A Generalized Framework for Mining Arbitrarily Positioned Overlapping Co-clusters

Omar Odibat*

Abstract

The goal of co-clustering is to simultaneously cluster both rows and
columns in a given matrix. Motivated by several applications in
text mining, recommendation systems and bioinformatics, different
methods have been developed to discover local patterns that cannot
be identified by traditional clustering algorithms. In spite of much
research in this domain, existing co-clustering algorithms have
some critical limitations in terms of identifying co-clusters with
different types of correlations in the data and the ability to capture
overlapping co-clusters in the data matrix. In this paper, we present
a new deterministic co-clustering algorithm, POsitive and NEgative
correlation based Overlapping Co-Clustering (PONEOCC), which
can be used to find significant co-clusters efficiently. Our algorithm
uses a novel ranking-based objective function that is optimized to
simultaneously find large co-clusters with minimum residual errors.
It allows positively and negatively correlated objects to be members
of the same co-clusters and can extract overlapping co-clusters.
In addition, the co-clusters can be arbitrarily positioned in the
data matrix. We evaluated our algorithm on several synthetic and
real-world gene expression datasets, and the experimental results
showed that PONEOCC is able to find biologically significant co-
clusters and also outperformed some of the well-known existing
co-clustering algorithms in terms of the quality, size and biological
significance of the co-clusters.

Keywords: Co-clustering; positive and negative corre-
lation; biclustering; gene expression data.

1 Introduction

Traditional clustering algorithms, such as k—means and hier-
archical clustering, assign every data point to a cluster based
on a similarity measure computed across all the features. In
some applications, traditional clustering algorithms cannot
capture the structural patterns in the data [1]. Since these al-
gorithms assume that correlated rows (columns) share sim-
ilar patterns across all the columns (rows), such algorithms
fail to discover local patterns that exist in subsets of rows
(columns) [8] .

Given a data matrix with two entities (objects, features),
such as (words,documents) in text mining, (users,movies)
in recommendation systems and (genes, samples) in bioin-

Dept. of Computer Science, Wayne State University, Detroit, MI

48202, USA. Email: odibat@wayne.edu
"Dept. of Computer Science, Wayne State University, Detroit, MI
48202, USA. Email: reddy @cs.wayne.edu.

343

Chandan K. Reddy’

formatics, a subset of rows may be inter-related under a sub-
set of columns forming blocks of substructures (co-clusters).
For example, a set of genes may be co-expressed under a sub-
set of samples and applying traditional clustering techniques
cannot capture such blocks [1]. However, co-clustering has
emerged as a powerful tool to simultaneously cluster both
dimensions of a data matrix by utilizing the relationship be-
tween the two entities [22]. Co-clustering helps in discover-
ing local patterns that cannot be identified by the traditional
one-way clustering algorithms.

Compared to traditional one-dimensional clustering, co-
clustering is considered more informative and more scalable
[2] because it simultaneously measures the degree of coher-
ence in the samples samples and in the attributes of a given
matrix. [11]. Moreover, considering co-clusters rather than
the whole data matrix reduces the noise induced on the whole
data set [10]. Co-clustering has been used in several appli-
cations such as clustering microarray data [18], identifying
protein interactions [14], collaborative filtering [9], text min-
ing [5], matrix approximation [22]. In this paper, we focus
on applying co-clustering in biological applications such as
gene expression data analysis for local patterns.

In the (x,¢) co-clustering model [1, 8], the goal is
to find a grid structure comprised of k row clusters and
¢ column clusters such that a certain objective function is
maximized or minimized. In such a model, not all the rows
and columns of the original data matrix participate in this
partitioning. However, the assumption here is that the rows
in each row cluster should be correlated under each of the
¢ column clusters, and the columns in each column cluster
should be correlated under each of the k clusters. Such an
assumption may not hold when a subset of rows is correlated
in a limited subset of columns or vice versa. To overcome
this limitation, we develop a novel co-clustering algorithm
that is able to capture a subset of rows that are correlated in
any subset of the ¢ column clusters as well as to capture a
subset of columns that are correlated in any subset of the k
row clusters.

The remainder of this paper is organized as follows:
Section 2 presents a brief overview of the related research.
Section 3 summarizes the motivation and the contributions of
our work. Section 4 explains the importance of co-clustering
in gene expression analysis and highlights the key challenges
addressed by our framework. Section 5 presents the different
steps of the proposed PONEOCC algorithm. Section 6

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

presents the experimental results of the proposed algorithms
on synthetic and real datasets along with the biological
evaluation and comparisons with other algorithms available
in the literature. Finally, we conclude our discussion in
Section 7.

2 Relevant Literature

Discovering the set of co-cluster in a given data matrix
is an important challenge. It has been proved that the
problem of finding all the significant co-clusters is an NP-
hard problem [6]. In this section, we present some of the
existing algorithms and describe more about some of the
popularly used ones.

2.1 Co-clustering Algorithms Cheng and Church
(CC) [6] proposed a Mean Squared Residue (MSR) function
to measure the homogeneity of the co-clusters. This MSR
measure gives lower scores to co-clusters with lower vari-
ance. The algorithm starts with the original data matrix; then
a set of row/column deletions and additions are applied to
produce one co-cluster, which will be replaced with random
numbers. This procedure is repeated until a certain number
of co-clusters is obtained. The algorithm has two main
limitations: (i) It finds only one co-cluster at a time, and (ii)
random interference (masking the discovered co-clustered
with random numbers) reduces the quality of the co-clusters
and obstructs the discovery of other co-clusters.

The Order-Preserving Submatrices (OPSMs) [4] algo-
rithm finds local patterns in which the expression levels of
all genes induce the same linear ordering of the experiments.
A co-cluster is considered order-preserving if there is a per-
mutation of its columns under which the sequence of val-
ues in every row is strictly increasing. However, the OPSM
algorithm finds only one co-cluster at a time and captures
only positively correlated genes. Our algorithm, on the other
hand, finds all the co-clusters simultaneously so that both
types of correlation are allowed to be in the same co-cluster.

Iterative Signature Algorithm (ISA) [12] is a statistical
co-clustering algorithm which defines a transcription module
(co-cluster) as a co-regulated set of genes under a set of
experimental conditions. ISA starts from a set of randomly
selected genes (or conditions) that are iteratively refined until
they are mutually consistent. At each iteration, a threshold
is used to remove noise and to maintain co-regulated genes
and the associated co-regulating conditions.

Robust Overlapping Co-clustering (ROCC) [8] is a co-
clustering algorithm that works with several Bregman diver-
gences. This model allows overlapping co-clusters and finds
k row clusters and / column clusters simultaneously. ROCC
performs co-clustering through two steps. In the first step
the Bregman co-clustering algorithm [2] is used to find co-
clusters arranged in a grid structure. In the second step, co-
clusters with large errors are pruned; then similar co-clusters

344

are merged. This algorithm does not handle the negative cor-
relation among the rows. In [18], a survey of co-clustering
algorithms is presented. In our work, we primarily compare
our results with some of these popular algorithms used for
finding co-clusters in gene-expression data.

2.2 Our Contributions In this paper, we present a novel
deterministic co-clustering algorithm, POsitive and NEg-
ative correlation based Overlapping Co-Clustering (PO-
NEOCC), which can be used to extract significant co-clusters
from gene expression data efficiently. Some of the important
contributions of PONEOCC are as follows:

* A novel ranking-based objective function is proposed to
find the co-clusters with minimum errors.

* Both of positively and negatively correlated genes are
allowed to be members of the same co-cluster.

* Ability to extract arbitrarily positioned overlapping co-
clusters simultaneously.

* Ability to identify large co-clusters that are biologically
significant.

3 Motivation

In this section, we present our contributions with some ex-
amples to illustrate the capabilities of the proposed algo-
rithm, and then we present an overview of the proposed al-
gorithm.

Given a m x n data matrix, the goal of co-clustering is
to find a row mapping (p) that maps the rows to the K row
clusters and a column mapping () that maps the columns to
the ¢ column clusters:

p:{1,2,..m} —{1,2,....x}

y:{L1,2,...,n} — {1,2,....4}

During the search process, an objective function is
optimized and the co-clusters are scored so that the algorithm
outputs the co-clusters with high scores (or low errors). This
objective function is based on the scores of all the k * ¢ co-
clusters. In other words, the rows (columns) are assigned to
the co-clusters based on the overall objective function.

When the algorithm is completed, the co-clusters with
the highest scores are reported, and those with low scores
(high errors) are pruned [8]. However, this optimizing
procedure can miss some of the co-clusters that have strongly
correlated genes just because these genes are not correlated
in other co-clusters. To illustrate this point we present the
following two examples.

3.1 Motivating Example 1: In Figure 1(a), an example
of 9 co-clusters arranged in a 3 x 3 grid structure is shown.

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Column clusters

C, C, Cs
1 3 2
R, 1 3 2
3 2
'[-Ix
% 5 2 1 1 5 6
Z R 5 2 1| |9 4
& 5 2 1 6 9 5 % R1
k%)
7
8 9 2 4 6| [2 1 6 5
= R2
R 9 6 5 2 4 6| (4 9 ©
[
2 4 6| [1 7 2 2
& R3

(a)

MSR o
g
Column clusters TE ®
C1 2 C3 = ‘
15
3 |
_ %
E 10 ‘
5
0 6.1 0 I
Z |
6!8 0 5'4 ’ 1 r 3 4 5 6 7 B L]
k

(b) (©

Figure 1: Motivating example 1: (a) Nine co-clusters arranged in a 3 x 3 grid structure. (b) The error of each co-cluster
measured by MSR [6]. (c) The accumulated sum of the error of the best K co-clusters is shown in the Y-axis. The value of
K is shown on the X-axis (the cut-off is based on elbow point criterion).

The corresponding error for each co-cluster is shown in Fig-
ure 1(b). The error is measured by the mean-squared residue
(MSR) score given by Equation (5.1). Let us consider the
co-cluster present in the intersection of the third row cluster
and the second column cluster. This co-cluster has an error
of 0, which means that this is a perfect co-cluster. How-
ever, since the other co-clusters in the same row cluster have
high error values, this co-cluster will be missed by the exist-
ing algorithms. Our objective function depends only on the
score of the top-ranked co-clusters. So, in this example if
70% of the co-clusters are included in the objective function
(as represented by the vertical line shown in Figure 1(c)),
then the proposed algorithm will be able to identify the six
best co-clusters regardless of the score of the three remain-
ing co-clusters. The co-clusters found by our algorithm are
the highly ranked ones which are unknown in advance, ar-
bitrarily positioned, and can be changed during the iterative
re-assignment step.

3.2 Motivating Example 2: Figure 2 shows two co-
clusters of size 4 x 4. The MSR of the first co-cluster is
0.098, and the MSR of the second co-cluster is 2.723, which
means that the first co-cluster is more homogenous than the
second one. Given a new row, as shown in Figure 2, the
question is: can we add it to the current co-clusters or not?
If this row is to be added; then only the error of the first co-
cluster will be reduced. Specifically, the MSR of the first
co-cluster will be reduced to 0.085, but the error of the sec-
ond co-cluster will be increased to 4.47. That is, the aver-
age MSR of the two co-clusters before adding the new row

345

is 1.41 while the average MSR of the two co-clusters after
adding the new row is 2.273. Therefore, the row will not
be added to the current co-clusters because of the high error
of the second co-cluster, which will be pruned eventually.
In this paper, we propose a new objective function that con-
siders the score of the top-ranked co-clusters when rows (or
columns) are to be added/removed. Therefore, when our al-
gorithm is applied to this example, this row will be added
because it improves the score of the co-cluster that has the
maximum score already. We will show that by using the new
objective function, it is possible to obtain improved results
by focusing on the discovery of high quality co-clusters.

Co-cluster 1 Co-cluster 2 Avg

3 5 21 6 4 3 4

8 9 7 6 2 0 4 6

4 5 3 2 2 6 9 8

6 8 5 3 1 3 5 8
MSR 0.098 2.723 1.41

After adding this row
[7 9 6 5 8 8 1 8]

MSR 0.085 4.470 2.27

Figure 2: Motivating example 2: Two co-clusters are shown
with their corresponding MSR. The problem here is to decide
whether to add the new row to the current solution or not.

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

3.3 Overview of the PONEOCC Algorithm In this sub-
section, we briefly present the main steps of the proposed
algorithm. More details of the proposed algorithm will be
given in detail in Section 5. The goal of this algorithm is
to find a set of arbitrarily positioned overlapping co-clusters.
As shown in Figure 3(a), the algorithm starts with a two di-
mensional matrix (6bjects x features) as an input. In the
first step, Figure 3(b), a divisive approach is used for initial-
ization. Basically, it starts with all the rows and columns in
one co-cluster; then the algorithm divides the co-cluster with
the largest error. This iterative procedure continues until the
K row clusters and the £ column clusters are obtained. The
core co-clustering step, Figure 3(c), finds the optimal row
and column clusterings (p,y). This is the most important
step in our algorithm in which the rows and columns of the
data matrix are re-ordered.

In the third step, Figure 3(d), similar co-clusters are
merged using a hierarchical agglomerative approach. The
two most similar co-clusters are merged. Finally, in the
fourth step, Figure 3(e), more rows and columns are added
to each co-cluster individually. The goal of this refinement
step is to obtain larger overlapping co-clusters.

4 Co-clustering Gene Expression Data

The recent advances in DNA microarray technology allow
genomewide expression profiling. In analyzing such high-
dimensional biological data, one can observe that the activi-
ties of genes are not independent of each other. Therefore, it
is important to study groups of genes rather than to perform
a single gene analysis. However, traditional clustering tech-
niques, such as k—means, assume that related genes should
have similar expression profiles in all the samples [16]. This
assumption does not hold in all of the experiments. From the
biological perspective, not all the genes are involved in each
biological pathway and some of these pathways may be ac-
tive under a subset of the conditions [18]. Co-clustering was
proposed to overcome the limitations of traditional cluster-
ing algorithms [24].

There are several requirements that should be consid-
ered while searching for co-clusters in gene expression data.
A subset of genes can be correlated only in a small subset
of conditions due to the heterogeneity of the samples which
could be taken from different patients. Moreover, a gene can
be involved in more than one biological pathway; therefore,
there is a need for a co-clustering algorithm that allows over-
lapping between the co-clusters [8], i.e., the same gene can
be a member of more than one co-cluster. In addition, since
genes can be positively or negatively correlated [13], it is
important to allow both types of correlation in the same co-
cluster. Furthermore, the co-clusters can be arbitrarily posi-
tioned in the gene expression data. Finally, there are several
types of co-clusters that can be biologically relevant [18].
The existing algorithms do not include all of these important

346

requirements. The proposed algorithm supports the discov-
ery of large and possibly overlapping co-clusters that contain
positively and negatively correlated genes.

4.1 Positive and Negative Correlation There are differ-
ent types of correlations between genes in any cell. Exam-
ples of such relationships are positive and negative correla-
tions [19]. Figure 4 shows an example these correlations. In
a positive correlation, genes show similar patterns while in
a negative correlation, genes show opposite patterns. Since
it is possible that genes with both types of correlations ex-
ist in the same biological pathway [13], there is a need for a
computational model that captures both types of correlations
simultaneously. However existing co-clustering algorithms
capture positive correlations only. In this paper, we intro-
duce a novel algorithm that can be used in a systematic way
to capture positive and negative correlations simultaneously.

4.2 Overlapping Co-clusters Discovering overlapping
patterns is a challenging task in data mining [17]. For ex-
ample, a gene can be involved in more than one biological
process. Therefore, that gene can belong to more than one
co-cluster. One of the main advantages of our algorithm is
that it allows overlapping between coclusters, as shown in
Figure 3(c), which helps in understanding the different roles
played by a particular gene in a living cell.

4.3 Finding Large Co-clusters Extracting large co-
clusters is helpful in gaining more knowledge about new
genes or new patients. In our algorithm, the last two steps
help in computing large and overlapping co-clusters. The
third step, Figure 3(c), merges similar co-clusters into larger
co-clusters. The fourth step, Figure 3(d), adds more genes
and conditions to each co-cluster individually.

5 The Proposed Framework

In this section, we explain the proposed co-clustering algo-
rithm. The main steps of the proposed algorithm are illus-
trated in Figure 3. The notations used in this paper are de-
scribed in Table 1.

5.1 Measuring the Coherence Expression: Cheng and
Church proposed using the mean-squared residue (MSR)
score as a measurement of the coherence between genes [6].
Given a gene expression submatrix X that has I genes and J
conditions, the residue is computed as follows:

1

5.1 —
e 7]

H(I,J)= Z (xij—xlj—xij+xlj)2

icl,jel

YicrXij - o Xi
SIS0 s the row mean, Xx;; =):’TII‘ i

7] is the

where x;; =

i
% is the overall mean of the

matrix X. Given two genes, a and b, and J conditions the

column mean and x;; =

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

 —

B L

(a) Input data matrix

(b) Step 1: Initialization
clustering

(c) Step 2:

Core Co- (d) Step 3: Merging (e) Step 4: Refinement

Figure 3: Main steps of the proposed algorithm which finds arbitrarily positioned overlapping co-clusters. (a) The input
is a two dimensional matrix. (b) Stepl: the initialization step partitions the data matrix into k by ¢ grid structure using
a divisive approach. (c) Step 2: the core-clustering step finds the optimal row and column clusterings (p, 7). (d) Step 3:
similar co-clusters are merged using agglomerative approach. (d) Step 4: In the refinement step, more rows and columns

are added to each co-cluster individually.

Table 1: Notations used in this paper
Notation | Description
D data matrix D € R"™*"

total number of rows (genes) in D
total number of columns (conditions) in D
number of row clusters
number of column clusters
mapping of row clusters
mapping of column clusters
number of optimized co-clusters
k indices for row clusters

l indices for column clusters
vector containing the signs of genes

SR O ~A” I 3

= R

Expression level

Conditions

Figure 4: Different types of relationships between genes in
one co-cluster. The genes {a,b} are positively correlated
with each other, and the genes {c,d,e} are positively cor-
related with each other. However, the genes {a,b} are nega-
tively correlated with the genes {c,d,e}.

347

MSR, defined in Eq. (5.1), can be re-written as follows:

Y (a-a g %thi a+h ?
2|J| 2 2

jeJ

(b _p_9ith; +a+b>
2|J| = 2 2

(5.2) - 7 Z((b —b))

jeJ

where @ and b represent the mean of the expression
values for genes a and b respectively. The goal here is to
find co-clusters with low MSR values. A perfect co-cluster
will have MSR = 0. We modified this function to ensure
that the results are normalized to [0, 1] with 1 indicating a
perfect co-cluster. First, the data is normalized, so that the
values of the genes are between 0 and 1. Second, we used
the following modified function:

h(a,b,J)

(53) HIJ)=1- Y (= —xig)

1
I et 7es
Note that based on (5.3), an optimal co-cluster has a
value of 1, which results from the case where (a; —a) =
(bj —b) Vj € J. In a negative correlation, genes have
opposite patterns. i.e. the two negatively correlated genes
will get a perfect score when (a;—a) = —(b;—b)VjeJ. A

positive correlation between any two genes is measured as

K, (a,b,J) —1_|le(aj—a)— (bj—5)>2

jeJ

54

and a negative correlation between any two genes is mea-

sured as
Y Z ((b _b)>

jeJ

(5.5 h (a,bJ)=

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm 1 Update_f (x, ¢, p v, 1)
1: Input: Number of row clusters (k)
Number of column clusters (£)
Rows clustering (p)
Columns clustering ()
Number of optimized co-clusters (1)
2: QOutput: The value of the objective function (f :)

3: Procedure:
/ * Get the score (IT) of each co-cluster * /
4: for each a € [1,k] do
5. foreach ff € [1,6] do
6: O(a,B) < H (u,v,s):p(u) =a,y(v) =
7: end for
8: end for

/* Rank the co-clusters based on their scores * /
9: for each a € [1, k] do
10: for each § € [1,/] do

11: Rer, B) + 1L Xj_ 1(TI(k,1) > TI(et, B)) < 7)
12: end for
13: end for

/ * Compute the value of the objective function * /

14 F X8 Yp (e, B)+R(a,B)

5.2 Ranking-based Objective Function Let R be a
ranked list of the scores computed using the H' measure,
the objective function is computed as the sum of the top n
scores, where 1] is the number of co-clusters to be included in
the function (1 < 1 < k* /). The value of the objective func-
tion is the average of the top 1 co-clusters. This objective
function optimizes for the best co-clusters rather than con-
sidering all the co-clusters. The 1 co-clusters are not known
in advance and can be changed in the algorithm due to the
change in the row/colmn clustering.

In this paper, 1 is computed as 7 = r* K x £ where r is
the ratio of co-clusters that will contribute in the computation
of the objective function. In this paper, we set r to 70%.
The scores are computed using the objective function / as
shown in Algorithm 1. First, the scores of each co-cluster are
computed (lines 4-8). Second, the scores are ranked (lines 9-
13). Finally, the objective function is computed as the sum of
the scores of the top ranked co-clusters (line 14). I(x) is the
indicator function that is 1 if the value of x is true, and it is O
otherwise. The objective function will be computed for each
possible change in the row/column mapping to maintain non-
decreasing values for the objective function. Figure 3 shows
the main steps of the proposed approach. Next, we present
the steps of the proposed algorithm in detail.

To handle negative and positive correlations, the algo-
rithm maintains a vector that contains the signs of the genes
(0). The signs indicate the type of correlation. For in-
stance, the signs for the genes (a,b,c,d,e) in Figure 4 are
0 = (+1,—1,41,+1,—1). The values of genes with neg-
ative sign values can be transformed so that all the genes

348

are positively correlated. If b =1—band e =1—e; then
the new data matrix contains the genes (a,b ,c,d,e) and
0= (+1,+1,+1,+1,+1).

Algorithm 2 Initialize(D,m,n,x, £)
1: Input: Data matrix (D)
No. of rows (m)
No. of columns (n)
No. of row clusters (k)
No. of column clusters (¢)
2: Output: Row clustering (p)
Columns clustering ()
3: Procedure:
/ * Assign all the rows and columns to one co-cluster * /
4 k<1, 11
5: p(g) + &, V[gl}!
6: y(c) « LV[c]}
/ * Iterative partitioning of the co-clusters * /
7: whilek < xor/ < /¢ do
8: if k < x then

: k< k+1
10: Ol < argminy, ZleH/(u,v) p(u)=a,y(v)=1
11: (8i,8)) argmin@j)Z 1<1<t h;(g,',gj,v) ty(v) =1
(8i:8)€®
12: for g, € &, 84 # 8i,8a 7 gj do
13: it Y 1 (8a:8iv) > Xf_ 1y (8a,8j,v) 1 yY(v) =1
then
14 p(8a) <k
15: end if
16: end for
17: end if
/ * Partition the column clusters * /
18: if [< ¢ then
19: I+ 1+1
20: B« argming YK H (u,v) : p(u) =k,y(v) =B
21: (ciycj) < argming; ;) Z(lgk)grc h:r(ci,Cj,u) cp(u) =k
Ci,Cj)E
22: forcbeﬁ.,cb#ci,cb#c/do
23: it XX K (cpyciyu) > XE B (cpeju) 2 plu) =k
then
24: Y(ep) <k
25: end if
26: end for
27: end if

28: end while

5.3 Input The inputs to this algorithm include the original
matrix D € R™" the number of genes m and the number
of conditions »n, number of row clusters k¥ and the number
of column clusters ¢. The k and ¢ parameters are common
parameters in the co-clustering methods that use the K x ¢
model such as [8], and they can be set based on the size
of the data matrix. The ratio r is also specified so that the
objective function seeks the best mapping for the top 1 co-
clusters, where 11 = r* k*£. We set r to 70% in all of the

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

experiments. The data is normalized so that the values of
each genes are in [0, 1]. Therefore, the objective function has
a lower bound of 0 and upper bound of 1.

5.4 PONEOCC Algorithm The PONEOCC algorithm
has four major steps which are shown in Figure 3 and de-
scribed in detail below.

54.1 STEP 1: Initialization Inspired by the bisecting
K-means cluster technique [23], we used a deterministic
algorithm for the initialization as shown in Algorithm 2. In
this approach, each row in the dataset is mapped to one of the
Kk clusters, and each column is mapped to one of the ¢ clusters
resulting in a checkerboard structure as shown in Figure 3(b).
The initialization algorithm is a divisive algorithm that starts
with the complete data assigned to one co-cluster (lines 4-
6). In each iteration, the row cluster with the highest error
(lowest H’) is selected (line 10). Then, the two genes with
the lowest correlation score are identified (line 11). These
two genes will be the seeds for the next partition to be
computed (lines 12-17). Each of the remaining genes will
be added to the first (second) partition if it is more correlated
to the first (second) gene. This is done using h; function.
Therefore, the gene sign vector will contain only positive
signs after this step (lines 5-6) (Algorithm 3). The conditions
are clustered in the same manner (/ines 18-27). Eventually,
we will have the complete dataset organized as a k x ¢ grid
structure.

54.2 STEP 2: Core Co-clustering (p,y) This is the
most important step that finds the optimal row and column
clusterings (p,¥) as shown in Figure 3(c). In this iterative
algorithm, p and y are updated in each iteration. To update p,
each row is considered for one of the following three possible
actions as described in Algorithm 3:

* Exclude the current row from any row cluster by setting
p to O (lines 10-11).

¢ Find the best row cluster to include the current row as a
positively correlated row (lines 12-14).

¢ Find the best row cluster to include the current row as a
negatively correlated row (lines 15-17).

The objective function, [, is computed for each possible ac-
tion, and the action to be carried out is the one corresponding
to the maximum value of the three objective function val-
ues(lines 18-26). Following this strategy, the value of the
objective function is maintained to be non-decreasing. One
of the advantages of the proposed algorithm is that it allows
different types of correlation to be in the same co-cluster.
The 6 sign vector is important because it keeps track of the
type of correlation for each row (positive and negative: +1
and —1).

349

Algorithm 3 PONEOCC(D,m,n,x, £,1)
1: Input: Data matrix (D)
No. of rows (m)
No. of columns (n)
No. of row clusters (k)
No. of column clusters (¢)
No. of optimized co-clusters (1)
Output:: A set of co-clusters ()
Procedure:
Stepl1 : initialization
(p,7y) < Initialize(D, m,n, k., ()
/ * Initialize the sign of each row (gene) to be positive * /
6: 0(g) « 1Vge{l,2,..,m}
7. Step2 : core co_clustering
8
9

: repeat
fora=1:mdo

10: Po < P, po(a) <0

/* Compute f when the current row is excluded * /
11: Fo <« Update_f (x,¢,1m,p0,7)
12: pgp — p, B(a) « 1
13: gp < argmax,, Update_F (k,£,1,pg,.,7,0)

/ * Current row is considered positively correlated * /
14: I gp < Update_f (k,¢,1,pg,,7,0)
15: Pey < P, 0(a) — —1
16: gn < argmax, Update_f (k,£,1,pgy,7,0)

/ * Current row is considered negatively correlated * /
17: I gy < Update_f (x,£,1,pqy,7,0)

/ = Select the best row clustering * /
18: if g, >Fg,and g, >[4 then
19: P < Pgp
20: 0(a) « 1
21: elseif / ¢, > /g, and [4, > [4, then
22: P < Pgy
23: 0(a) + —1
24: else
25: P < Po
26: end if
27: end for

/* Column clustering * /
28: forb=1:ndo

29: W < 7 wb) 0
/* Compute / when the current column is excluded * /
30: Fo < Update_f (x,£,1,p,%)
31: Yo & 7
32: ¢ < argmax, Update_f (x,£,1,p,%(b) =c,0)
33: F ¢ < Update_fF (x,4,1n,p,%,0)
/ * Select the best column clustering * /
34: if F . > F(then
35: Y~ %
36: else
37: Y+~ %
38: end if
39: end for

40: until convergence
41: Step3 : Merging similar co_clusters
42: Step4 : Refinement

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

The column mapping, 7, is calculated in a similar man-
ner (lines 28-39), but there is no consideration for negatively
correlated columns. The algorithm stops when the difference
between two consecutive values of the objective function is
lower than a certain threshold value. After convergence, the
result will be a non-overlapping set of co-clusters. Each of
these co-clusters includes a subset of the rows/columns of
the original dataset.

5.4.3 STEP 3: Merging the Co-clusters In this step,
similar co-clusters are merged. Before merging, the co-
clusters with the lowest scores are pruned. If there is no
pre-determined threshold for pruning the co-clusters, the top
1 co-clusters will be retained, and the remaining co-clusters
will be pruned. The similarity between any two co-clusters
is defined using the H " function of the union of the rows and
columns of the co-clusters, and the merging is performed
following an agglomerative clustering approach. The two
most similar co-clusters are merged in each iteration. The
goal of this step is two-fold: (i) It allows the discovery of
large co-clusters, and (ii) it allows overlapping co-clusters as
shown in Figure 3(d).

5.4.4 STEP 4: Refinement To maximize the size of the
obtained co-clusters after the merging step, the algorithm
adds more rows and columns to each co-cluster individually.
Therefore, the same row/column can be added to several
co-clusters. Given a certain co-cluster with I rows and J
columns, adding a row i or a column j is subject to the
following constraints:

H(IUi,J,0)>H(I,J,0)

H(1,JUj,0) > H(I,J,6)

This will be added first for the positively correlated
genes; then it will be added for the negatively correlated
genes. This step helps in identifying larger co-clusters and
also allows for more overlapping co-clusters as shown in
Figure 3(e).

If there are missing values in the original data matrix,
the H function can be modified as follows
(5.6)

, 1
H(IJ)=1———

7] Y wi (i — xrj —xi +x1)?)

iel,jel

Where w;; is a binary weight matrix that contains O if
the corresponding data point is missing in D, otherwise it
contains 1.

6 Experimental Results

To demonstrate the performance of the proposed PONEOCC
algorithm, several experiments were conducted using both
synthetic and real-world gene expression datasets. We com-
pared the results of the proposed algorithm against four other

350

popular co-clustering algorithms, namely, CC, ISA, OPSM
and ROCC, which were briefly described in Section 2. We
used BiCAT software [3] to run CC, ISA and OPSM algo-
rithms. The default parameter settings for each algorithm
were used. The code for the ROCC was obtained from the
authors of [8], and the parameters were set using a similar
approach to the ones described in their paper.

6.1 Results on Synthetic Data Our algorithm was evalu-
ated on a number of synthetic datasets. Two types of datasets
were used, one of them without noise and the other one with
10% noise. The size of the randomly generated dataset is
200 x 150. Two co-clusters were implanted in each dataset,
and the size of each co-cluster is 50 x 50.

The evaluation of the synthetic datasets was done using
two metrics as defined in [20]. The first metric is the
average co-cluster relevance which indicates the extent to
which the generated co-clusters represent the implanted co-
clusters in the gene dimension. The second metric is the
average module recovery which determines how well each of
the implanted co-clusters is discovered by the co-clustering
algorithm.

Given a set of implanted co-clusters denoted by M,
and a set of discovered co-clusters denoted by M, each co-
cluster M; contains G; genes and C; conditions, the gene
match score is defined as follows:

|G1ﬂG2|

1
Sc(Mi,M>) = — 7|G1UG2|

arg max
M,

(G1,C1)eM; (G2.C2)

the average co-cluster relevance is computed as Sg(M ,M,,,,,),
and the average module recovery is computed as
SG(Mopi,M). Both metrics take values in the range of
[0,1].

Figure 5 shows the results of different co-clustering al-
gorithms when applied to the synthetic datasets. The pro-
posed algorithm outperformed the other algorithms. PO-
NEOCC produced the highest values for the average co-
cluster relevance and the average module recovery. A ma-
jor improvement is obtained in the average co-cluster rele-
vance metric. This improvement results from the fact that
the proposed algorithm prunes co-clusters with high errors
during the search process, and it optimizes for high-quality
co-clusters. As a result, fewer random data points are added
to the co-clusters obtained by our algorithm. On the other
hand, other algorithms, such as ROCC, prune the co-clusters
with high error values after all the co-clusters are obtained.

6.2 Results on Real Gene Expression Data Table 2
shows a description of the seven gene expression datasets
used in our experiments. For each dataset, we ran the five
algorithms, and we measured the quality, the size and the
biological significance of the obtained co-clusters. Figure 6
shows some samples of the obtained co-clusters. The co-

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

1 1 T

M Relevance M Relevance

M Recovery 0.8} B Recovery
0.6
04}
02}

ISA OPSM ROCC PONEOCC 0 cC ISA OPSM ROCC PONEOCC
(a) without noise (b) with 10% noise

Figure 5: The results on the synthetic datasets. 10% noise was added to the data to test the performance of different
co-clustering algorithms.

Expression level

15 20 2 0 20 40 60 80 10 120 140
Samples Samples

(b) 31 x40 (c) 8x129

0.8

=Y
%

o
o

0.6

=
=

0.4

Expression level
Expression level
Expression level

=
i

0.2

0 5 10 5 20 25 30 T 15 2 25 3 35 4 45 0 .
Samples Samples Samples

(d) 60 x 30 (e) 14 x5 (f) 18 x20

Figure 6: Examples of the co-clusters identified by the proposed algorithm. The three co-clusters in the first row contain
only the positively correlated genes which show similar patterns. These co-clusters were obtained from the Gasch yeast
dataset. The three co-clusters in the second row contain positively and negatively correlated genes which show opposite
patterns. These co-clusters were obtained from (d) Gash yeast, (e) Scleroderma and (f) Causton yeast datasets.

351 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

clusters in the first row of Figure 6 contain positively corre-
lated genes, while the co-clusters in the second row of the
same figure contain both types of correlations. In these co-
clusters, the negatively correlated genes are shown as the
mirror image of the other genes.

Table 2: Description of the real-world datasets.

Dataset Name No. of genes | No. of samples
Arabidopsis thaliana ! 734 69
Gasch yeast ! 2993 197

Cho yeast 2 6240 17
Causton yeast > 4960 11

Lung cancer 3 1000 197
Leukemia 3 5000 38
Scleroderma * 2533 27

In evaluating the results of different co-clustering algo-
rithms, we are interested in evaluating two metrics: the qual-
ity of the co-clusters, and the volume of the co-clusters. The
quality of the co-clusters was measured using the H’ function
(see Equation 5.3). Therefore, the score of each co-cluster is
between 0 and 1. A perfect co-cluster is assigned a score of 1.
Table 3, shows the results of all of the five co-clustering algo-
rithms on the seven datasets. No results were obtained using
the ISA algorithm when running on the Cho, Causton and
Leukemia datasets using the BiCat software; hence, the cor-
responding cells are given as —. As shown in this table, the
proposed algorithm produced the highest co-clusters score
for all the datasets. Regarding the average volume of the co-
clusters, our algorithm outperformed the other algorithms in
three datasets, and in the other datasets, our algorithm pro-
duced relatively large co-clusters. These results confirmed
one of our initial claims that the proposed algorithm was de-
signed to identify high-quality co-clusters.

When working with biological data, we are interested in
identifying the biological significance of the results. The bi-
ological significance was estimated using the p-values with
different significance levels = 5%, 1% and 0.1%. The hy-
pergeometric distribution is used to calculate the probability
of having at least k genes from a co-cluster of size n genes
by chance in a biological process containing f genes from a
total size of N genes as follows:

k(N (VS
Pli;)(l)((N,S,)

This test measures if a co-cluster is enriched with genes from

a particular category to a greater extent than that would be
Thitp:/twww.tik.ee.ethz.ch/sop/download/

2 http://yfedb.princeton.edu/download/yeast_datasets/

3 hatp:/fwww.broadinstitute.org/cgi-bin/cancer/datasets.cgi/

4http://genome-www.stanford.edu/scleroderma/data.shtml/

352

expected by chance [15]. The range of the p-values is from
0 to 1. Lower p-values indicate biological significance [7].
As shown in Figure 7, PONEOCC algorithm outperformed
the existing algorithms in the majority of the cases. A high
quality co-cluster contains strongly correlated genes, which
suggests that the genes are involved in the same biological
pathway. Therefore, it is likely to have a significant p-value.

7 Conclusion

In this paper, we presented a novel co-clustering framework
(PONEOCC) to cluster large-scale gene expression data. It
uses a novel objective function that is optimized to simul-
taneously find large co-clusters with minimum errors, and
it allows positively and negatively correlated genes to be in
the same co-cluster. The co-clusters can be arbitrarily posi-
tioned in the gene expression matrix and can overlap. Fur-
thermore, the algorithm performs well on noisy data, and it
can handle missing values. The experimental results on syn-
thetic and real-word datasets showed that the proposed al-
gorithm can extract biologically and statistically significant
co-clusters from gene expression data. The proposed algo-
rithm was compared to some of the existing algorithms, and
the comparisons showed that PONEOCC outperformed the
other methods that are available in the literature. We plan to
extend our framework to handle non-linear subspace corre-
lations [21].

References

[1] Aris Anagnostopoulos, Anirban Dasgupta, and Ravi Kumar.
Approximation algorithms for co-clustering. In PODS ’08:
Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages
201-210, New York, NY, USA, 2008.

Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana
Merugu, and Dharmendra S. Modha. A generalized maxi-
mum entropy approach to bregman co-clustering and matrix
approximation. J. Mach. Learn. Res., 8:1919-1986, 2007.
Simon Barkow, Stefan Bleuler, Amela Prelic, Philip Zimmer-
mann, and Eckart Zitzler. BicAT: a biclustering analysis tool-
box. Bioinformatics, 22(10):1282-1283, 2006.

Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar
Yakhini. Discovering local structure in gene expression data:
the order-preserving submatrix problem. Journal of compu-
tational biology, 10(3-4):373-384, 2003.

Stanislav Busygin, Oleg Prokopyev, and Panos M. Pardalos.
Biclustering in data mining. Comput. Oper: Res., 35(9):2964—
2987, 2008.

Yizong Cheng and George M. Church. Biclustering of
expression data. In Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology,
pages 93-103, 2000.

Hyuk Cho and Inderjit S. Dhillon. Coclustering of human
cancer microarrays using minimum sum-squared residue co-

(2]

(3]

(4]

(5]

(6]

(7]

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

WorsM lorsMm
Wisa MisaA
0.8~ [Cec 0.8F [cc
[ErRocc Erocc
WPONEOCC IlPONEOCC
0.6- -4 06r B

04 04

0.2]

0.2+

0.05 0.01 0.001 0.05 0.01 0.001

(a) Arabidopsis thaliana (b) Gasch yeast

0.05 0.01 0.001 - 0.01

(c) Lung cancer (d) Scleroderma

WorsM

08r [Clce 1
ErOCC

06 PONEOCC

0.4

0.2

001 0 |
0.05 0.01 0.001
(e) Cho yeast (f) Causton yeast
0.05 0.01 0.001 0.05 0.01 0.001
(g) Leukemia (h) Average of all datasets

Figure 7: Proportion of co-clusters that are significantly enriched in each dataset (a) to (g), and the average of all the datasets
is shown in (h). The biological significance is measured using the P-values: 5%, 1% and 0.1%, respectively.

353 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Table 3: The average score of co-clusters and the average volume of the co-clusters obtained from CC, ISA, OPSM, ROCC
and PONEOCC methods for each dataset. (average row number, average column number) are provided for each volume
value. These two numbers were rounded. The maximum values for the score and the volume are highlighted.

Dataset Average score of co-clusters Average volume of co-clusters
CC ISA OPSM | ROCC | PONEOCC CC ISA OPSM ROCC | PONEOCC
Arabidopsis | 0.9996 | 0.9569 | 0.9969 | 0.9952 0.9998 1462 | 40.6 330.7 534.1 2282.1
(19.8) | (202) | (988) | (41.28) | (191,12)
Gasch 0.9844 [0.9907 | 0.9966 | 0.9945 0.9987 2424 | 5721 | 2019.6 | 23207 25825
(304,43) | (67,9) | (522,9) | (11525) | (272,29)
Cho 0.9322 - 0.9923 | 0.9854 0.996 950.5 - 2015 757.9 1958
(80,12) (682,7) | (152,6) (392,5)
Causton 0.922 - 0.9907 | 0.9831 0.9965 22029 - 26563 800 38975
(219,10) (941,6) | (200,4) (780.5)
Lung 0.9857 | 0.9665 | 0.9951 | 0.9947 0.999 77721 | 5381 | 5749 | 12123 1631.9
(106,50) | (47,11) | (169,9) | (55.24) | (171,17)
Leukemia | 0.9715 - 0.9963 | 0.9775 0.9984 7611.2 - 8475 2544 35437
(310,15) (708,20) | (190,10) | (219,13)
Scleroderma | 0.9838 | 0.9813 | 0.9862 | 0.9895 0.995 227338 15 1303.4 426 1949
(110,16) | (82) | (403,8) | (63,10) (380,7)

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

clustering. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
5(3):385-400, 2008.

Meghana Deodhar, Gunjan Gupta, Joydeep Ghosh, Hyuk
Cho, and Inderjit Dhillon. A scalable framework for discover-
ing coherent co-clusters in noisy data. In ICML "09: Proceed-
ings of the 26th Annual International Conference on Machine
Learning, pages 241-248, 2009.

Thomas George and Srujana Merugu. A scalable collabora-
tive filtering framework based on co-clustering. In Proceed-
ings of the Fifth IEEE International Conference on Data Min-
ing, ICDM 05, pages 625-628, Washington, DC, USA, 2005.
G. Getz, E. Levine, and E. Domany. Coupled two-way
clustering analysis of gene microarray data. Proc. Natl. Acad.
Sci. USA, 97:12079-12084, 2000.

Kuo-Wei Hsu, Arindam Banerjee, and Jaideep Srivastava. I/o
scalable bregman co-clustering. In PAKDD’08: Proceedings
of the 12th Pacific-Asia conference on Advances in knowledge
discovery and data mining, pages 896-903, 2008.

Jan Thmels, Sven Bergmann, and Naama Barkai. Defining
transcription modules using large-scale gene expression data.
Bioinformatics, 20(13):1993-2003, 2004.

Liping Ji and Kian-Lee Tan. Mining gene expression data
for positive and negative co-regulated gene clusters. Bioin-
formatics, 20(16):2711-2718, 2004.

Jinyan Li, Kelvin Sim, Guimei Liu, and Limsoon Wong.
Maximal quasi-bicliques with balanced noise tolerance: Con-
cepts and co-clustering applications. In Proc. SIAM Int. Conf.
on Data Mining SDM’08, pages 72—83, April 2008.

Jinze Liu, Jiong Yang, and Wei Wang. Biclustering in
gene expression data by tendency. In Proceedings of the
2004 IEEE Computational Systems Bioinformatics Confer-
ence, CSB ’04, pages 182-193, Washington, DC, USA, 2004.
Junwan Liu, Zhoujun Li, Xiaohua Hu, and Yiming Chen. Bi-
clustering of microarray data with mospo based on crowding

354

(7]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

distance. BMC Bioinformatics, 10(Suppl 4):S9, 2009.
Claudio Lucchese, Salvatore Orlando, and Raffaele Perego.
A generative pattern model for mining binary datasets. In
Proceedings of the 2010 ACM Symposium on Applied Com-
puting, pages 1109-1110, New York, NY, USA, 2010.

Sara C. Madeira and Arlindo L. Oliveira. Biclustering al-
gorithms for biological data analysis: a survey. I[EEE/ACM
transactions on computational biology and bioinformatics,
1(1):24-45, 2004.

Omar Odibat, Chandan K. Reddy, and Craig N. Giroux.
Differential biclustering for gene expression analysis. In
Proceedings of the ACM Conference on Bioinformatics and
Computational Biology (BCB), pages 275-284, 2010.

Amela Prelic, Stefan Bleuler, Philip Zimmermann, Anja
Wille, Peter Buhlmann, Wilhelm Gruissem, Lars Hennig,
Lothar Thiele, and Eckart Zitzler. A systematic comparison
and evaluation of biclustering methods for gene expression
data. Bioinformatics, 22(9):1122-1129, May 2006.

Chandan K. Reddy and Mohammad S. Aziz. Modeling local
nonlinear correlations using subspace principal curves. Stat.
Anal. Data Min., 3:332-349, October 2010.

Hanhuai Shan and Arindam Banerjee. Residual bayesian co-
clustering for matrix approximation. In Proc. SIAM Interna-
tional Conference on Data Mining, pages 223-234, 2010.
Michael Steinbach, George Karypis, and Vipin Kumar. A
comparison of document clustering techniques. In Marko
Grobelnik, Dunja Mladenic, and Natasa Milic-Frayling, ed-
itors, KDD-2000 Workshop on Text Mining, August 20, pages
109-111, 2000.

Wen-Hui Yang, Dao-Qing Dai, and Hong Yan. Finding cor-
related biclusters from gene expression data. IEEE Trans-
actions on Knowledge and Data Engineering, 99(PrePrints),
2010.

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

