are not unrelated (e.g. siblings, close
relatives etc), we can estimate pairwise relatedness between individuals and subsequently
choose the largest subset of people who are not too closely related to one another (e.g. no first
and second degree relatives) for analysis. Next, we cannot state with certainty that the genes
assessed here are involved in asthma pathogenesis, since many of these genes were identified in
association studies and their function (as it relates to asthma) has not yet been elucidated.
Therefore, while we assume that these genes represent true-positives, this portion of our analy-
sis may not represent an actual demonstration of statistical power unless more detailed func-
tional studies are conducted for the relevant genes to directly demonstrate their role in asthma.
Lastly, it should also be mentioned that while our multi-marker tests can detect associations or
the presence of interactive effects, they do not attempt to pinpoint the specific variants contrib-
uting to such effects.

Conclusion

In summary, ensemble learning algorithms provide a general and flexible framework for con-
ducting association analysis. We have shown how phenotype predictions made by such algo-
rithms can be used for many common tasks encountered in association analysis, such as multi-
marker association tests, adjusting for genetic and non-genetic covariates, and tests of interac-
tion. Because machine learning is a highly developed area of study, prediction of response from
many input variables is a well-studied problem and numerous well-established algorithms are
already available which can be readily incorporated as components in an ensemble learning
framework to maximize prediction accuracy and construct powerful tests of association.
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