Query-based Biclustering using Formal Concept Analysis

Faris Algadah Joel S. Bader Rajul Anand* Chandan K. Reddy

Abstract linking key terms with research papers; a database ressrarch
Biclustering methods have proven to be critical tools in éxe may wish to uncover which authors have been performing

ploratory analysis of high-dimensional data includingomhation yesearch in the field of ‘collaborative filtering’. Seediny a
networks, microarray experiments, and bag of words datav-Ha

ever, most biclustering methods fail to answer specific tpesof 'deal query based biclustering algorithm with the seed serm
interest and do not incorporate prior knowledge and exgeftom collaborativeandfiltering would not only unveil the authors

the user. To this end, query-based biclustering algorittirasare i i iti
recently developed in the context of microarray data @itizset of who have addressed this topic but also additional key terms

seed genes provided by the user which are assumed to by tigitpt are related to cgllaboralltive filteri.ng. o
co-expressed or functionally related to prune the searabespnd Query-based biclustering algorithms have been origi-
guide the biclustering algorithm. In this paper, a noQ@lery- i ioi i i
BasedBi-Clustering algorithmQBBGC is proposed by a new for-nally developed |n_ .the b|0|nformatlc_s community [11, 22,
mulation that combines the advantages of low-variancaisieting 16, 4, 24, 7] specifically targeting microarray data. These
techniques and Formal Concept Analysis. We prove thastitti algorithms utilize a set of seed genes provided by the user
dispersion measures that are order-preserving inducedaniog on \yith th mption that th re tightl R

the set of biclusters in the data. In turn, this ordering jgeixed to tf t e.aSSlIJI ptlo tdatt ese se(;ds a e;g ty. co e>¢Tdessd
form query-based biclusters in an efficient manner. Our hape O functionally related. In turn, the seed set is employe
proach provides a mechanism to generalize query-basedsteic! to prune the search space and guide the biclustering algo-
Ing to sparse high-dimensional data such as informationot# rithm, Query-based biclustering algorithms characterist
and bag of words. Moreover, the proposed framework perfams .

local approach to query-based biclustering as opposectgltial cally attempt to keep biclusters centered aroupd the §eed se
approaches that previous algorithms have employed. Brpetal However, they must also be robust and recognize an incoher-

results indicate that this local approach often producglétiqual- ent or partially incoherent seed set. Bio-inspired aldonis
ity and precise biclusters compared to the state-of-thenaery- tend to adhere to th ; irements. but are highly expen-
based methods. In addition, our results on the performaveie e!€N0 10 adnere 1o these requirements, but are nighly expe

uation illustrate the efficiency and scalability of QBBC quamed sive and do not generalize well to large-scale datasets such
to full biclustering approaches and other existing queagenl ap- a5 information networks, social networks and bag of words.
proaches. . o : In general, matrix representations of these data sournés te
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to be orders of magnitude larger than microarray data and
1 Introduction much sparser. _Furthe_rmore, the state—of-the—ar_t methidds u

lize probabilistic relation models [24] or Bayesian metkod
The abundance of high-dimensional data in applicatiom which naturally allow for expert input into the algorith
ranging from text mining to bioinformatics prompted the dgnrough the use of prior distributions. However, generally
velopment of biclustering, co-clustering and subspace-clysers do not have this level of expertise and can only provide
tering algorithms [5, 13]. All of these approaches atteropt §, intuitive seed set.
identify clusters of objects in conjunction with the subskt A novel formulation of query-based biclustering is pro-
features in high-dimensional datasets to avoid the cursesgked, in this paper, to generalize previous approaches to
dimensionality. Although these methods have proven to&srse and very high-dimensional data. Combining low-
useful tools in exploratory analysis, most of these methogigiance biclustering techniques and Formal Concept Anal-
do not answer specific questions of interest and fail to :_YSis (FCA), theQBBGalgorithm is developed. We prove that
corporate prior knowledge and expertise from the user. @itistical dispersion measures that are order-preggiwin
example, biologists often know that specific sets of genes g(;ce an ordering on the set of biclusters; consequently, thi
related to shared biological functions or pathways. Basedgrdering is exploited to mine query-based biclusters infan e
this prior knowledge, experts may want to enlist additionfitient manner. Additionally, we capitalize on this orderin
genes involved in that function in a microarray data [/ identify neighboring biclusters that admit minimal revis
In the domain of information networks, consider a netwolihen joining the clusters. In this manner, biclusters may be

combined to enhance query results while still centering on
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e Novel formulation of query-based biclustering (and binodel. Another method in this category is an earlier ap-
clustering in general) through a combination of lowproach, namely, the Iterative Signature Algorithi®A ) [4]
variance biclustering and Formal Concept Analysis. imhich utilizes the mean expression profile of the seed set
this formulation, we prove that order-preserving statis initialize the biclustering. Biclusters are then defirzed
tical measures of dispersion can induce an ordering tfized points with significant over or under expressi¢®A
permits efficient mining. does not deal with missing values, making it highly unlikely

to be effective with sparse data. In addition, the algorithm

e Development of th@BBCalgorithm to efficiently mine s not purely query-based; there is no guarantee that a bi-
query-based biclusters and approximate their orderifgster does not completely drift away from the originaldsee
relation. TheQBBCalgorithm extends the seminaket. GeneRecommender [16] primarily focuses on prior-
CHARM23] algorithm (traditionally utilized to mine itizing genes, and hence requires additional post-praugss
closed itemsets) by making use of an original operaigeps to convert to a biclustering approa@DBwas shown
termed “range intersection”. to outperform botltGeneRecommender andISA on syn-

thetic data, while producing biologically relevant resut

¥8al data. More recenthRroBic was shown to be more

effective compared tt6A andQDB

o Experimental study with six real-world datasets froma S€Mi-supervised clustering has mainly been character-
wide range of real-world applications and performanéed by constraint-based mono-dimensional clustering [3]

comparison of the results with existing state-of-the-ahich is a well-investigated research topic. In these works
approaches. pairwise constraints on objects such as “cannot-link” and

“must-link” are utilized to integrate domain knowledge and
Following a review of existing works in Section 2, thdhus improve the quality of the clustering solutions. Few
theoretical clustering formulation is described in Setto methods have extended such constraint-based formulations
Section 4 describes th@BBCalgorithm, while Section 5 {0 €ven biclustering settings [18, 20, 15]. However, thespr
presents the results of our performance experiments.Ifindfm is substantially different from the problem that we are
Section 6 offers concluding remarks, shortcomings, afieldressing in this papethe query seed set provided as in-

e Formulation of two data-driven evaluation measur
that capture the notion of coherence in biclusters.

avenues for future work. put does not impose an explicit constraint, rather, it repre
sents a user preference which may infact be ignored by the
2 Related Work algorithm if such a set is determined to be incoherent.

Recently, some preliminary efforts have been made to

Existing works that are most relevant to the proposed Wtend closed pattern and association rule analysis tosicl

proach fall into three categories: (i) bio-inspired quer){érin

. . - y . . N g and multi-way clustering of real-valued data [17].12
based blclusterlng, (i) seml supe.rwsed _cluster_lng, i The advantage of these methods is the ability to exhaugtivel
pattern-based biclustering. In this section, prior wonks i

. ; X search the set of biclusters and locate smaller and finam grai
each of these categories are succinctly summarized.

As mentioned in the introduction, query-based biCIugl_us;ters often missed or masked by other methods. The pri-

tering methods have been developed in the bioinformatfrggt%glsi(:\eliggﬁge (r)(f)r?ifki)tiftilren ffnieiggéﬁfgggtal%g?;zm
community. The two works that are most relevant to the p b yp b :

ro- L :
posed one ar@roBic  [24] andQDB[7] algorithms. QDB Jress this issue, both [17] and [12] apply order preserving

) i . o disipersion measures allowing efficient pruning of the dearc
encompasses a Bayesian framework in which a conditiona

HDORATENS: L ... ~space. In this work, we build upon and extend the theoret-
maximization is utilized for model estimation. Intuitiyel : . . ; .
: ! . - ical foundation of pattern based biclustering. The notibn o
biclusters are defined as sub-matrices of the original matri . . g R .
. . .-an ordering preserving statistic is explicitly introdueettl is
whose expression values are modeled by a bicluster dis - Ven that in addition to permitting effective pruninacku
bution as opposed to a “background” distribution (the rest P 9 P g9e

of the data). Domain knowledge is encoded in the form %Sqatlstlcs impose an ordering upon the set of biclusters. As

prior probability distributions. Finally, a resolution eep real-world data is typically dominated by a small number of

. . . . very strong bicl rs, this ordering is critical in fatztin
method determines the ideal resolution that biclusteralsho. YSt ong b_c uste S’.t S o_de gisc tica ating
: . . the identification of neighboring biclusters to a seed sat th
be displayed at. In our method, we believe the issue of res- ) :
: . . nhance the final result. Finally, [17] and [12] measure co-
olution sweep is naturally addressed by making use of a pi-

cluster ordering. Th@roBic method, which is a follow erence of biclusters through comparison of the range to a

) - .. constant user-selected threshold. In this work, we intcedu
up to QDB is conceptually similar but adapts a probabilis- - .
) . . . wo original data-dependent measures for the evaluation of
tic relation model as an extension to the Bayesian frame-
. . . . . Oherence.
work. Hard assignment of biclusters is assigned with the

Expectation Maximization (EM) algorithm used to learn the



3 Clustering Formulation DerINITION 3. GivenK = (G, M, K), consistency func-

A contextK = (G,M,K) is a triple whereG andM tion f, dispersion measuré, and query se) C M (dually
are sets of objects arl{ is a |G| by M| matrix relating @ € G), then /anldeal qu/ery—based bicluster of K is an
the objects ofG and M. We assume that if an object-concept(,Q’), whereQ’ 2 Q.

g € G is not related to object: € M thenK[g,m] = |nreal datasets, we expect the structure and nature of guery
—oo. K may also be thought of as the adjacency matiyased biclusters to be highly sensitive to the choicesarid

of a bipartite graph with vertex set& and M and edge r Non-stringent measures cause biclustering algorithms to
set{(g, m)|K[g,m] # —oo} and edge weighting functionmask or miss small but relevant biclusters [17]; on the other
w(g,m) = Klg,m]. I'(g) denotes the set of adjacenhand, too stringent parameter settings may cause the algo-
vertices tog (dually I'(m)). An object-setG or M is @ rithm to conclude that a query set is incoherent and thus will
subset of objects frontx or M. A subspaceis any pair not return any bicluster. As a result, given a query we do
of object-set¢G, M) which also maybe thought of as a subnot expect to locate an ideal query-based bicluster due to
matrix K[G, M]. A query setis any object-sef/? (dually the resolution problem. We propose a computationally ef-
GY) thatis input by a user queryirig. GivenM“, ourgoalis ficient scheme to account for the parameter selection prob-
to identify a subspacg~, M), whereM 2 M1, that exhibit |em that does include varying parameter settings. We advo-
consistent values across the rows (columnsKot:, M]. cate setting stringent parameter settings and utilizingrse

In the terminology of biclustering [13], the desired resufimall, localized and similas-concepts to construct larger

is to produce constant value biclusters in terms of roygery-based biclusters that still center around the qiwey.

or columns with the given constraint of a user query sghow in the sequel that utilizing order preserving dismersi

In order to quantify consistency of values in a subspaggeasures induce an ordering on the set-@bncepts in the
statistical measures of dispersion such as standard @eviaijata. In turn, this ordering is exploited to identifyconcept
inter-quantile range, range, and mean difference areedli neighborhoods that consist of similarconcepts centered
For a given query sed/?, the supporting setof M? are zround the query set.

those objects ilx that are jointly adjacent td/? and exhibit

consistent values. Formally, defides a dispersion measures 1 Formal Concept Analysis As applied to binary rela-
that maps a subspacér, M) — R. Moreover, define a tions, Formal Concept Analysis (FCA) stipulates that tselu
consistency function f, that serves as a standard on whdrs in binary valued data (maximal bi-cliques) are ordered
constitutes a consistent subspage; (K, g,M,a) — R, pythehierarchical order [10]. In this section, we prove that
where a is a user-selected parameter. Figure 2 displaygs ordering also applies ta-concepts given that the dis-
several dispersion and consistency functions. persion measures and consistency functions adhere tincerta

DEFINITION 1. Given K = (G, M,K), query set)¢, Ordering properties.
and user selected parameter the supporting set of M?, DEeFINITION 4. Givena-conceptg Gy, M) and (Ga, Ms),
denoted ag)} (M?), is defined as then (G, M;) < (G, My) if and only ifG; € G» and

My, O M. This ordering relation is referred to as the
{9 G | T(g) € M*nd(K[g, M) < f(K,9, M, @)} hierarchical ordering.

where f is a consistency function and d is a statistical Undoubtedly, the selected dispersion measure and consis-
measure of dispersion. tency function determine if the set afconcepts are in fact

A general definition for a constant valued bicluster follom%rdered by the hierarchical ordering.

naturally from the supporting set formulation. DEFINITION 5. d is order-preserving ifd(K[g, M]) <

DEFINITION 2. GivenK = (G, M, K), consistency func- d(Klg, M Um]), wherem € M\ M

tion f, dispersion measuré, and parametery, a bicluster DEFINITION 6. f is anti-monotone iff(K, g, M,a) >
or a-concept of K is a subspacéG, M) such that K, g, M Um,«), wherem € M\ M

1 Y§(M) =G Clearly, if d and f are order-preserving and anti-monotone
AP - o S
2. There does not exist € M \ M such thati:$ (M U theny (M7) is falso anti-monotone; this in turn |mplles 'Fhat
m) = G a-concepts defined in terms of an order-preserving disper-
' sion statistics and anti-monotone consistency functioas a

" _r . he hi hical :
The second condition of Definition 2 is referred to asdioe ordered by the hierarchical order

sure condition, which ensures that the maximum number ®8HEOREM 3.1. Given a contexK, «, d, and f, then ifd
rows (columns) have been included in the bicluster withoamd f are order-preserving and anti-monotone respectively
violating the consistency conditions. thea-concepts oK are ordered by the hierarchical order.



Name | Computation | Order Preserving?
Range r(K[m,G]) = max K[g, M| — min K[g, M] yes
Standard Deviation o(K[m,G]) no
Inter-quantile Range Q3(K[m, G]) — Q1(K[m, G]) no
: M M)
Mean difference | iy SMISMEK g, m,] — K(g, my]| no
- - o(K[g,M])
Coefficient of variation TR no
Q3(K[g,M])—Q1 (K[g,M])

Quartile coefficient Qs (Rlg. MDTO1 (Rlg. M)

(a) Dispersion Functions

Name | Computation | Anti-monotone ?
Constant threshol f(K,g.M,a) =c yes
Min range f(K, g, M, ) =minK[g, M] yes

Figure 1: Noisy region induced by combining two neighbor- (b) Consistency Functions

ing concepts
Figure 2: Dispersion and consistency functions

Proof. See Appendix.
In Equation (3.1), the fact that is order preserving

FCA stipulates that concepts ordered by the hierarchibalunds the left hand side ratio inside the summation to 1.
order form a complete lattice; therefore we conclude thBlte right hand side term,, is introduced to account for
the set ofa-concepts also form a complete lattice. Thgparse data. In the case tftis full (K is a complete bi-
a-concept lattice forms the basis for definimgconcept partite graph) ther, evaluates to 1 and the ratios are simply
neighborhoods. summed up. On the other hand, if the rég, M> \ M|

contains missing values, then a penalty term is proportipna
3.1.1 Neighboring ConceptsConsider conceptsimposed on the ratio. Finally, the consistency ratios are
(Gy, My) and (G, Ms) such that(G1, My) > (G2, Ms). averaged over the total number of rows in the join of the
If there is no concep(Gs, Ms) fulfiling (Gi,M;) > concepts.
(Gs, M3) > (G2, M) then(G4, M) is anupper neighbor
of (G2, M>); dually (Gs,Ms,) is a lower neighbor of THEOREM3.2. Foranya-concept(Gy, M), then
(G1,M,). For any concept’, its set of upper neighbors .
is denoted a&(Cy). Intuitively, neighboring concepts are (GZ,EE§§ZT7Ml)dlSt((G1’ My), (G, Ma)) € T(Gr, My)
assumed to be similar. This intuition has been formalized
and exploited to extract knowledge in binary contexiyoof. See appendix.
[1, 14]. In terms of query-based biclustering, neighboring

a-concepts provide a mechanism to explore and combifigeorem 3.2 provides a theoretical basis for combining
closely relatedx-concepts in order to enhance or broader{bighboringm-concepts to form a query-centered bicluster.

a seed bicluster. We formally show that combiniag

conceptCy = (G1, M) and any upper (lower) neighborz 5 pispersion and Consistency Functiongigure 2

Cy = (G2, My) will result in the minimal degree of incon-gpgys several standard statistical measures of dispersion
sistency among all possible pairings of largeconcepts. gjong with some select consistency functions that have been
Figure 1 depicts the result of combining-conceptCy ilized recently in biclustering algorithms [17, 12]. Aarc

and an upper neighbo€>. By definition, the values pe seen, the only dispersion measure that is order-pregervi
encompassed by, and C; are consistent, however, thgs range, which justifies its use previously. Unfortunately
values induced by the difference betwe€pandC; may yange is not a robust statistic; nevertheless, its use aperd

not be (noisy region). One possible measure of dissimflariioy measure is justified because it is order-preservingtand
between twoa-concepts is the degree of inconsistengy,nds the standard deviation as follows:

introduced by the noisy region when combining the two

a-concepts. Given below, thé st score assesses the dig3.2)
similarity by computing the ratio of the consistency fupati
as measured in the original concept to the noisy region.

2 x o(Kl[g, M]) < r(K[m, GI)

Furthermore, relatively few consistency functions exise-
vious methodologies have simply imposed hard thresholds.

dist((Gy, M), (G2, Ma)) =

1 3 d(Klg, Ma \ M;])
|G1\ G2 e NCa d(K[g, M2])

(3.1)

X 8¢

where

sg=1+[(I'(g) N Ma) \ M|

In the sequel, two novel data-dependent, anti-monotone con
sistency functions are developed.

3.2.1 «-sigma Consistency FunctionGiven
K = (G,M,K) assume that the rows and columns of
K are i.i.d and normally distributed. That is, for glle G,
K[g,M] is normally distributed witho(K[g, M]) and
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Figure 3: Concepts of a sample data matrix

w(K[g,M]) respectively. The 3-sigma rule states thalriance unbiased estimator of the end points is the maxi-
about 68.26 % of the values for eatfg, M] lie within mum spacing uniform estimator given as follows:
a single standard deviation of the mean while 95.44 %

of the values lie within two standard deviations from th@gﬁ) 4 = 17 Tn
mean. Hence, randomly selecting query object-&&t n—1
the majority of values in the subspa&€[g, M| are also (3.7) jp o= Mn—T1
expected to lie within theu(Klg, M]) + 20(K[g, M]) n—1

with meanu(K[g, M]) and standard deviationK|g, M]). . o .
A subspaceK[g, M] where o(K[g, M]) < o(Klg, M) Clearly, the end points pf the distribution can be estimated
zing only the end points of the sample; hence, the range

indicates that the values in the subspace are more cor‘[sislfil"g distributi 50 b X dasa Th :
than expected. This can be generalized to subspaces whEfae distribution can also be estimatedhasa. The actua

a x o(K[g, M]) < o(K[g,M]), wherea > 1; then the range can then be compared to an estimated range as follows:
«a-sigma consistency function is formulated as

b—a < alb—a)
ax U(K[ga]\/ﬂ) < o(Klg, M]) nfl":lxl - m;l:f" < alb-a)
(3-3) a? < o(Klg,M]) Ty —x1+n(ry —21) < a(n—-1)(b-a
(3.4) ry < 20(K[g, M]) Tp—x1 < an—1)0b-a)—n(x, —2x1)
a

wherer, denotesr(K[m,G]) and equation (3.3) follows BY the above reasoning, a subspacgg, M| is considered

from the stringent assumption imposed by inequality (3.2)consistent if its maximum space estimated range isnes
smaller than the range of the distribution.

DEeFINITION 7. For contextK = (G, M, K) and given sub- .
spaceK[g, M], thea-sigma consistency function is defined?EFINITION 8. For contextk = (G, M, K) and given sub-

as spaceK]|g, M], the maximum spacing uniform estimator
90 (Kla. M consistency function is
@5 f(K.g M, a) = 2ZEEM) (3.8)
a f(K,g,M,a):a(|M|*1)7’(K[g,M])f|M|7’(K[g,M])

Thea-sigma consistency function is clearly anti-monotone.

Clearly the maximum spacing uniform estimator consistency
3.2.2 Maximum Spacing Uniform Estimator A 1ess fynction is anti-monotone.
stringent consistency function may seek subspaces whose
range isa times smaller than the range of a uniformly disExampPLE 1. Consider the data matrix in Figure 3(a).
tributed random variable. Assume that the rows and colunmfige a-concept lattice of the data is depicted in Fig-
of K are i.i.d and uniformly distributed with end pointaire 3(b) utilizing thea-sigma consistency function with
max(K[g, M]) andmin(K|[g, M]). Let{z1,...,2,} bean o = 3. Figure 3(c) displays a heat map of the concept
ordered sample from uniform distributidfi(a, b) with un-  ({g2, g6}, {m1, m2, m3}).
known endpoints: andb. A known uniformly minimum
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Figure 5: Prefix based search for concepts
Figure 4: Overview of QBBC algorithm

equivalence classes in order to break up the search tree into
. independent sub-problems. Viewing any objec3&t @ as

4 QBBC Algorithm a string, two object-sets are in the same prefix-class if they
4.1 Overview Figure 4 describes the main steps of théhare a common-length prefix. Each node of the tReeep-
QBBCalgorithm. Initially, an ideal query-based biclustefesents an object-sét C @ and associated supporting set of
is sought for the given query s&@ C M (steps 2-3) p_Any node of the search tree with a non-empty supporting
by enumerating alb-concepts in the sub-matriK[G, Q]. set is either am-concept or a non-closag-concept. For a
Exact details of the search and enumeration procedure g{&n nodeP, the next level of the search is generated by
presented in Section 4.2. If an ideal bicluster is locateeiyt computingy¢ (P U P, for nodesP, located to the right of
the closure of that bicluster is computed in the full matri} ynger the same branch. For example, in Figure 5 con-
and the algorithm is terminated. In the more likely scenarigyer node(m1, m2}. Only node{m1, m3} is located to the
that an ideal bicluster is not found, th€@BBCretains the right of {11, m2} under the same branch; hence, the next
a-concept,(G, M), with most query objects. NexQBBC |evel of the search tree consists of nddel, m2, m3} and
assumes thap is a coherent query set, but an ideal biclustgpporting set)¢({m1,m2,m3}). Moreover, the order-
was not located due to the resolution of the consistengserving and anti-monotone propertiesiaind f ensure
function. Theorem 3.2 stipulates that if the query@ewas  that the search tree may be pruned when an empty support-
indeed coherent, then the objects in the query set not foyrg set is encountered. Computiag (P U P,) is a matter

in (G, M) would appear inx-concepts in the neighborhoodf igentifying the supporting objects common to bétrand

of (G, M). Hence, guided by Theorem 3.2, the t8p p_with the added restriction that the common supporting
upper neighbors, ranked in ascending orderdayt, are gpjects also contain consistent values; hence, we inteduc
augmented tdG, M) to form the bicluste(&, M"). At new operatorrange intersection Given two object set#

incoherent with the current bicluster, hence, a new qugrYersection as:

set is formed as) \ M" (step 6). The entire procedure is

repeated with the new query set urd@lis empty or noa- Y*(PUP,)=5M85,

concepts are enumerated in step 2. In the sequel, we describe s ¢ 5 5, |d(K[s, PU P,] < f(K,s,PU Py, )}

the algorithmic and implementation details for completing

steps 2, 3 and 4 by taking advantage of the propertieswdfered is the range dispersion function. A naive strategy

order-preserving dispersion measures and builiding upento identify a-concepts is to simply enumerate the entire

seminalCHARNMlgorithm for closed itemset mining. prefix-based search tree. On the other hand, several closed
itemset enumeration algorithms follow this strategy with

4.2 ldentifying a-concepts Step 2 ofQBBCcalls for enu- additional pruning steps that vastly shrink the searchespac

meratinga-concepts in the sub-matri<[G, Q]. The search We exploit the main theorem guiding the seminal closed

space for this task is formulated as a prefix tree as shoiem set enumeration algorith@HARMwhich offers further

in Figure 5. Recalling the dataset presented in examplgportunity to prune the search tree by investigating the

1, Figure 5 depicts the search tree for query Qet= result ofq/)j;(P U P.) when generating the next level of the

{m1,m2,m3}. The tree utilizes the idea of prefix-basedearch tree. Given thdtis defined to be a constant, the



sigma function, or the maximum spacing uniform estimator |npyt: Prefix nodeP P, supporting ses;
and the range dispersion function is utilized, we prove that Resylt UpdateP P, by its closure
the CHARMheorem is in fact generalizable teconcepts. Result Prune search space
THEOREM4.1. Given the range dispersion functiahand 1 bR:Silalt Compute children of”F; at this branch
consistency functiorf that is either constant, the-sigma 5 gC Y
function, or the maximum spacing uniform estimator then Il child,ren
the following holds: LetP P, and PP, be two nodes under 3 B« {(PP!,S}) (PP", 5™}
the same branch in the search tree wittP, located to the I/ nodes t’;)’ tﬁe’ 'r.iéin romrsle
right of PP,. Moreover letS; and S, be the supporting sets i ; ;
X . 7 K2 K2 7 <
of PP, and PP, respectively. Given that 4 %‘Z :—Igiglj)l% 5r) ¥se S, dK[s, PR]) <
3 ;
1. For any prefix nodé’ P, under the same branch 5 for (PP,,S,) € Bdo
Vse S, d(K[s,PP,]) < [EsPPeo) 6 58, 5,18 ;
7 if |SS,.| =S| A|SS] =S| then
2. 88=5N8,.#10 8 P+~ PUP,;
) ) 9 if flgthen
then the following properties hold: 10 L Remove(PP,, S,) from tree ;
1. If|SS| = |Si| A |SS| = |S,| then every occurrence off 11 else if|SS,| = |S,| then
PP, maybe replaced by P, U PP, and the nodePP, | 12 L P+ PP,UPP,;
and all its children may be pruned from the search treg, 5 else if|SS,| = |S| then
2. If |SS| = |S,| then every occurrence d? P, may be 1: ?;Q%EH(PPZ VPP, 85
replaced with?1 U P 16 | Remove(PP,,SS,) fromtree ;
3. If |SS] = |Si| then every occurrence dPP, and its | 47 else
children maybe pruned from search tree, but a new chjldg L C «+ CU(PP UPP,,SS,);
nodeP P,UP P, must be formed with the supportingset | L

w?(PPl UPP). Algorithm 1: A single search step correspoding to a

. If|SS] # |Si1|A|SS] # |S,| then no condensation of the single branch

search tree is possible and new child nadé&, U PP,

with supporting set)¢ (PP, U PP,) must be formed. ) . .
PP gsety(Ph ) As pointed out in [23] checking for each of the four cases

during is a constant computational cost due to the fact that
set intersection must be computed to generate the next level
of the search in any case. Computing range intersection of

The actualization of the above theorem yields thré&PPOrting sets; and.S.. is performed inO(|S]) time as it
important outcomes: 1) computing the closureRaf;, 2) €ntails setintersection and a constant time operationrto co

several possible condensations of the search tree, and®u range if the indices of maximum and minimum elements
enumerating the children @t P,. are maintained throughout the search. Augmenting Theorem

4.1 with the range intersection operation, a procedurerte ge
erate children prefix nodes and prune the tree at any branch
nodesP, = {ml,m2}, P, = {ml,m3} along with of the search tree is given in Algorithm 1.The procedure is
supporting sets; = {g2, 93, g4, g5, 96} andS, = {g2,¢96} an exactimplementation of Theorem 4.1.

as depicted in Figure 5. Condition 1 of Theorem 1 is satisfied

due to the fact that no other prefix nodes exist under thHi2.1 Closure and Upper NeighborsComputing the clo-
branch. Letf be set to the:-sigma consistency function withsure of a subspadé-, M) (step 3 ofQBBQ is accomplished

a = 3thenSS = 5,18, ={g2, g6}, hence condition 2 is by applying a single step &@HARMvhere M is the prefix

also satisfied. In this cagé'S| = |S,|, hence case 2 of thenode and objects:, € M \ M constitute nodes to the right
theorem is applied an®, is replaced by{m1, m2, m3}. In of M. A similar strategy is utilized to determine the upper
effect, the closure of the subspacg, P,) is computed and neighbors of(G, M’) (step 4); in this case two rounds of
the need to form a new child in the search tree is eliminat€iHARMre applied. Unfortunately, applyinGHARNN this
resulting in computational savings. manner does not guarantee the exact set of upper neighbors

Proof. See Appendix.

ExamPLE 2. Consider the branch under nodenl1} with



Name Domain Size Density | Num.classes . 1. _

= Bag ofwords | L9950 X 2L258] 0.008 > at http://faris alqadah.heroku.com. .The«a pa

allpe Bagofwords | 4,966x26,323| 0.001 5 rameter was set to 3 on baBBC-sigma andQBBC-max
allsci Bagofwords | 3,975x 30,440 0.001 4 and both methods were set to augment initial query clus-
papers | Information network| 28,564 x 16,891 0.0003 4 . . . .

emap Microarray 3.300x 3,300 | 0.113 na ters with the top 20 neighbors in theconcept lattice. At
hughes Microarray 4,684 x 300 10 na the time of this writing, no implementation was available fo

Figure 6: Six real-world datasets used in our experimentPrOBiC - AlthoughQDBis designed to handle datasets with
: ﬁw‘issing values, when attempting to find query based biclus-
ters in the sparse datasets of this study (all’ujhes), no
in thea-concept lattice; rather, a superset of the upper neidficlusters were ever produced. This may be due to the ex-
bors may in fact be enumerated [23]. On the other haritkme sparsity levels affecting the probabilistic modeltth
Theorem 3.2 guarantees that the top ranked concepts in@i2Bis based upon. As a result, when executpB the

generated set are upper neighbor§@fA/'). sparse datasets were filled in with randomly generated val-
ues or zeros. In effect, this created a background distoibut
5 Experimental Results from whichQDBshould discern actual biclusters.

5.1 Datasets and evaluation criteriaSix real-world

datasets were used in our experimental study and are lideqy Cluster quality The first evaluation criterion utilized

in Figure 6. The first three datasets came from the Iaﬁ%@s mean square error (MSE) as given by Cheng and Church

20Newsgroups dataset [2papers [21] is a subset of the
DBLP database linking authors with paper titles, antup
[19] andhughes [9] are both microarray datasets.er rep- 1M SE(G, M) =

resents the news feeds from the Middle East politics and Re- B . 2
ligion forum, allpc is a combination of all news feeds per- |G||M] Z (Klg:m] = pug.ar = pcsm + pc.an)
taining to computers, andiisci is an aggregation of doc-

uments associated with science. In all text-based datas\gh;ereumM is the mean of thg'” row underM columns,

StOp words were removed and TF-IDF Welghts were COIpé_’m is the mean of thenth column respectively under
puted. For each dataset, two categories of seed sets Wg&ay rows anduq, s is the overall mean of the subspace.
constructed. The first category of seed sets was manug@lider this formulation the minimum value of MSE is 0
assembled and generally contained 2-5 objects per quefien all values in the subspace are equal. To accommodate
these objects were determined to be coherent. For exagjarse data, missing or non-edge values were either ignored
ple, inmer query terms such assrael, palestine} formed or computed as usual with the missing values filled by
a query while inpapers the terms{query, optimization} the generated background distribution; the best resudts ar
were utilized. Foremap andhughes, query genes were asteported here. Average purity of a set of biclusters=
sembled by consulting the Biological Process hierarchy Qic, ary),... (G, M,)} and set of class labels =

geG,meM

the Gene Ontology [8] and only those sets that were anng;, 1, }is defined as

tated by the same functional class were retained. The second

category of seed sets consisted of randomly selecting tsbjec 1 | My, N L]
from each dataset; typically 10-50 objects were selected pe Ic| zk: max M|

query. A total of 10 manually created and 50 random queries
were generated for each dataset. Evaluation of our expgfinther words, each cluster is assigned to the class which
mental results was based on three criterion: is most frequent in the cluster and the purity measure is
1. Evaluation using mean square error to measure gmputed as the precision o_f the clust_erwith respect to this
cluster quality. class;_ the average of the_purlty scores is then _computed.
Figures 7(a)-7(c) displays the distribution of MSE
2. Average purity of biclusters using class labels avadlaldcores for biclusters mined with both manually created and
in most of the datasets. randomly generated query sets. In sparse data (Figures 7(a)
7(c)) theQDBcluster MSE scores were strikingly larger than
those of bothQBBCmethods. This trend is explained by
For comparison, we used the R implementation dfe fact thaQDBtended to produce very large clusters even
QDB available athttp://homes.esat.kuleuven. when a small seed set was input. For example, a seed set
be/ ~kmarchal , with the default parameter settings. Thi mer contained only two terms, y&DBreturned a clus-
QBBCalgorithm was implemented in C++ with both the ter containing 10,256 words and 1,600 documents. Clearly,
sigma QBBC-alpha ) and maximum spacing uniform esthe extreme sparsity levels of these datasets confound the
timator consistency functionBBC-max and is available QDBalgorithm and it is unable to discriminate between the

3. Visual assessment of cluster quality.
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Figure 7: MSE distributions of query-based biclusters \BBC and QDB

background distribution and high quality query centered bi Sample clusters mined by algorithms are depicted in
clusters. These facts illustrate the clear advantag@BBC Figure 8. Visually inspecting these Figures, biclustensedi
in sparse high-dimensional data; nonetheless, both methiog QDBand QBBC(Figures 8(a) and 8(d)) appear to be of
have similar performance on standard non-sparse micgoagsemilar quality. On the other hand, once again, biclusters
data (Figure 7(c)). The lack of variance in MSE scores pfoduced byQDBin sparse data (Figures 8(b) and 8(c))
clusters produced b@BBC-maxin hughes was attributed are clearly less informative compared to those mined by
to the uniform distribution assumption; all queries resdlt QBBC(Figures 8(e) and 8(f)). These images manifest the
in similar biclusters indicating that this consistencydtion ability of QBBCto filter out the background distribution
is more suited to sparse data. and zoom in on query-centered biclusters in both sparse
Figures 7(d)-7(f) display the relationship between MS&hd dense datasets. Figure 8(g) illustrates a sampling of
scores of the initial query sets and the final biclusters. Thenually created query sets and the resulting word clusters
score of the query set was computed as the MSE of timegeneral, the resulting biclusters contained most of the
subspace encompassing the query set in conjunction withoalgjinal query set and greatly expanded the cluster to delu
the rows (or columns) of the dataset. Random seeds timatstly pertinent terms with a few noisy terms. The most
lead to no cluster being enumerated are not displayed. daherent bicluster came fropupers; an argument can be
can be seen, bol@BBCalgorithms’ bicluster scores tend tanade that all the terms in this bicluster are relevant, while
be lower than the query set whil@DBscores are higher.the entire seed set was preserved. This was expected as
As expected, the difference in seed scores and biclugtepers is extremely sparse and only contains paper titles.
scores are much closer for manually created query sémsthe case ofillsci, a much noisier dataset thaapers, the
Interestingly, for random query-sets, iQBBGscores tended terms hacker and checksum were dropped while several
to be orders of magnitude lower than those of the initinbisy terms were introduced.
query set. In most caseQBBCbroke down the random Finally, the average purity of all biclusters resulting
query and produced several biclusters that were consisfeoin manual query sets are presented in figure 8(h). Due
in a small subspace of the initial query set, witjiBBfailed to the inability of QDBto scale to the three larger datasets,
to do this. Once again, in all sparse datasets the perfoengnepers, allpe, andallsci, the average purity scores were
of the QBBCalgorithms is clearly superior tQDBwhile the computed by repeating experiments on small subsets of these
results are comparable ughes dataset. datasets with appropriate query terms and computing the av-
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Dataset | Seed set bicluster
databases semantic models based
analysis dynamic evaluation
systems information algorithms
papers | query optimization | query design xml database
distributed processing multi-
ple queries efficient relational
optimization temporal Dataset Algorithm Avg. Purity | Avg. num documents
algorithm cipher cryptography QBBC-sigma 089 28.125
states rsa signed plaintext free- mer Qng;gmax 833 gg;i
dom scheme text number exists OBBC-sigmal  0.60 514
cryptography men recover selected application allpe QBBC-max 0.54 66.2
allsci | hacker checksum| create united versions comments QDB 0.24 838
algorithm cipher archive included documentation QBBC-sigma 0.75 194
approved attempt licensed inter- allsci Qngémax 8-2755 8024625
net broad claimed recommended OBBC-sgma 073 T05.8
newsgroups i papers | QBBC-max 0.72 103.2
arab palestine israelis israel is- QDB 0.31 1021.2
raeli opposition zionist ground (h) Cluster purity
zionism international peace prob-
. . lem state wrote meant states hu-
mer israel palestine .
man feel necessity statements cre-
ation guess occupation statemen
forms disregard refers minister
racism fully intervention

(g) Sample seed sets and corresponding bicluster

Figure 8: Sample clusters and precision-recall of clusters

erage. Each experiment was repeated ten times on the sammber of documents in each cluster.

pled dataset with all algorithms and the average purityescor

being reported. QBBC-sigma and QBBC-maxproduced 5.3 Performance TestsPerformance tests were conducted
clusters with approximately the same purity levels. Due to evaluate the practical running time and scalability of
the large size oQBDclusters, the purity scores are near ratihe QBBC All experiments were conducted on a 3.33 GhZ
dom. On the other hand, ti@BBCscores were not inducedntel 17 quad core CPU with 16 GB of RAM. Due to its
by extreme cluster sizes as is demonstrated by the averag@ementation in RQDBscaled extremely poorly in the
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Figure 9: Performance comparisons between QBBC and RAPRithgts.

case of the three largest datasets and ran out of memory diai@, QBBChas a clear advantage over the current state-

16GB main memory machine in every instance. On the otlodrthe-art query-based biclustering methods while simila

hand, the memory requirements@BBCnever exceeded 10performance was observed on standard microarray datasets.

MB. Moreover, running times on these datasets exceededvioreover, we illustrated that the pruning measures intro-

hour even with query sets containing fewer than 5 objecatiiced in theQBBCalgorithm resulted in significant compu-

In order to conduct a more fair comparison, and evaludétional savings compared to bafDBandRAP. Shortcom-

the true effectiveness of the pruning rules introduced,ave ings of QBBCinclude the inability to compute exact neigh-

implemented)BBGpecifying it to enumerate all-concepts bors of a bicluster in the concept lattice. We believe that

in an entire dataset; we compared the running timestkos fact leads to significantly higher computational cast e

the state-of-the-art pattern-based biclustering algorRAP pecially in dense datasets. Moreover, no data-driven-crite

on all datasets. An implementation 8APin C++ was rion was derived for determining if and when neighboring

downloaded fronhttp://vk.cs.umn.edu/gaurav/ biclusters should be merged to enhance the seed bicluster.

rap/ . Dueto space limitations, only the results of two of theinally, additional order-preserving dispersion methadd

performance tests are displayed in Figure 9. The min raraggi-monotone consistency functions should developeatin f

supportis a user defined parameter instructing the algosithture in order to accommodate some specific application de-

to only retain clusters with a minimum degree of supportimgands.

sets. Due to min range support also being anti-monotone it

can also be utilized to prune the search space. As shdwgferences
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Proof of Theorem 3.1

Proof. Let (G1, M1) and (G2, M>) be a-concepts ofK, such thatMy O M;.
Assume thatG's Z G'1. Two cases arise:

1. G2 D G1.Inthiscasedg € G2 \ G1 s.t.

d(K[g, MQ]

) f(K, g, M2, a)
d(Klg, Mz])

f(K, g, My, a)

< 4,
<

formation of a subspace involving P,. but not P P; is possible hence both
nodesP P; U P P,. and P P,. must be maintained.

. |SS| = |S;]. Inthis caseS; D S, and the subspades'S, PP, U PP;.)

is consistent by definition of range intersection. By therdgdin of closure
and as shown above every consistent subspace invalviRg will also involve

P Py, thereforeP P, and its children maybe pruned. On the other hand, the
formation of a subspace involving P, but not P P,. is possible hence both
nodesP P, U P P,. and P P, must be maintained.

No pruning possible, hence new nodes must be formed.

)



