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Abstract
Biclustering methods have proven to be critical tools in theex-
ploratory analysis of high-dimensional data including information
networks, microarray experiments, and bag of words data. How-
ever, most biclustering methods fail to answer specific questions of
interest and do not incorporate prior knowledge and expertise from
the user. To this end, query-based biclustering algorithmsthat are
recently developed in the context of microarray data utilize a set of
seed genes provided by the user which are assumed to be tightly
co-expressed or functionally related to prune the search space and
guide the biclustering algorithm. In this paper, a novelQuery-
BasedBi-Clustering algorithm,QBBC, is proposed by a new for-
mulation that combines the advantages of low-variance biclustering
techniques and Formal Concept Analysis. We prove that statistical
dispersion measures that are order-preserving induce an ordering on
the set of biclusters in the data. In turn, this ordering is exploited to
form query-based biclusters in an efficient manner. Our novel ap-
proach provides a mechanism to generalize query-based bicluster-
ing to sparse high-dimensional data such as information networks
and bag of words. Moreover, the proposed framework performsa
local approach to query-based biclustering as opposed to the global
approaches that previous algorithms have employed. Experimental
results indicate that this local approach often produces higher qual-
ity and precise biclusters compared to the state-of-the-art query-
based methods. In addition, our results on the performance eval-
uation illustrate the efficiency and scalability of QBBC compared
to full biclustering approaches and other existing query-based ap-
proaches.
Keywords: Biclustering; Formal Concept Analysis.

1 Introduction

The abundance of high-dimensional data in applications
ranging from text mining to bioinformatics prompted the de-
velopment of biclustering, co-clustering and subspace clus-
tering algorithms [5, 13]. All of these approaches attempt to
identify clusters of objects in conjunction with the subsetof
features in high-dimensional datasets to avoid the curse of
dimensionality. Although these methods have proven to be
useful tools in exploratory analysis, most of these methods
do not answer specific questions of interest and fail to in-
corporate prior knowledge and expertise from the user. For
example, biologists often know that specific sets of genes are
related to shared biological functions or pathways. Based on
this prior knowledge, experts may want to enlist additional
genes involved in that function in a microarray data [7].
In the domain of information networks, consider a network
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linking key terms with research papers; a database researcher
may wish to uncover which authors have been performing
research in the field of ‘collaborative filtering’. Seeding an
ideal query based biclustering algorithm with the seed terms
collaborativeandfiltering would not only unveil the authors
who have addressed this topic but also additional key terms
that are related to collaborative filtering.

Query-based biclustering algorithms have been origi-
nally developed in the bioinformatics community [11, 22,
16, 4, 24, 7] specifically targeting microarray data. These
algorithms utilize a set of seed genes provided by the user
with the assumption that these seeds are tightly co-expressed
or functionally related. In turn, the seed set is employed
to prune the search space and guide the biclustering algo-
rithm. Query-based biclustering algorithms characteristi-
cally attempt to keep biclusters centered around the seed set.
However, they must also be robust and recognize an incoher-
ent or partially incoherent seed set. Bio-inspired algorithms
tend to adhere to these requirements, but are highly expen-
sive and do not generalize well to large-scale datasets such
as information networks, social networks and bag of words.
In general, matrix representations of these data sources tend
to be orders of magnitude larger than microarray data and
much sparser. Furthermore, the state-of-the-art methods uti-
lize probabilistic relation models [24] or Bayesian methods
[7] which naturally allow for expert input into the algorithm
through the use of prior distributions. However, generally
users do not have this level of expertise and can only provide
an intuitive seed set.

A novel formulation of query-based biclustering is pro-
posed, in this paper, to generalize previous approaches to
sparse and very high-dimensional data. Combining low-
variance biclustering techniques and Formal Concept Anal-
ysis (FCA), theQBBCalgorithm is developed. We prove that
statistical dispersion measures that are order-preserving in-
duce an ordering on the set of biclusters; consequently, this
ordering is exploited to mine query-based biclusters in an ef-
ficient manner. Additionally, we capitalize on this ordering
to identify neighboring biclusters that admit minimal noise
when joining the clusters. In this manner, biclusters may be
combined to enhance query results while still centering on
the seed set.

1.1 Contributions The main contributions of our work
are summarized as follows:



• Novel formulation of query-based biclustering (and bi-
clustering in general) through a combination of low-
variance biclustering and Formal Concept Analysis. In
this formulation, we prove that order-preserving statis-
tical measures of dispersion can induce an ordering that
permits efficient mining.

• Development of theQBBCalgorithm to efficiently mine
query-based biclusters and approximate their ordering
relation. TheQBBCalgorithm extends the seminal
CHARM[23] algorithm (traditionally utilized to mine
closed itemsets) by making use of an original operator
termed “range intersection”.

• Formulation of two data-driven evaluation measures
that capture the notion of coherence in biclusters.

• Experimental study with six real-world datasets from a
wide range of real-world applications and performance
comparison of the results with existing state-of-the-art
approaches.

Following a review of existing works in Section 2, the
theoretical clustering formulation is described in Section 3.
Section 4 describes theQBBCalgorithm, while Section 5
presents the results of our performance experiments. Finally,
Section 6 offers concluding remarks, shortcomings, and
avenues for future work.

2 Related Work

Existing works that are most relevant to the proposed ap-
proach fall into three categories: (i) bio-inspired query-
based biclustering, (ii) semi-supervised clustering, and(iii)
pattern-based biclustering. In this section, prior works in
each of these categories are succinctly summarized.

As mentioned in the introduction, query-based biclus-
tering methods have been developed in the bioinformatics
community. The two works that are most relevant to the pro-
posed one areProBic [24] andQDB[7] algorithms. QDB
encompasses a Bayesian framework in which a conditional
maximization is utilized for model estimation. Intuitively,
biclusters are defined as sub-matrices of the original matrix
whose expression values are modeled by a bicluster distri-
bution as opposed to a “background” distribution (the rest
of the data). Domain knowledge is encoded in the form of
prior probability distributions. Finally, a resolution sweep
method determines the ideal resolution that biclusters should
be displayed at. In our method, we believe the issue of res-
olution sweep is naturally addressed by making use of a bi-
cluster ordering. TheProBic method, which is a follow
up to QDB, is conceptually similar but adapts a probabilis-
tic relation model as an extension to the Bayesian frame-
work. Hard assignment of biclusters is assigned with the
Expectation Maximization (EM) algorithm used to learn the

model. Another method in this category is an earlier ap-
proach, namely, the Iterative Signature Algorithm (ISA ) [4]
which utilizes the mean expression profile of the seed set
to initialize the biclustering. Biclusters are then definedas
fixed points with significant over or under expression.ISA
does not deal with missing values, making it highly unlikely
to be effective with sparse data. In addition, the algorithm
is not purely query-based; there is no guarantee that a bi-
cluster does not completely drift away from the original seed
set. GeneRecommender [16] primarily focuses on prior-
itizing genes, and hence requires additional post-processing
steps to convert to a biclustering approach.QDBwas shown
to outperform bothGeneRecommender andISA on syn-
thetic data, while producing biologically relevant results in
real data. More recently,ProBic was shown to be more
effective compared toISA andQDB.

Semi-supervised clustering has mainly been character-
ized by constraint-based mono-dimensional clustering [3]
which is a well-investigated research topic. In these works,
pairwise constraints on objects such as “cannot-link” and
“must-link” are utilized to integrate domain knowledge and
thus improve the quality of the clustering solutions. Few
methods have extended such constraint-based formulations
to even biclustering settings [18, 20, 15]. However, this prob-
lem is substantially different from the problem that we are
addressing in this paper.The query seed set provided as in-
put does not impose an explicit constraint, rather, it repre-
sents a user preference which may infact be ignored by the
algorithm if such a set is determined to be incoherent.

Recently, some preliminary efforts have been made to
extend closed pattern and association rule analysis to biclus-
tering and multi-way clustering of real-valued data [17, 12].
The advantage of these methods is the ability to exhaustively
search the set of biclusters and locate smaller and finer grain
clusters often missed or masked by other methods. The pri-
mary disadvantage of pattern based biclustering algorithms
is their potentially prohibitive computational cost. To ad-
dress this issue, both [17] and [12] apply order preserving
dispersion measures allowing efficient pruning of the search
space. In this work, we build upon and extend the theoret-
ical foundation of pattern based biclustering. The notion of
an ordering preserving statistic is explicitly introducedand is
proven that in addition to permitting effective pruning, such
statistics impose an ordering upon the set of biclusters. As
real-world data is typically dominated by a small number of
very strong biclusters, this ordering is critical in facilitating
the identification of neighboring biclusters to a seed set that
enhance the final result. Finally, [17] and [12] measure co-
herence of biclusters through comparison of the range to a
constant user-selected threshold. In this work, we introduce
two original data-dependent measures for the evaluation of
coherence.



3 Clustering Formulation

A context K = (G,M,K) is a triple whereG and M

are sets of objects andK is a |G| by |M| matrix relating
the objects ofG and M. We assume that if an object
g ∈ G is not related to objectm ∈ M thenK[g,m] =
−∞. K may also be thought of as the adjacency matrix
of a bipartite graph with vertex setsG and M and edge
set{(g,m)|K[g,m] 6= −∞} and edge weighting function
w(g,m) = K[g,m]. Γ(g) denotes the set of adjacent
vertices tog (dually Γ(m)). An object-setG or M is a
subset of objects fromG or M. A subspaceis any pair
of object-sets(G,M) which also maybe thought of as a sub-
matrixK[G,M ]. A query set is any object-setM q (dually
Gq) that is input by a user queryingK. GivenM q, our goal is
to identify a subspace(G,M), whereM ⊇M q, that exhibit
consistent values across the rows (columns) ofK[G,M ].
In the terminology of biclustering [13], the desired result
is to produce constant value biclusters in terms of rows
or columns with the given constraint of a user query set.
In order to quantify consistency of values in a subspace,
statistical measures of dispersion such as standard deviation,
inter-quantile range, range, and mean difference are utilized.
For a given query setM q, the supporting set of M q are
those objects inG that are jointly adjacent toM q and exhibit
consistent values. Formally, defined as a dispersion measure
that maps a subspace(G,M) 7→ R. Moreover, define a
consistency function, f , that serves as a standard on what
constitutes a consistent subspace;f : (K, g,M, α) 7→ R,
whereα is a user-selected parameter. Figure 2 displays
several dispersion and consistency functions.

DEFINITION 1. Given K = (G,M,K), query setM q,
and user selected parameterα, the supporting set of M q,
denoted asψαf (M

q), is defined as

{g ∈ G Γ(g) ⊆M q ∧ d(K[g,M q]) ≤ f(K, g,M, α)}

where f is a consistency function and d is a statistical
measure of dispersion.

A general definition for a constant valued bicluster follows
naturally from the supporting set formulation.

DEFINITION 2. GivenK = (G,M,K), consistency func-
tion f , dispersion measured, and parameterα, a bicluster
or α-concept ofK is a subspace(G,M) such that

1. ψαf (M) = G

2. There does not existm ∈ M \M such thatψαf (M ∪
m) = G.

The second condition of Definition 2 is referred to as theclo-
sure condition, which ensures that the maximum number of
rows (columns) have been included in the bicluster without
violating the consistency conditions.

DEFINITION 3. GivenK = (G,M,K), consistency func-
tion f , dispersion measured, and query setQ ⊂M (dually
Q ⊂ G), then anideal query-based bicluster of K is an
α-concept(G,Q′), whereQ′ ⊇ Q.

In real datasets, we expect the structure and nature of query-
based biclusters to be highly sensitive to the choices ofα and
f . Non-stringent measures cause biclustering algorithms to
mask or miss small but relevant biclusters [17]; on the other
hand, too stringent parameter settings may cause the algo-
rithm to conclude that a query set is incoherent and thus will
not return any bicluster. As a result, given a query we do
not expect to locate an ideal query-based bicluster due to
the resolution problem. We propose a computationally ef-
ficient scheme to account for the parameter selection prob-
lem that does include varying parameter settings. We advo-
cate setting stringent parameter settings and utilizing several
small, localized and similarα-concepts to construct larger
query-based biclusters that still center around the query.We
show in the sequel that utilizing order preserving dispersion
measures induce an ordering on the set ofα-concepts in the
data. In turn, this ordering is exploited to identifyα-concept
neighborhoods that consist of similarα-concepts centered
around the query set.

3.1 Formal Concept AnalysisAs applied to binary rela-
tions, Formal Concept Analysis (FCA) stipulates that biclus-
ters in binary valued data (maximal bi-cliques) are ordered
by thehierarchical order [10]. In this section, we prove that
this ordering also applies toα-concepts given that the dis-
persion measures and consistency functions adhere to certain
ordering properties.

DEFINITION 4. Givenα-concepts(G1,M1) and(G2,M2),
then (G1,M1) 6 (G2,M2) if and only ifG1 ⊆ G2 and
M1 ⊇ M2. This ordering relation is referred to as the
hierarchical ordering.

Undoubtedly, the selected dispersion measure and consis-
tency function determine if the set ofα-concepts are in fact
ordered by the hierarchical ordering.

DEFINITION 5. d is order-preserving ifd(K[g,M ]) ≤
d(K[g,M ∪m]), wherem ∈M \M

DEFINITION 6. f is anti-monotone iff(K, g,M, α) ≥
f(K, g,M ∪m,α), wherem ∈M \M

Clearly, if d andf are order-preserving and anti-monotone
thenψα(M q) is also anti-monotone; this in turn implies that
α-concepts defined in terms of an order-preserving disper-
sion statistics and anti-monotone consistency functions are
ordered by the hierarchical order.

THEOREM 3.1. Given a contextK, α, d, and f , then if d
andf are order-preserving and anti-monotone respectively
theα-concepts ofK are ordered by the hierarchical order.
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Figure 1: Noisy region induced by combining two neighbor-
ing concepts

Proof. See Appendix.

FCA stipulates that concepts ordered by the hierarchical
order form a complete lattice; therefore we conclude that
the set ofα-concepts also form a complete lattice. The
α-concept lattice forms the basis for definingα-concept
neighborhoods.

3.1.1 Neighboring ConceptsConsider concepts
(G1,M1) and (G2,M2) such that(G1,M1) > (G2,M2).
If there is no concept(G3,M3) fulfilling (G1,M1) >

(G3,M3) > (G2,M2) then(G1,M1) is anupper neighbor
of (G2,M2); dually (G2,M2) is a lower neighbor of
(G1,M1). For any conceptC1, its set of upper neighbors
is denoted asΥ(C1). Intuitively, neighboring concepts are
assumed to be similar. This intuition has been formalized
and exploited to extract knowledge in binary contexts
[1, 14]. In terms of query-based biclustering, neighboring
α-concepts provide a mechanism to explore and combine
closely relatedα-concepts in order to enhance or broaden
a seed bicluster. We formally show that combiningα-
conceptC1 = (G1,M1) and any upper (lower) neighbor
C2 = (G2,M2) will result in the minimal degree of incon-
sistency among all possible pairings of largerα-concepts.
Figure 1 depicts the result of combiningα-conceptC1

and an upper neighborC2. By definition, the values
encompassed byC1 and C2 are consistent, however, the
values induced by the difference betweenC1 andC2 may
not be (noisy region). One possible measure of dissimilarity
between twoα-concepts is the degree of inconsistency
introduced by the noisy region when combining the two
α-concepts. Given below, thedist score assesses the dis-
similarity by computing the ratio of the consistency function
as measured in the original concept to the noisy region.

dist((G1,M1), (G2,M2)) =

1

|G1 \G2|

∑

g∈G1\G2

d(K[g,M2 \M1])

d(K[g,M2])
×sg(3.1)

where

sg = 1 + |(Γ(g) ∩M2) \M1|

Name Computation Order Preserving?
Range r(K[m,G]) = maxK[g,M ]−minK[g,M ] yes

Standard Deviation σ(K[m,G]) no
Inter-quantile Range Q3(K[m,G])−Q1(K[m,G]) no

Mean difference 1
|M|(|M|−1)

∑|M|
i=1

∑|M|
i=1 |K[g,mi]−K[g,mj]| no

Coefficient of variation σ(K[g,M ])
µ(K[g,M ]) no

Quartile coefficient Q3(K[g,M ])−Q1(K[g,M ])
Q3(K[g,M ])+Q1(K[g,M ]) no

(a) Dispersion Functions

Name Computation Anti-monotone ?
Constant threshold f(K, g,M, α) = c yes

Min range f(K, g,M, α) = minK[g,M] yes
(b) Consistency Functions

Figure 2: Dispersion and consistency functions

In Equation (3.1), the fact thatd is order preserving
bounds the left hand side ratio inside the summation to 1.
The right hand side term,sg, is introduced to account for
sparse data. In the case thatK is full (K is a complete bi-
partite graph) thensg evaluates to 1 and the ratios are simply
summed up. On the other hand, if the rowK[g,M2 \M1]
contains missing values, then a penalty term is proportionally
imposed on the ratio. Finally, the consistency ratios are
averaged over the total number of rows in the join of the
concepts.

THEOREM 3.2. For anyα-concept(G1,M1), then

argmax
(G2,M2)>(G1,M1)

dist((G1,M1), (G2,M2)) ∈ Υ(G1,M1)

Proof. See appendix.

Theorem 3.2 provides a theoretical basis for combining
neighboringα-concepts to form a query-centered bicluster.

3.2 Dispersion and Consistency FunctionsFigure 2
shows several standard statistical measures of dispersion
along with some select consistency functions that have been
utilized recently in biclustering algorithms [17, 12]. As can
be seen, the only dispersion measure that is order-preserving
is range, which justifies its use previously. Unfortunately,
range is not a robust statistic; nevertheless, its use as a disper-
sion measure is justified because it is order-preserving andit
bounds the standard deviation as follows:

(3.2) 2× σ(K[g,M ]) ≤ r(K[m,G])

Furthermore, relatively few consistency functions exist;pre-
vious methodologies have simply imposed hard thresholds.
In the sequel, two novel data-dependent, anti-monotone con-
sistency functions are developed.

3.2.1 α-sigma Consistency FunctionGiven
K = (G,M,K) assume that the rows and columns of
K are i.i.d and normally distributed. That is, for allg ∈ G,
K[g,M] is normally distributed withσ(K[g,M]) and
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Figure 3: Concepts of a sample data matrix

µ(K[g,M]) respectively. The 3-sigma rule states that
about 68.26 % of the values for eachK[g,M] lie within
a single standard deviation of the mean while 95.44 %
of the values lie within two standard deviations from the
mean. Hence, randomly selecting query object-setM ,
the majority of values in the subspaceK[g,M ] are also
expected to lie within theµ(K[g,M]) ± 2σ(K[g,M])
with meanµ(K[g,M]) and standard deviationσ(K[g,M]).
A subspaceK[g,M ] where σ(K[g,M ]) < σ(K[g,M])
indicates that the values in the subspace are more consistent
than expected. This can be generalized to subspaces where
α × σ(K[g,M ]) < σ(K[g,M]), whereα ≥ 1; then the
α-sigma consistency function is formulated as

α× σ(K[g,M ]) < σ(K[g,M])

α
rg

2
< σ(K[g,M])(3.3)

rg <
2σ(K[g,M])

α
(3.4)

where rg denotesr(K[m,G]) and equation (3.3) follows
from the stringent assumption imposed by inequality (3.2).

DEFINITION 7. For contextK = (G,M,K) and given sub-
spaceK[g,M ], theα-sigma consistency function is defined
as

(3.5) f(K, g,M, α) =
2σ(K[g,M])

α

Theα-sigma consistency function is clearly anti-monotone.

3.2.2 Maximum Spacing Uniform Estimator A less
stringent consistency function may seek subspaces whose
range isα times smaller than the range of a uniformly dis-
tributed random variable. Assume that the rows and columns
of K are i.i.d and uniformly distributed with end points
max(K[g,M]) andmin(K[g,M]). Let {x1, . . . , xn} be an
ordered sample from uniform distributionU(a, b) with un-
known endpointsa and b. A known uniformly minimum

variance unbiased estimator of the end points is the maxi-
mum spacing uniform estimator given as follows:

â =
nx1 − xn
n− 1

(3.6)

b̂ =
nxn − x1
n− 1

(3.7)

Clearly, the end points of the distribution can be estimated
utilizing only the end points of the sample; hence, the range
of the distribution can also be estimated asb̂− â. The actual
range can then be compared to an estimated range as follows:

b̂− â < α(b − a)
nxn − x1
n− 1

−
nx1 − xn
n− 1

< α(b − a)

xn − x1 + n(xn − x1) < α(n− 1)(b− a)

xn − x1 < α(n− 1)(b− a)− n(xn − x1)

By the above reasoning, a subspaceK[g,M ] is considered
consistent if its maximum space estimated range isα times
smaller than the range of the distribution.

DEFINITION 8. For contextK = (G,M,K) and given sub-
spaceK[g,M ], the maximum spacing uniform estimator
consistency function is
(3.8)
f(K, g,M, α) = α(|M| − 1)r(K[g,M])− |M|r(K[g,M ])

Clearly the maximum spacing uniform estimator consistency
function is anti-monotone.

EXAMPLE 1. Consider the data matrix in Figure 3(a).
The α-concept lattice of the data is depicted in Fig-
ure 3(b) utilizing theα-sigma consistency function with
α = 3. Figure 3(c) displays a heat map of the concept
({g2, g6}, {m1,m2,m3}).



Figure 4: Overview of QBBC algorithm

4 QBBC Algorithm

4.1 Overview Figure 4 describes the main steps of the
QBBCalgorithm. Initially, an ideal query-based bicluster
is sought for the given query setQ ⊂ M (steps 2-3)
by enumerating allα-concepts in the sub-matrixK[G, Q].
Exact details of the search and enumeration procedure are
presented in Section 4.2. If an ideal bicluster is located, then
the closure of that bicluster is computed in the full matrix
and the algorithm is terminated. In the more likely scenario
that an ideal bicluster is not found, thenQBBCretains the
α-concept,(G,M), with most query objects. Next,QBBC
assumes thatQ is a coherent query set, but an ideal bicluster
was not located due to the resolution of the consistency
function. Theorem 3.2 stipulates that if the query setQ was
indeed coherent, then the objects in the query set not found
in (G,M) would appear inα-concepts in the neighborhood
of (G,M). Hence, guided by Theorem 3.2, the topk
upper neighbors, ranked in ascending order bydist, are
augmented to(G,M) to form the bicluster(G,M ′′). At
this point, any objects inQ but not inM ′′ are considered
incoherent with the current bicluster, hence, a new query
set is formed asQ \ M ′′ (step 6). The entire procedure is
repeated with the new query set untilQ is empty or noα-
concepts are enumerated in step 2. In the sequel, we describe
the algorithmic and implementation details for completing
steps 2, 3 and 4 by taking advantage of the properties of
order-preserving dispersion measures and builiding upon the
seminalCHARMalgorithm for closed itemset mining.

4.2 Identifying α-concepts Step 2 ofQBBCcalls for enu-
meratingα-concepts in the sub-matrixK[G, Q]. The search
space for this task is formulated as a prefix tree as shown
in Figure 5. Recalling the dataset presented in example
1, Figure 5 depicts the search tree for query setQ =
{m1,m2,m3}. The tree utilizes the idea of prefix-based

Figure 5: Prefix based search for concepts

equivalence classes in order to break up the search tree into
independent sub-problems. Viewing any objectsetP ⊆ Q as
a string, two object-sets are in the same prefix-class if they
share a common-length prefix. Each node of the tree,P , rep-
resents an object-setP ⊆ Q and associated supporting set of
P . Any node of the search tree with a non-empty supporting
set is either anα-concept or a non-closedα-concept. For a
given nodeP , the next level of the search is generated by
computingψαf (P ∪ Pr) for nodesPr located to the right of
P under the same branch. For example, in Figure 5 con-
sider node{m1,m2}. Only node{m1,m3} is located to the
right of {m1,m2} under the same branch; hence, the next
level of the search tree consists of node{m1,m2,m3} and
supporting setψαf ({m1,m2,m3}). Moreover, the order-
preserving and anti-monotone properties ofd andf ensure
that the search tree may be pruned when an empty support-
ing set is encountered. Computingψαf (P ∪ Pr) is a matter
of identifying the supporting objects common to bothP and
Pr with the added restriction that the common supporting
objects also contain consistent values; hence, we introduce a
new operator:range intersection. Given two object setsP
andPr , coupled with supporting setsS andSr define range
intersection as:

ψα(P ∪ Pr) = S ⊓ Sr

= {s ∈ S ∩ Sr|d(K[s, P ∪ Pr] ≤ f(K, s, P ∪ Pr, α)}

whered is the range dispersion function. A naive strategy
to identify α-concepts is to simply enumerate the entire
prefix-based search tree. On the other hand, several closed
itemset enumeration algorithms follow this strategy with
additional pruning steps that vastly shrink the search space.
We exploit the main theorem guiding the seminal closed
item set enumeration algorithm,CHARM, which offers further
opportunity to prune the search tree by investigating the
result ofψαf (P ∪ Pr) when generating the next level of the
search tree. Given thatf is defined to be a constant, theα-



sigma function, or the maximum spacing uniform estimator
and the range dispersion function is utilized, we prove that
theCHARMtheorem is in fact generalizable toα-concepts.

THEOREM 4.1. Given the range dispersion functiond and
consistency functionf that is either constant, theα-sigma
function, or the maximum spacing uniform estimator then
the following holds: LetPPl andPPr be two nodes under
the same branch in the search tree withPPr located to the
right of PPl. Moreover letSl andSr be the supporting sets
ofPPl andPPr respectively. Given that

1. For any prefix nodePPx under the same branch
∀s ∈ Sx d(K[s, PPx]) ≤

f(K,s,PPx,α)
2 .

2. SS = Sl ⊓ Sr 6= ∅

then the following properties hold:

1. If |SS| = |Sl| ∧ |SS| = |Sr| then every occurrence of
PPl maybe replaced byPPl ∪ PPr and the nodePPr
and all its children may be pruned from the search tree.

2. If |SS| = |Sr| then every occurrence ofPPl may be
replaced withPPl ∪ PPr.

3. If |SS| = |Sl| then every occurrence ofPPr and its
children maybe pruned from search tree, but a new child
nodePPl∪PPr must be formed with the supporting set
ψαf (PPl ∪ PPr).

4. If |SS| 6= |Sl|∧|SS| 6= |Sr| then no condensation of the
search tree is possible and new child nodePPl ∪ PPr
with supporting setψαf (PPl ∪ PPr) must be formed.

Proof. See Appendix.

The actualization of the above theorem yields three
important outcomes: 1) computing the closure ofPPl, 2)
several possible condensations of the search tree, and 3)
enumerating the children ofPPl.

EXAMPLE 2. Consider the branch under node{m1} with
nodesPl = {m1,m2}, Pr = {m1,m3} along with
supporting setsSl = {g2, g3, g4, g5, g6}andSr = {g2, g6}
as depicted in Figure 5. Condition 1 of Theorem 1 is satisfied
due to the fact that no other prefix nodes exist under this
branch. Letf be set to theα-sigma consistency function with
α = 3 thenSS = Sl ⊓ Sr = {g2, g6}, hence condition 2 is
also satisfied. In this case|SS| = |Sr|, hence case 2 of the
theorem is applied andPr is replaced by{m1,m2,m3}. In
effect, the closure of the subspace(Sr, Pr) is computed and
the need to form a new child in the search tree is eliminated
resulting in computational savings.

Input : Prefix nodePPl, supporting setSl
Result: UpdatePPl by its closure
Result: Prune search space
Result: Compute children ofPPl at this branch

1 begin
2 C ← ∅ ;

// children
3 B ← {(PP 1

r , S
1
r ), . . . , (PP

n
r , S

n
r )} ;

// nodes to the right
4 flg ← ∀(PP ir , S

i
r) ∀s ∈ Sir d(K[s, PP ir ]) ≤

f(K,s,PP i
r ,α)

2 ;
5 for (PPr, Sr) ∈ B do
6 SSr ← Sr ⊓ S ;
7 if |SSr| = |Sr| ∧ |SS| = |S| then
8 P ← P ∪ Pr ;
9 if flg then

10 Remove(PPr, Sr) from tree ;

11 else if|SSr| = |Sr| then
12 P ← PPl ∪ PPr ;

13 else if|SSr| = |S| then
14 C ← C ∪ (PPl ∪ PPr, SSr) ;
15 if flg then
16 Remove(PPr, SSr) from tree ;

17 else
18 C ← C ∪ (PPl ∪ PPr, SSr) ;

Algorithm 1: A single search step correspoding to a
single branch

As pointed out in [23] checking for each of the four cases
during is a constant computational cost due to the fact that
set intersection must be computed to generate the next level
of the search in any case. Computing range intersection of
supporting setsSl andSr is performed inO(|S|) time as it
entails set intersection and a constant time operation to com-
pute range if the indices of maximum and minimum elements
are maintained throughout the search. Augmenting Theorem
4.1 with the range intersection operation, a procedure to gen-
erate children prefix nodes and prune the tree at any branch
of the search tree is given in Algorithm 1.The procedure is
an exact implementation of Theorem 4.1.

4.2.1 Closure and Upper NeighborsComputing the clo-
sure of a subspace(G,M) (step 3 ofQBBC) is accomplished
by applying a single step ofCHARMwhereM is the prefix
node and objectsmr ∈M \M constitute nodes to the right
of M . A similar strategy is utilized to determine the upper
neighbors of(G,M ′) (step 4); in this case two rounds of
CHARMare applied. Unfortunately, applyingCHARMin this
manner does not guarantee the exact set of upper neighbors



Name Domain Size Density Num.classes
mer Bag of words 1,990 x 21,258 0.003 2
allpc Bag of words 4,966 x 26,323 0.001 5
allsci Bag of words 3,975 x 30,440 0.001 4
papers Information network 28,564 x 16,891 0.0003 4
emap Microarray 3,300 x 3,300 0.113 na
hughes Microarray 4,684 x 300 1.0 na

Figure 6: Six real-world datasets used in our experiments.

in theα-concept lattice; rather, a superset of the upper neigh-
bors may in fact be enumerated [23]. On the other hand,
Theorem 3.2 guarantees that the top ranked concepts in the
generated set are upper neighbors of(G,M ′).

5 Experimental Results

5.1 Datasets and evaluation criteriaSix real-world
datasets were used in our experimental study and are listed
in Figure 6. The first three datasets came from the large
20Newsgroups dataset [2],papers [21] is a subset of the
DBLP database linking authors with paper titles, andemap

[19] andhughes [9] are both microarray datasets.mer rep-
resents the news feeds from the Middle East politics and Re-
ligion forum, allpc is a combination of all news feeds per-
taining to computers, andallsci is an aggregation of doc-
uments associated with science. In all text-based datasets,
stop words were removed and TF-IDF weights were com-
puted. For each dataset, two categories of seed sets were
constructed. The first category of seed sets was manually
assembled and generally contained 2-5 objects per query;
these objects were determined to be coherent. For exam-
ple, inmer query terms such as{israel, palestine} formed
a query while inpapers the terms{query, optimization}
were utilized. Foremap andhughes, query genes were as-
sembled by consulting the Biological Process hierarchy of
the Gene Ontology [8] and only those sets that were anno-
tated by the same functional class were retained. The second
category of seed sets consisted of randomly selecting objects
from each dataset; typically 10-50 objects were selected per
query. A total of 10 manually created and 50 random queries
were generated for each dataset. Evaluation of our experi-
mental results was based on three criterion:

1. Evaluation using mean square error to measure the
cluster quality.

2. Average purity of biclusters using class labels available
in most of the datasets.

3. Visual assessment of cluster quality.

For comparison, we used the R implementation of
QDB, available athttp://homes.esat.kuleuven.
be/ ˜ kmarchal , with the default parameter settings. The
QBBCalgorithm was implemented in C++ with both theα-
sigma (QBBC-alpha ) and maximum spacing uniform es-
timator consistency functions (QBBC-max) and is available

at http://faris-alqadah.heroku.com .Theα pa-
rameter was set to 3 on bothQBBC-sigma andQBBC-max
and both methods were set to augment initial query clus-
ters with the top 20 neighbors in theα-concept lattice. At
the time of this writing, no implementation was available for
ProBic . AlthoughQDBis designed to handle datasets with
missing values, when attempting to find query based biclus-
ters in the sparse datasets of this study (all buthughes), no
biclusters were ever produced. This may be due to the ex-
treme sparsity levels affecting the probabilistic model that
QDBis based upon. As a result, when executingQDB, the
sparse datasets were filled in with randomly generated val-
ues or zeros. In effect, this created a background distribution
from whichQDBshould discern actual biclusters.

5.2 Cluster quality The first evaluation criterion utilized
was mean square error (MSE) as given by Cheng and Church
[6]:

MSE(G,M) =

1

|G||M |

∑

g∈G,m∈M

(K[g,m]− µg,M − µG,m + µG,M )2

whereµg,M is the mean of thegth row underM columns,
µG,m is the mean of themth column respectively under
theG rows andµG,M is the overall mean of the subspace.
Under this formulation the minimum value of MSE is 0
when all values in the subspace are equal. To accommodate
sparse data, missing or non-edge values were either ignored
or computed as usual with the missing values filled by
the generated background distribution; the best results are
reported here. Average purity of a set of biclustersC =
{(G1,M1), . . . , (Gn,Mn)} and set of class labelsL =
{L1, . . . , Lm} is defined as

1

|C|

∑

k

max
j

|Mk ∩ Lj|

|Mk|

In other words, each cluster is assigned to the class which
is most frequent in the cluster and the purity measure is
computed as the precision of the cluster with respect to this
class; the average of the purity scores is then computed.

Figures 7(a)-7(c) displays the distribution of MSE
scores for biclusters mined with both manually created and
randomly generated query sets. In sparse data (Figures 7(a)-
7(c)) theQDBcluster MSE scores were strikingly larger than
those of bothQBBCmethods. This trend is explained by
the fact thatQDBtended to produce very large clusters even
when a small seed set was input. For example, a seed set
in mer contained only two terms, yetQDBreturned a clus-
ter containing 10,256 words and 1,600 documents. Clearly,
the extreme sparsity levels of these datasets confound the
QDBalgorithm and it is unable to discriminate between the
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Figure 7: MSE distributions of query-based biclusters withQBBC and QDB

background distribution and high quality query centered bi-
clusters. These facts illustrate the clear advantage ofQBBC
in sparse high-dimensional data; nonetheless, both methods
have similar performance on standard non-sparse microarray
data (Figure 7(c)). The lack of variance in MSE scores of
clusters produced byQBBC-maxin hughes was attributed
to the uniform distribution assumption; all queries resulted
in similar biclusters indicating that this consistency function
is more suited to sparse data.

Figures 7(d)-7(f) display the relationship between MSE
scores of the initial query sets and the final biclusters. The
score of the query set was computed as the MSE of the
subspace encompassing the query set in conjunction with all
the rows (or columns) of the dataset. Random seeds that
lead to no cluster being enumerated are not displayed. As
can be seen, bothQBBCalgorithms’ bicluster scores tend to
be lower than the query set whileQDBscores are higher.
As expected, the difference in seed scores and bicluster
scores are much closer for manually created query sets.
Interestingly, for random query-sets, theQBBCscores tended
to be orders of magnitude lower than those of the initial
query set. In most cases,QBBCbroke down the random
query and produced several biclusters that were consistent
in a small subspace of the initial query set, whileQDBfailed
to do this. Once again, in all sparse datasets the performance
of theQBBCalgorithms is clearly superior toQDBwhile the
results are comparable inhughes dataset.

Sample clusters mined by algorithms are depicted in
Figure 8. Visually inspecting these Figures, biclusters mined
by QDBandQBBC(Figures 8(a) and 8(d)) appear to be of
similar quality. On the other hand, once again, biclusters
produced byQDB in sparse data (Figures 8(b) and 8(c))
are clearly less informative compared to those mined by
QBBC(Figures 8(e) and 8(f)). These images manifest the
ability of QBBCto filter out the background distribution
and zoom in on query-centered biclusters in both sparse
and dense datasets. Figure 8(g) illustrates a sampling of
manually created query sets and the resulting word clusters.
In general, the resulting biclusters contained most of the
original query set and greatly expanded the cluster to include
mostly pertinent terms with a few noisy terms. The most
coherent bicluster came frompapers; an argument can be
made that all the terms in this bicluster are relevant, while
the entire seed set was preserved. This was expected as
papers is extremely sparse and only contains paper titles.
In the case ofallsci, a much noisier dataset thanpapers, the
termshacker and checksum were dropped while several
noisy terms were introduced.

Finally, the average purity of all biclusters resulting
from manual query sets are presented in figure 8(h). Due
to the inability ofQDBto scale to the three larger datasets,
papers, allpc, andallsci, the average purity scores were
computed by repeating experiments on small subsets of these
datasets with appropriate query terms and computing the av-
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Dataset Seed set bicluster

papers query optimization

databases semantic models based
analysis dynamic evaluation
systems information algorithms
query design xml database
distributed processing multi-
ple queries efficient relational
optimization temporal

allsci

cryptography
hacker checksum
algorithm cipher

algorithm cipher cryptography
states rsa signed plaintext free-
dom scheme text number exists
men recover selected application
create united versions comments
archive included documentation
approved attempt licensed inter-
net broad claimed recommended
newsgroups

mer israel palestine

arab palestine israelis israel is-
raeli opposition zionist ground
zionism international peace prob-
lem state wrote meant states hu-
man feel necessity statements cre-
ation guess occupation statement
forms disregard refers minister
racism fully intervention

(g) Sample seed sets and corresponding bicluster

Dataset Algorithm Avg. Purity Avg. num documents

mer

QBBC-sigma 0.89 28.125
QBBC-max 0.89 38.75

QDB 0.47 602.4

allpc

QBBC-sigma 0.60 51.4
QBBC-max 0.54 66.2

QDB 0.24 838

allsci

QBBC-sigma 0.75 19.4
QBBC-max 0.75 26

QDB 0.25 804.25

papers

QBBC-sigma 0.72 102.8
QBBC-max 0.72 103.2

QDB 0.31 1021.2

(h) Cluster purity

Figure 8: Sample clusters and precision-recall of clusters

erage. Each experiment was repeated ten times on the sam-
pled dataset with all algorithms and the average purity scores
being reported.QBBC-sigma and QBBC-maxproduced
clusters with approximately the same purity levels. Due to
the large size ofQBDclusters, the purity scores are near ran-
dom. On the other hand, theQBBCscores were not induced
by extreme cluster sizes as is demonstrated by the average

number of documents in each cluster.

5.3 Performance TestsPerformance tests were conducted
to evaluate the practical running time and scalability of
the QBBC. All experiments were conducted on a 3.33 GhZ
Intel I7 quad core CPU with 16 GB of RAM. Due to its
implementation in R,QDBscaled extremely poorly in the
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Figure 9: Performance comparisons between QBBC and RAP algorithms.

case of the three largest datasets and ran out of memory on a
16GB main memory machine in every instance. On the other
hand, the memory requirements ofQBBCnever exceeded 10
MB. Moreover, running times on these datasets exceeded an
hour even with query sets containing fewer than 5 objects.
In order to conduct a more fair comparison, and evaluate
the true effectiveness of the pruning rules introduced, we re-
implementedQBBCspecifying it to enumerate allα-concepts
in an entire dataset; we compared the running times to
the state-of-the-art pattern-based biclustering algorithmRAP
on all datasets. An implementation ofRAP in C++ was
downloaded fromhttp://vk.cs.umn.edu/gaurav/
rap/ . Due to space limitations, only the results of two of the
performance tests are displayed in Figure 9. The min range
support is a user defined parameter instructing the algorithms
to only retain clusters with a minimum degree of supporting
sets. Due to min range support also being anti-monotone it
can also be utilized to prune the search space. As shown
by these results, the additional pruning steps introduced by
Theorem 4.1 clearly result in much improved performance.
In non-sparse data (Figure 9(a)), we observed well over
three orders of magnitude speed up at the lowest minimum
support levels. On the largest sparse data set,papers, rap
was unable to complete within 48 hours at the minimum
support levels specified forQBBC(Figure 9(b)) whileQBBC
completed in under 700 seconds at the lowest support levels.

6 Conclusion

In this paper, a novel query-based biclustering algorithm,
QBBC, was developed. It was shown that statistical disper-
sion measures that are order-preserving induce an ordering
on the set of biclusters in the data; in turn this ordering is
exploited to mine similar biclusters centered around a query
seed set. Making use of an original operator, range intersec-
tion, it was further shown that the seminalCHARMalgorithm
for mining closed itemsets is generalizable to the computa-
tional framework for mining query-based biclustering. Ex-
perimental results unveiled that in high dimensional sparse

data, QBBChas a clear advantage over the current state-
of-the-art query-based biclustering methods while similar
performance was observed on standard microarray datasets.
Moreover, we illustrated that the pruning measures intro-
duced in theQBBCalgorithm resulted in significant compu-
tational savings compared to bothQDBandRAP. Shortcom-
ings ofQBBCinclude the inability to compute exact neigh-
bors of a bicluster in the concept lattice. We believe that
this fact leads to significantly higher computational cost es-
pecially in dense datasets. Moreover, no data-driven crite-
rion was derived for determining if and when neighboring
biclusters should be merged to enhance the seed bicluster.
Finally, additional order-preserving dispersion methodsand
anti-monotone consistency functions should developed in fu-
ture in order to accommodate some specific application de-
mands.
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Appendix
Proof of Theorem 3.1

Proof. Let (G1,M1) and(G2,M2) beα-concepts ofK, such thatM2 ⊇ M1.
Assume thatG2 6⊆ G1. Two cases arise:

1. G2 ⊃ G1. In this case,∃g ∈ G2 \G1 s.t.

d(K[g,M2]) ≤ f(K, g,M2, α)

d(K[g,M2]) ≤ f(K, g,M1, α)

however, this implies that(G1,M1) is not anα-concept which contradicts the
original assumption.

2. G2 ∩ G1 = ∅ ∧ |G2| > 0. Same argument as above by the fact that
M2 ⊇ M1.

Hence, we conclude thatG2 ⊆ G1 implying that(G2,M2) > (G1,M1).

Proof of Theorem 3.2
Proof. By definition, for any(G3,M3) /∈ Υ((G1,M1)) ∧ (G3,M3) >

(G1,M1) there exists(G2,M2) ∈ Υ((G1,M1)) such that(G3,M3) >

(G2,M2). This implies that :

dist((G1,M1), (G3,M3)) =

1

|G1 \G3|

(

∑

g∈G1\G2

d(K[g,M3 \M1]) × sg

d(K[g,M3])
+

∑

g∈G2\G3

d(K[g,M3 \M1]) × sg

d(K[g,M3])

)

(.1)

∑

g∈G1\G2

d(K[g,M3 \M1])

d(K[g,M3])
>

∑

g∈G1\G2

d(K[g,M2 \M1])

d(K[g,M3])

(.2)

∑

g∈G2\G3

d(K[g,M3 \M1])

d(K[g,M3])
>

∑

g∈G1\G2

d(K[g,M2 \M1])

d(K[g,M3])

(.3)

(1 + |(Γ(g) ∩M3) \M1|) > (1 + |(Γ(g) ∩M2) \M1|)(.4)

where inequality (.2) follows from the order-preserving property ofd, inequality (.3)
follows from the order-preserving property ofd, the anti-monotone property off and
the definition of a concept. Inequality (.4) follows by the properties of set difference.
Hence, by the fact that|G1 \G3| = |G1 \G2|+ |G2 \G3| and inequalities (.2),
(.3) and (.4).

dist((G1,M1), (G3,M3)) > dist((G1,M1), (G2,M2))

Proof of Theorem 4.1
Proof. By the triangle inequality and definition of consistency we have

d(K[s, PPl ∪ PPr ∪ PPx]) ≤

d(K[s, PPl ∪ PPr ]) + d(K[s, PPr ∪ PPx])(.5)

d(K[s, PPl ∪ PPr ∪ PPx]) ≤ f(K, s, PPl ∪ PPr ∪ PPx, α)(.6)

for any prefix nodePPx and anys ∈ Sl ∩ Sr ∩ Sx, andd is the range dispersion
statistic. Considering each case:

1. |SS| = |Sl| ∧ |SS| = |Sr|. In this caseSS = Sl andSS = Sr and the
subspace(SS,PPl ∪ PPr) is consistent by definition of range intersection.
Hence to ensure closure,PPl should be replaced byPPl ∪ PPr . Moreover,
by equation (.6) and the properties of set intersection

Sl ⊓ Sx = Sr ⊓ Sx

= Sl ∪ Sr ⊓ Sx

implying

ψα
f (PPl ∪ PPx) = ψα

f (PPr ∪ PPx)

= ψα
f (PPl ∪ PPr ∪ PPx)

for any prefix nodePPx under the same branch.

2. |SS| = |Sr|. In this caseSr ⊃ Sl and the subspace(SS,PPl ∪ PPr)
is consistent by definition of range intersection. Hence, asshown above, it is
possible to combinePPl andPPr into a single node. On the other hand, the
formation of a subspace involvingPPr but notPPl is possible hence both
nodesPPl ∪ PPr andPPr must be maintained.

3. |SS| = |Sl|. In this caseSl ⊃ Sr and the subspace(SS,PPl ∪ PPr)
is consistent by definition of range intersection. By the definition of closure
and as shown above every consistent subspace involvingPPr will also involve
PPl, thereforePPr and its children maybe pruned. On the other hand, the
formation of a subspace involvingPPl but notPPr is possible hence both
nodesPPl ∪ PPr andPPl must be maintained.

4. No pruning possible, hence new nodes must be formed.


