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Abstract—In this era of data abundance, it has become critical to process large volumes of data at much faster rates than ever before.

Boosting is a powerful predictive model that has been successfully used in many real-world applications. However, due to the inherent

sequential nature, achieving scalability for boosting is nontrivial and demands the development of new parallelized versions which will

allow them to efficiently handle large-scale data. In this paper, we propose two parallel boosting algorithms, ADABOOST.PL and

LOGITBOOST.PL, which facilitate simultaneous participation of multiple computing nodes to construct a boosted ensemble classifier.

The proposed algorithms are competitive to the corresponding serial versions in terms of the generalization performance. We achieve

a significant speedup since our approach does not require individual computing nodes to communicate with each other for sharing their

data. In addition, the proposed approach also allows for preserving privacy of computations in distributed environments. We used

MapReduce framework to implement our algorithms and demonstrated the performance in terms of classification accuracy, speedup

and scaleup using a wide variety of synthetic and real-world data sets.

Index Terms—Boosting, parallel algorithms, classification, distributed computing, MapReduce.
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1 INTRODUCTION

IN several scientific and business applications, it has
become a common practice to gather information that

contains millions of training samples with thousands of
features. In many such applications, data are either generated
or gathered everyday at an unprecedented rate. To efficiently
handle such large-scale data, faster processing and optimiza-
tion algorithms have become critical in these applications.
Hence, it is vital to develop new algorithms that are more
suitable for parallel architectures. One simple approach
could be to deploy a single inherently parallelizable data
mining program to multiple data (SPMD) on multiple
computers. However, for algorithms that are not inherently
parallelizable in nature, redesigning to achieve paralleliza-
tion is the only alternative solution.

Ensemble classifiers [1], [2], [3] are reliable predictive
models that use multiple learners to obtain better predictive
performance compared to other methods [4]. Boosting is a
popular ensemble method that has been successfully used
in many real-world applications. However, due to its
inherent sequential nature, achieving scalability for boost-
ing is not easy and demands considerable research attention
for developing new parallelized versions that will allow
them to efficiently handle large-scale data. It is a challen-
ging task to parallelize boosting since they iteratively learn
weak classifiers with respect to a distribution and add them
to a final strong classifier. Thus, weak learners in next

iterations give more focus to the samples that previous
weak learners misclassified. Such a dependent iterative
setting in boosting makes it inherently a serial algorithm.
The task of making iterations independent of each other and
thus leveraging boosting for parallel architectures is
nontrivial. In this work, we solve such an interdependent
problem with a different strategy.

In this paper, we propose two novel parallel boosting
algorithms, ADABOOST.PL (Parallel ADABOOST) and LO-

GITBOOST.PL (Parallel LOGITBOOST). We empirically show
that, while maintaining a competitive accuracy on the test
data, the algorithms achieve a significant speedup com-
pared to the respective baseline (ADABOOST or LOGIT-

BOOST) algorithms implemented on a single machine. Both
the proposed algorithms are designed to work in cloud
environments where each node in the computing cloud
works only on a subset of the data. The combined effect of all
the parallel working nodes is a boosted classifier model induced
much faster and with a good generalization capability.

The proposed algorithms achieve parallelization in both
time and space with minimal amount of communication
between the computing nodes. Parallelization in space is
also important because of the limiting factor posed by
the memory size. Large data sets, that cannot fit into the
main memory, are often required to swap between the main
memory and the (slower) secondary storage, introducing
latency cost which sometimes will even diminish the
speedup gained by the parallelization in time. For our
implementation, we used MapReduce [5] framework, which
is a popular model for distributed computing that abstracts
away many of the difficulties of cluster management such
as data partitioning, scheduling tasks, handing machine
failures, and intermachine communication. To demonstrate
the superiority of the proposed algorithms, we compared
our results to the MULTBOOST [6] algorithm, which is a
variant of ADABOOST and the only other parallel boosting
algorithm available in the literature that can achieve
parallelization both in space and time.
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The primary contributions of our work are as follows:
1) We propose a new parallel framework for boosting
algorithm that achieves parallelization both in time (sig-
nificantly reduced computational time) and space (large
data sets are distributed among various machines and thus
each machine handles far less amount of data). We achieve
this by making the parallel working nodes’ computations
independent from each other thus minimizing the commu-
nication cost between the workers during parallelization.
2) We provide theoretical guarantees of convergence for the
ADABOOST.PL algorithm. 3) We efficiently implement these
algorithms using MapReduce architecture on the Amazon
EC21 cloud environment and experimentally demonstrate
their superiority in terms of performance metrics such as
prediction accuracy, speedup, and scaleup.

The rest of the paper is organized as follows: Section 2
describes some of the earlier works related to our problem.
In Section 3, we propose our ADABOOST.PL algorithm
along with the proof of its convergence. Section 4 describes
LOGITBOOST.PL algorithm. Section 5 explains the MapRe-
duce framework and provides the implementation details of
the proposed algorithms. Section 6 demonstrates the
experimental results and shows the comparisons with
MULTBOOST. Finally, Section 7 concludes our discussion
along with some future research directions.

2 RELATED WORK

ADABOOST is one of the earliest and most popular boosting
algorithm proposed in the mid 1990s [7]. It’s simple
intuitive algorithmic flow combined with its dramatic
improvement in the generalization performance makes it
one of the most powerful ensemble methods. A clear
theoretical explanation of its performance is well described
in [8], where boosting in a two class setting is viewed as an
additive logistic regression model. LOGITBOOST is another
widely used boosting algorithm which is proposed using
additive modeling and is shown to exhibit more robust
performance especially in the presence of noisy data.

There had been some prior works proposed in the
literature for accelerating ADABOOST. These methods
essentially gain acceleration by following one of the two
approaches: 1) by limiting the number of data points used to
train the base learners, or 2) by cutting the search space by
using only a subset of the features. In order to ensure
convergence, both of these approaches increase the number
of iterations. However, as the required time for each iteration
is less due to smaller data (or feature) size, the overall
computational time by using such methods can be signifi-
cantly reduced. The basic idea of the former approach is to
train a base learner only on a small subset of randomly
selected data instead of the complete weighted data by using
the weight vector as a discrete probability distribution [7].
FILTERBOOST [9] is a recent algorithm of the same kind,
based on a modification [10] of ADABOOST designed to
minimize the logistic loss. FILTERBOOST assumes an oracle
that can produce unlimited number of labeled samples and
in each boosting iteration, the oracle generates sample points
that the base learner can either accept or reject. A small subset
of the accepted points are used to train the base learner.

Following the latter approach for accelerating ADA-

BOOST, Escudero et al. [11] proposed LAZYBOOST which
utilizes several feature selection and ranking methods. In
each boosting iteration, it chooses a fixed-size random subset
of features and the base learner is trained only on this subset.
Another fast boosting algorithm in this category was
proposed by Busa-Fekete and Kégl [12], which utilizes
multiple-armed bandits (MAB). In the MAB-based approach,
each arm represents a subset of the base classifier set. One of
these subsets is selected in each iteration and then the
boosting algorithm searches only this subset instead of
optimizing the base classifier over the entire space. However,
none of these works described so far explore the idea of accelerating
boosting in a parallel or distributed setting and thus their
performance is limited by the resources of a single machine.

The strategy of parallelizing the weak learners instead of
parallelizing the ensemble itself has been investigated earlier.
Recently, Wu et al. [13] proposed an ensemble of C4.5
classifiers based on MapReduce called MReC4.5. By provid-
ing a series of serialization operations at the model level, the
classifiers built on a cluster of computers or in a cloud
computing platform could be used in other environments.
PLANET [14] is another recently proposed framework for
learning classification and regression trees on massive data
sets using MapReduce. These approaches are specific to the weak
learners (such as tree models) and hence do not appear as a general
framework for ensemble methods such as boosting.

Despite these efforts, there has not been any significant
research to parallelize the boosting algorithm itself. Earlier
versions of parallelized boosting [15] were primarily
designed for tightly coupled shared memory systems and
hence is not applicable in a distributed cloud computing
environment. Fan et al. [16] proposed boosting for scalable
and distributed learning, where each classifier was trained
using only a small fraction of the training set. In this
distributed version, the classifiers were trained either from
random samples (r-sampling) or from disjoint partitions of
the data set (d-sampling). This work primarily focused on
parallelization in space but not in time. Hence, even though
this approach can handle large data by distributing among
the nodes, the goal of faster processing time is not achieved
by this approach. Gambs et al. [6] proposed MULTBOOST

algorithm which allows participation of two or more
working nodes to construct a boosting classifier in a
privacy-preserving setting. Though originally designed for
preserving privacy of computation, MULTBOOST’s algo-
rithmic layout can fit into a parallel setting. It can achieve
parallelism both in space and time by requiring the nodes to
have separate data and by enabling the nodes to compute
without knowing about other workers’ data. Hence, we
compared the performance of MULTBOOST to our algo-
rithm in this paper.

However, the main problem of these above-mentioned
approaches is that they are suitable for low latency
intercomputer communication environments such as tradi-
tional shared memory architecture or single machine
multiple processors systems and are not suitable for a
distributed cloud environment where usually the commu-
nication cost is higher. A significant portion of the time is
expended for communicating information between the
computing nodes rather than the actual computation. In
our approach, we overcome this limitation by making the

PALIT AND REDDY: SCALABLE AND PARALLEL BOOSTING WITH MAPREDUCE 1905

1. http://aws.amazon.com/ec2/.



workers’ computations independent from each other thus mini-
mizing these communications.

3 PARALLELIZATION OF ADABOOST

In this section, we will first review the standard ADABOOST

algorithm [7] and then propose our parallel algorithm
ADABOOST.PL. We will also theoretically demonstrate the
convergence of the proposed algorithm.

3.1 ADABOOST

ADABOOST [7] is an ensemble learning method which
iteratively induces a strong classifier from a pool of weak
hypotheses. During each iteration, it employs a simple
learning algorithm (called the base classifier) to get a single
learner for that iteration. The final ensemble classifier is a
weighted linear combination of these base classifiers where
each of them casts their weighted “votes.” These weights
correspond to the correctness of the classifiers, i.e., a
classifier with lower error rate gets higher weight. The base
classifiers have to be slightly better than a random classifier
and hence, they are also called as weak classifiers. Simple
learners such as decision stumps (decision trees with only
one nonleaf node) often perform well for ADABOOST [17].
Assuming that the attributes in the data set are real valued,
we will need three parameters to express a decision stump:
1) the index of the attribute to be tested (j), 2) the numerical
value of the test threshold (�), and 3) the sign of the test
fþ1;�1g. For example,

hj;�;þðxÞ ¼ þ1 if xj < �
�1 otherwise;

�
ð1Þ

where, xj is the value of the jth attribute of the data object x.
For simplicity, we used decision stumps as weak learners
throughout this paper, though any weak learner which
produces decision in a form of real value can be fitted into
our proposed parallel algorithm. From (1), the negation of h
can be defined as follows:

� hj;�;þðxÞ ¼ hj;�;�ðxÞ ¼ �1 if xj < �
þ1 otherwise:

�
ð2Þ

The pseudocode for ADABOOST is described in Algo-
rithm 1. Let the data set Dn ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞg,
where each example xi ¼ ðx1

i ; x
2
i ; . . . ; xdi Þ is a vector with

d attribute values and each label yi 2 fþ1;�1g. The algo-
rithm assigns weights wt ¼ fwt1; wt2; . . . ; wtng for all the
samples in Dn, where t 2 f1; 2; . . . ; Tg and T is the total
number of boosting iterations. Before starting the first
iteration, these weights are uniformly initialized (line 1)
and are updated in every consecutive iteration (lines 7-10). It
is important to note that, for all t,

Pn
i¼1 w

t
i ¼ 1. At each

iteration, a weak learner function is applied to the weighted
version of the data which then returns an optimal weak
hypothesis hðtÞ (line 3). This weak hypothesis minimizes the
weighted error given by

�� ¼
Xn
i¼1

wtiI
�
hðtÞ xið Þ 6¼ yi

�
: ð3Þ

Here, IfAg denotes an indicator function whose value is
1 if A is true and 0 otherwise. The weak learner function

always ensures that it will find an optimal hðtÞ with � < 1=2.
If there exists any h with � > 1=2 then according to (2), �h
will have a weighted error of ð1� �Þ which is less than 1=2.
Hence, the optimal weak learner will always induce �h
instead of h. This property of � having a value less than 1=2,
increases the weight of misclassified samples and decreases
the weight of correctly classified samples. Hence, for the
next iteration, the weak classifier focuses more on the
samples that were previously misclassified. At each itera-
tion, a weight (�t) is assigned to the weak classifier (line 5).
At the end of T iterations, the algorithm returns the final
classifier H which is a weighted average of all the weak
classifiers. The sign of H is used for the final prediction.

Algorithm 1. ADABOOST(Dn, T )

Input: Training set of n samples (Dn)

Number of boosting iterations (T )

Output: The final classifier (H)

Procedure:

1: w1  ð1n ; . . . ; 1
nÞ

2: for t 1 to T do

3: hðtÞ  LEARNWEAKCLASSIFIER(wt)

4: ��  
Pn

i¼1 w
t
iIfhðtÞðxiÞ 6¼ yig

5: �t  1
2 ln ð1�����

Þ
6: for i 1 to n do

7: if hðtÞðxiÞ 6¼ yi then

8: wtþ1
i  wti

2��
9: else

10: wtþ1
i  wti

2ð1���Þ
11: end if

12: end for

13: end for

14: return H ¼
PT

t¼1 �
thðtÞ

3.1.1 Computational Complexity

The computational complexity of ADABOOST depends on
the weak learner algorithm in line 3. The rest of the
operations can be performed in �ðnÞ. The cost of finding the
best decision stump is �ðdnÞ if the data samples are sorted
in each attribute. Sorting all the attributes will take
�ðdn lognÞ time and this has to be done only once before
starting the first iteration. Hence, the overall cost of the
T iterations is �ðdnðT þ lognÞÞ.

3.2 ADABOOST.PL

The proposed ADABOOST.PL employs two or more comput-
ing workers to construct the boosting classifiers; each of the
worker has access to only a specific subset of training data.
The pseudocode of ADABOOST.PL is given in Algorithm 2.

For a formal description of ADABOOST.PL, let Dp
np ¼

fðxp1; y
p
1Þ; ðx

p
2; y

p
2Þ; . . . ; ðxpnp ; ypnpÞg is the data set for pth worker

where p 2 f1; . . . ;Mg and np is the number of data points in
pth worker’s data set. The workers compute the ensemble
classifier Hp by completing all the T iterations of the
standard ADABOOST (Algorithm 1) on their respective data
sets (line 2). Hp is defined as follows:��

hpð1Þ; �pð1Þ
�
;
�
hpð2Þ; �pð2Þ

�
; . . . ;

�
hpðT Þ; �pðT Þ

��
;

where hpðtÞ is the weak classifier of the pth worker at the
tth iteration and �pðtÞ is the corresponding weight of that
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weak classifier. The worker then reorders the weak classi-

fiers, hpðtÞ, with increasing order of �pðtÞ (line 3). This new

ordering Hp� is expressed as follows:��
hp
�ð1Þ; �p

�ð1Þ�; �hp�ð2Þ; �p�ð2Þ�; . . . ;
�
hp
�ðT Þ; �p

�ðT Þ��:
If �pðkÞ ¼ minf�pðtÞjt 2 f1; 2; . . . ; Tgg, then �p

�ð1Þ ¼ �pðkÞ
and hp

�ð1Þ ¼ hpðkÞ. Now, the reordered hp
�ðtÞs are considered

for merging in the rounds of the final classifier. Note that the
number of rounds for the final classifier is the same as the
number of iterations of the workers’ internal ADABOOST.
However, the tth round of the final classifier does not
necessarily merge the tth iteration results of the workers. For
example, hðtÞ is formed by merging fh1�ðtÞ; . . . ; hM

�ðtÞg (line 6)
where, these weak classifiers do not necessarily come from
the tth iteration of the workers. The intuition of sorting the
workers’ weak classifiers with respect to their weights is to align
classifiers with similar correctness in the same sorted level. This is
a critical component of the proposed framework since it will
ensure that like-minded classifiers will be merged during
each boosting iteration.

Algorithm 2. ADABOOST.PL(D1
n1 ; . . . ; DM

nM , T )

Input: The training sets of M workers (D1
n1 ; . . . ; DM

nM )
Number of boosting iterations (T )

Output: The final classifier (H)

Procedure:

1: for p 1 to M do

2: Hp  ADABOOSTðDP
NP ; T Þ

3: Hp�  the weak classifiers in Hp sorted w.r.t. �pðtÞ

4: end for

5: for t 1 to T do

6: hðtÞ  MERGEðh1�ðtÞ; . . . ; hM
�ðtÞÞ

7: �t  1
M

PM
p¼1 �

p�ðtÞ

8: end for

9: return H ¼
PT

t¼1 �
thðtÞ

The merged classifier, hðtÞ is a ternary classifier, a variant
of weak classifier proposed by Schapire and Singer [18]
which along with þ1 and �1 might also return 0 as a way of
abstaining from answering. It takes a simple majority vote
among the workers weak classifiers:

hðtÞðxÞ ¼ sign
XM
p¼1

hp
�ðtÞðxÞ

 !
if
XM
p¼1

hp
�ðtÞðxÞ 6¼ 0

0 otherwise:

8><
>: ð4Þ

The ternary classifier will answer “0” if equal number of
positive and negative predictions are made by the workers’
weak classifiers. Otherwise, it will answer the majority
prediction. It should be noted that the ternary classifier
provides the algorithm the freedom of using any number of
available working nodes (odd or even) in the distributed
setting. In line 7, the weights of the corresponding
classifiers are averaged to get the weight of the ternary
classifier. After all the ternary classifiers for T rounds are
generated, the algorithm returns their weighted combina-
tion as the final classifier. The strategy of distributing the
data and computations among the working nodes and
making the tasks of the nodes independent of each other
enables much faster processing of our algorithm while
resulting in a competitive generalization performance
(which is shown in our experimental results).

3.2.1 Computational Complexity

In a distributed setting, where M workers participate
parallelly and the data are distributed evenly among the
workers, the computational cost for ADABOOST.PL is
�ðdnM log n

M þ Tdn
M Þ. The sorting of the T weak classifiers

(line 3) will have an additional cost of �ðT logT Þ time,
which becomes a constant term if T is fixed.

3.3 Convergence of ADABOOST.PL

ADABOOST.PL sorts the worker’s classifiers with respect to
the weights (�pðtÞ) and then merges them based on the new
reordering. We will now demonstrate this merging of
classifiers from different iterations will ensure algorithm’s
convergence. As the definition of base classifier has been
changed to a ternary classifier, the definition of the weighted
error described in (3) must be redefined as follows:

�� ¼
Xn
i¼1

wtiIfhðtÞðxiÞ ¼ �yig: ð5Þ

The weighted rate of correctly classified samples is given as
follows:

�þ ¼
Xn
i¼1

wtiIfhðtÞ xið Þ ¼ yig: ð6Þ

Gambs et al. [6] showed that, any boosting algorithm will
eventually converge if the weak classifiers of the iterations
satisfy the following condition:

�þ > ��: ð7Þ

We will now show that ADABOOST.PL satisfies this
condition when the number of workers is two. Let the
ith iteration weak classifier hAðiÞ of worker A is merged
with the jth iteration weak classifier hBðjÞ of worker B to
form the merged classifier hðkÞ for the kth round. wA ¼
fwA1 ; wA2 ; . . . ; wA

nA
g is the state of the weight vector (during

ith iteration) of worker A’s data points. Similarly, wB can
be defined as the weight vector state during the jth
iteration. So, the weighted errors and the weighted rate of
correctly classified points for hAðiÞ are

�A� ¼
XnA
l¼1

wAl I
�
hAðiÞ

�
xAl
�
¼ �yAl

�
ð8Þ

�Aþ ¼
XnA
l¼1

wAl I
�
hAðiÞ

�
xAl
�
¼ yAl

�
: ð9Þ

�B� and �Bþ can also be defined similarly for hBðjÞ. Let us also
define

!A� ¼
XnA
l¼1

wAl I
�
hðkÞ
�
xAl
�
¼ �yAl

�
ð10Þ

!Aþ ¼
XnA
l¼1

wAl I
�
hðkÞ
�
xAl
�
¼ yAl

�
: ð11Þ

Similarly, we can define !B� and !Bþ. It should be noted
that there is difference between �A and !A. �A is defined for
A’s weak classifier and !A is defined for the merged
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classifier. Using these notations, the weighted error and the
weighted rate of correctly classified points for hðkÞ can be
defined as follows: ��� ¼ !A� þ !B� and ��þ ¼ !Aþ þ !Bþ. It
should be noted that these values are not normalized. ���
and ��þ might exceed 1 because both

PnA

l¼1 w
A
l and

PnB

l¼1 w
B
l are

equal to 1. These weight vectors were initialized by the
corresponding worker and through out all the ADABOOST

iterations they always sum up to 1. Hence, the normalized
weighted error and the normalized rate of correctly
classified points for the merged classifier will be

�� ¼
!A� þ !B�

2
ð12Þ

�þ ¼
!Aþ þ !Bþ

2
: ð13Þ

Theorem 1. If hAðiÞ and hBðjÞ are both optimal, then �þ � ��.

Proof. According to the definition of ternary classifier, hðkÞ

abstains when hAðiÞ does not agree with hBðjÞ. Hence,
from (2), we can say that hðkÞ abstains when hAðiÞ agrees
with �hBðjÞ. Weighted error of �hBðjÞ on A’s data can be
divided into two mutually exclusive regions of DA

nA
:

1) the region where hðkÞ abstains and 2) the region where
hðkÞ does not abstain.

In the first region hAðiÞ agrees with �hBðjÞ. Hence, in
this region the weighted error of �hBðjÞ is equal to the
weighted error of hAðiÞ which is ð�A� � !A�Þ.

In the second region, hAðiÞ does not agree with �hBðjÞ.
Hence, in this region, the weighted error of �hBðjÞ is

equal to the weighted rate of correctly classified points of

hAðiÞ which is !Aþ.
Hence, the weighted error of �hBðjÞ on DA

nA
is

ð�A� þ !Aþ � !A�Þ. If !Aþ < !A�, then the weighted error of
�hBðjÞ on DA

nA
will be less than �A�. Note that �A� is the error

for hAðiÞ. This contradicts the optimality of hAðiÞ onDA
nA

. So,
it is proved that !Aþ � !A�. Similarly, it can be shown that,
!Bþ � !B�. Adding the last two inequalities and dividing
both sides by 2 will give us �þ � ��. tu

According to Theorem 1, we can say that, in a two
worker environment, the merged classifiers in ADA-

BOOST.PL will satisfy �þ � ��. ADABOOST.PL can discard
any merged classifier with �þ ¼ �� and thus can satisfy the
sufficient condition for convergence described by the
inequality given in (7). ADABOOST.PL will only fail when
all the merged classifiers have �þ ¼ �� which is very
unlikely to happen. We were not able to extend (7) when
the number of workers is more than two. That is, we could
not theoretically prove that the merged classifier in such
cases would always satisfy the necessary condition for
convergence. However, in our experiments, we observed
that merged classifiers almost never violated (7). In the rare
event when the merged classifier violates the condition, we
can simply discard it and proceed without having it within
the pool of the final classifier.

4 PARALLELIZATION OFLOGITBOOST

In this section, we describe our proposed LOGITBOOST.PL
algorithm. First, we will briefly discuss the standard
LOGITBOOST [8] algorithm.

4.1 LOGITBOOST

LOGITBOOST [8] is a powerful boosting method that is
based on additive logistic regression model. Unlike ADA-

BOOST, it uses regression functions instead of classifiers and
these functions output real values in the same form as
prediction. The pseudocode for LOGITBOOST is described in
Algorithm 3. The algorithm maintains a vector of prob-
ability estimates (p) for each data point which is initialized
to 1=2 (line 2) and updated during each iteration (line 8). In
each iteration, LOGITBOOST computes working responses
(z) and weights (w) for each data points (lines 4,5).2 The
subroutine FITFUNCTION generates a weighted least
squares regression function from the working response (z)
and data points (x) by using the weights w (line 6). The final
classifier (F ) is an additive model of these real-valued
regression functions. The final prediction is the sign of F .

Algorithm 3. LOGITBOOST(Dn, T )

Input: Training set of n samples (Dn)

Number of boosting iterations (T )
Output: The final classifier (F )

Procedure:

1: F ðxÞ  0

2: pðxiÞ ¼ 1
2 for i ¼ 1; 2; . . . ; n.

3: for t 1 to T do

4: zi  y�i�pðxiÞ
pðxiÞð1�pðxiÞÞ for i ¼ 1; 2; . . . ; n.

5: wi  pðxiÞð1� pðxiÞÞ for i ¼ 1; 2; . . . ; n.

6: ft  FITFUNCTIONðz; x; wÞ
7: F ðxiÞ  F ðxiÞ þ 1

2 ftðxiÞ for i ¼ 1; 2; . . . ; n.

8: pðxiÞ  eF ðxiÞ

eF ðxiÞþe�F ðxiÞ for i ¼ 1; 2; . . . ; n.

9: end for

10: return F ¼
PT

t¼1 ft

4.1.1 Computational Complexity

The cost of finding the best regression function is �ðdnÞ if
the data samples are sorted based on each attribute.
Hence, the computational complexity of LOGITBOOST is
�ðdnðT þ lognÞÞ.

4.2 LOGITBOOST.PL

The proposed parallel LOGITBOOST.PL algorithm is de-
scribed in Algorithm 4. It follows a similar strategy to the one
described in Algorithm 2. LOGITBOOST.PL also distributes
the data set among the workers where each worker
independently induces its own boosting model. It should
be noted that the LOGITBOOST does not assign any weights
for the regression functions. The main distinction from the
ADABOOST.PL is that the workers’ functions are sorted with
respect to their unweighted error rate as shown below:

� ¼
Xn
i¼1

I sign f xið Þð Þ 6¼ sign yið Þf g: ð14Þ

This new reordered function lists are used to get the merged

functions as before. The merged function averages the

output of the participating functions:
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2. y� ¼ ðyþ 1Þ=2, taking values 0, 1. Here, y is the class label which
belongs to f�1;þ1g.



fðtÞðxÞ ¼ 1

M

XM
i¼1

fi
�ðtÞ: ð15Þ

The final classifier is the addition of all the T merged
functions.

Algorithm 4. LOGITBOOST.PL(D1
n1 ; . . . ; DM

nM , T )

Input: The training sets of M workers (D1
n1 ; . . . ; DM

nM )

Number of boosting iterations (T )

Output: The final classifier (F )
Procedure:

1: for p 1 to M do

2: Hp  LOGITBOOSTðDp
np ; T Þ

3: Hp�  the weak classifiers in Hp sorted w.r.t. their

unweighted error rate.

4: end for

5: for t 1 to T do

6 f ðtÞ  MERGEðf1�ðtÞ; . . . ; fM
�ðtÞÞ

7: end for

8: return F ¼
PT

t¼1 f
ðtÞ

4.2.1 Computational Complexity

For fixed T , the computational cost for LOGITBOOST.PL is
same as that of ADABOOST.PL which is �ðdnM log n

M þ Tdn
M Þ.

5 MAPREDUCE FRAMEWORK

MapReduce is a distributed programming paradigm for cloud
computing environment introduced by Dean and Ghemawat
[5]. The model is capable of processing large data sets in a
parallel distributed manner across many nodes. The main
goal is to simplify large-scale data processing by using
inexpensive cluster computers and to make this easy for users
while achieving both load balancing and fault tolerance.

MapReduce has two primary functions: the Map function
and the Reduce function. These functions are defined by the
user to meet the specific requirements. The Map function,
takes a key-value pair as input. The user specifies what to
do with these key-value pairs and produces a set of
intermediate output key-value pairs

Map key1; value1ð Þ ! List key2; value2ð Þ:

User can also set the number of Map functions to be used
in the cloud. Map tasks are processed in parallel by the
nodes in the cluster without sharing data with any other
nodes. After all the Map functions have completed their
tasks, the outputs are transferred to Reduce function(s). The
Reduce function accepts an intermediate key and a set of
values for that key as its input. The Reduce function is also
user defined. User decides what to do with these key and
values, and produces a (possibly) smaller set of values

Reduce key2; List value2ð Þð Þ ! List value2ð Þ:

The original MapReduce software is a proprietary system
of Google, and therefore, not available for public use. For our
experiments, we considered two open source implementa-
tions of MapReduce: Hadoop [19] and CGL-MapReduce [20].
Hadoop is the most widely known MapReduce architecture.
Hadoop stores the intermediate results of the computations
in local disks and then informs the appropriate workers to
retrieve (pull) them for further processing. This strategy

introduces an additional step and a considerable commu-
nication overhead. CGL-MapReduce is another MapReduce
implementation that utilizes NaradaBrokering [21], a stream-
ing-based content dissemination network, for all the
communications. This feature of CGL-MapReduce eliminates
the overheads associated with communicating via a file
system. Moreover, Hadoops MapReduce API does not support
configuring a Map task over multiple iterations and hence,
in the case of iterative problems, the Map task needs to load
the data again and again in each iteration. For these reasons,
we have chosen CGL-MapReduce for our implementation
and experiments.

5.1 MapReduce-Based Implementation

Fig. 1 shows the work flows of ADABOOST.PL, LOGIT-

BOOST.PL, and MULTBOOST in MapReduce framework. Each
of the Map functions (Algorithms 5 and 7) represents a
worker having access to only a subset of the data. For
ADABOOST.PL (or LOGITBOOST.PL), each of the M Map
functions runs respective ADABOOST (or LOGITBOOST)
algorithm on their own subset of the data to induce the set
of weak classifiers (or regression functions). LOGITBOOST.PL
has an additional step of calculating the unweighted error
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Fig. 1. MapReduce work flow for: (a) ADABOOST.PL, (b) LOGIT-

BOOST.PL, and (c) MULTBOOST.



rates. Then, the base classifiers (or functions) are sorted.
These weak classifiers (or functions) along with their weights
are transmitted (not applicable for LOGITBOOST.PL) to the
Reduce function (Algorithms 6 and 8). After receiving
the weak classifiers (or functions) from all theMap functions,
theReduce function merges them at the same sorted level and
averages (not required for LOGITBOOST.PL) the classifier
weights to derive the weights of the merged classifiers. When
all T (total number of boosting iterations) merged classifiers
(or functions) are ready, they are sent to the user program and
the final classifier is induced. Note that all the boosting
iterations are executed in a single burst within the
Map function. Hence, for ADABOOST.PL and LOGIT-

BOOST.PL, we need only one cycle of MapReduce to complete
the algorithms.

Algorithm 5. MAP::ADABOOST.PL(key1, value1)
Input: a ðkey; valueÞ pair where value contains

the Number of boosting iterations (T ).

Output: a key and a ListðvalueÞ where List

contains the sorted T weak classifiers

along with their weights.

Procedure:

1: run ADABOOST with T iterations on the Mapper’s own

data.
2: sort the T weak classifiers w.r.t their weights.

3: embed each weak classifier and the corresponding

weight in the List.

4: return (key2, Listðvalue2Þ)

Algorithm 6. REDUCE::ADABOOST.PL(key2, Listðvalue2Þ)
Input: a key and a ListðvalueÞ where List contains

all the sorted weak classifiers of M Mappers.

Output: a ListðvalueÞ containing the final classifier.

Procedure:

1: for t 1 to T do

2: merge M weak classifiers each from the same sorted

level of each Map output.

3: calculate the weight of this merged classifier by

averaging the weights of the participating weak
classifiers.

4: embed the merged classifier with the weight in the

output List.

5: end for

6: return (Listðvalue2Þ)

Algorithm 7. MAP::LOGITBOOST.PL(key1, value1)
Input: a ðkey; valueÞ pair where value contains

the Number of boosting iterations (T ).

Output: a key and a ListðvalueÞ where List

contains the sorted T regression functions

Procedure:

1: run LOGITBOOST with T iterations on the Mapper’s

own data.

2: calculate the unweighted error rates for each of the T
regression functions.

3: sort the T regression functions classifiers w.r.t their

unweighted error rates.

4: embed each regression function in the List.

5: return (key2, Listðvalue2Þ)

During each iteration of MULTBOOST [6], each worker
builds a weak classifier on its own data (see Appendix,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.
208, for details). These weak classifiers are merged to a single
classifier and then the workers measure the weighted errors
of this merged classifier on their respective portions of
the data. The errors are added to get the total error for the
merged classifier and accordingly, the workers update the
data points’ weights. Then, the next iteration begins. Hence,
in order to complete a single boosting iteration of MULT-

BOOST the MapReduce cycle needs to iterate two times. In the
first cycle, the Map function receives the error rate of
previously merged classifier (except for the first iteration)
and updates the data point’s weights. Then, it executes a
single boosting iteration and generates the weak classifier.
This weak classifier is output to the Reducer. The Reducer
collects the weak classifiers from all the M workers, forms
the merged classifier and sends it to the user program. Upon
receiving the merged classifier, the user program initiates
the second cycle by sending it to all of the Map functions. In
this second cycle, each of the Map functions calculates the
error rate of the received merged classifier on its own data
and transmits it to the Reducer. After receiving from all the
Map functions, the Reducer adds the M errors. This
summation is the weighted error on the complete data set.
It is passed to the user program and thus one MULTBOOST

iteration completes. The user program keeps track of the
iteration numbers completed and accordingly initiates the
next iteration.

Algorithm 8. REDUCE::LOGITBOOST.PL(key2, Listðvalue2Þ)
Input: a key and a ListðvalueÞ where List contains

all the sorted regression functions of M Mappers.

Output: a ListðvalueÞ containing the final classifier.

Procedure:

1: for t 1 to T do

2: merge M regression functions each from the same

sorted level of each Map output.

3: embed the merged classifier in the output List.

4: end for

5: return (Listðvalue2Þ)
Note that, for ADABOOST.PL and LOGITBOOST.PL, the

MapReduce framework does not need to be iterated. Thus,
there are very few communications (which are often costly)
between the framework components. This feature signifi-
cantly contributes to the reduction of the overall execution
time of the proposed algorithms.

5.2 Privacy-Preserving Aspect

For many real-world problems, it is vital to make the
distributed computations secured. For the computation to be
considered completely secure, the participants should learn
nothing after the completion of the task, except for what can
be inferred from their own input. For example, consider a
scenario of making a decision if a client is qualified for
receiving a loan where multiple institutions have the data
about the client, but none of the institutions want to disclose
the sensitive information to any other. A combined decision
based on all the available data will be more knowledgable. In
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such a scenario, the goal of distributed learning is to induce a
classifier that performs better than the classifiers that the
participants could learn using only their separate data sets,
while, at the same time, disclosing as little information as
possible about their data.

Verykios et al. [22] identified three different approaches
for privacy-preserving data mining. Algorithms in the first
approach perturb the values of selected attributes of
individual records before communicating within the data
sets (e.g., [23], [24]). The second approach randomize the
data in a global manner by adding independent Gaussian or
uniform noise to the attribute values (e.g., [25]). The third
strategy [26] uses cryptographic protocols whenever shar-
ing knowledge between the participants. Cryptographic
protocols can be used in our algorithms in order to achieve
robust privacy-preserving computation.

Our algorithms do not directly communicate the data sets,
rather we distribute the learning procedure among the
participants. The primary objective of our approach is to
preserve the privacy of the participants’ data while approx-
imating the performance of the classifier as much as possible
compared to the performance on the fully disclosed data
available by combining all the participants’ data sets.

From the MapReduce work flows of ADABOOST.PL and
LOGITBOOST.PL, it is evident that the Map workers do not
have to share their data or any knowledge derived from the
data with each other. The Map workers never get any hint
about the complete data set. Eventually, the Reducer
receives all the classifiers. Note that, we have only one
Reduce worker and the user program waits for the
completion of the job performed by the Reduce worker.
Hence, we can accommodate the task of Reducer within the
user program and eliminate any risk of leaking knowledge
to a worker. Thus, our algorithms have a great potential for
being used in privacy-preserving applications. Adding
cryptographic protocols will further protect it from any
eavesdropping over the channel.

5.3 Communication Cost

For the communication cost analysis, let the cost of
communications from the user program to Map functions,
from Map functions to Reduce function, and from Reduce
function to the user program be f , g, and h, respectively.
Then, the communication cost for ADABOOST.PL and
LOGITBOOST.PL will be ðf þ gþ hÞ. MULTBOOST will take
2T ðf þ gþ hÞ time where T is the number of iterations.

6 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our
proposed algorithms in terms of various performance
metrics such as classification accuracy, speedup, and
scaleup. We compared our results with standard ADA-

BOOST, LOGITBOOST, and MULTBOOST (in a parallel
setting). All our experiments were performed on Amazon
EC23 cloud computing environment. The computing nodes
used were of type m1.small configured with 1.7 GHz 2006
Intel Xeon processor, 1.7 GB of memory, 160 GB storage, and
32 bit Fedora Core 8.

6.1 The Data Sets

We selected a wide range of synthetic and real-world data
sets with varying dimensions and sizes ranging from few
Kilobytes to Gigabytes. Table 1 summarizes 10 publicly
available [27] real-world data sets and eight synthetic data
sets used in our experiments. The spambase data set classifies
e-mails as spam or nonspam. The training set is a compilation
of user experiences and spam reports about incoming mails.
The musk data set contains a set of chemical properties about
the training molecules and the task is to learn a model that
predicts a new molecule to be either musks or nonmusks. The
telescope data set contains scientific information collected by
Cherenkov Gamma Telescope to distinguish the two classes:
Gamma signals and hadron showers. The swsequence data
[28] represents the homological function relations that exist
between genes belonging to the same functional classes. The
problem is to predict whether a gene belongs to a particular
functional class (Class 1) or not. The biogrid [29] is a protein-
protein interaction database that represents the presence or
absence of interactions between proteins. The pendigits data
set classifies handwritten digits collected through pressure
sensitive writing pad. It was originally designed to be used
for multiclass classification with a total of 10 classes (one for
each digit from 0 to 9). Instead, we chose to transform it into a
binary classification task by assigning the negative class to all
even numbers and the positive class to the odd numbers.
Isolet is a data set from speech recognition domain and the
goal is to predict the letter name that was spoken. We also
modified this 26 class problem into a binary classification
problem by putting first 13 letters in one class and the rest in
the other class. The biological data set, yeast classifies the
cellular localization sites of Proteins. It is also a multiclass
problem with a total of 10 classes. We retained samples only
from the two most frequent classes (CYT, NUC). The wineRed
and wineWhite data sets [30] model the wine quality based on
some physicochemical tests and enumerates the quality
score between 0 and 10. In this case, we assigned the negative
class to all scores that are less than or equal to five and the
positive class to the rest.
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Data Sets Used in Our Experiments

3. http://aws.amazon.com/ec2/.



Similar to the real-world data sets, all our synthetic data

sets are also binary in class. For the synthetic data sets d1-d6,

we used the synthetic data generator RDG1 available in

WEKA [31] data mining tool. RDG1 produces data

randomly by a decision list consisting of a set of rules. If

the existing decision list fails to classify the current instance,

a new rule according to this current instance is generated

and added to the decision list. The next two large data sets,

alpha1 and alpha2, were generated by the QUEST generator

[32] using a perturbation factor of 0.05 and function 1 for

class assignment.

6.2 Prediction Performance

Tables 2 and 3 report the 10-fold cross-validation error rates

for ADABOOST.PL and LOGITBOOST.PL, respectively. For

ADABOOST.PL, we compared its generalization capability

with MULTBOOST, and the standard ADABOOST algo-

rithms. In addition, to demonstrate the superior perfor-

mance of ADABOOST.PL, we also compared it with that of

the best individual local ADABOOST classifier trained on

the data from the individual computing nodes (denoted by

LOCALADA). MULTBOOST is a variation of ADABOOST and

hence we did not compare LOGITBOOST.PL with MULT-

BOOST. In the literature, we did not find any parallelizable

version of LOGITBOOST to compare against, and hence

LOGITBOOST.PL is compared with standard LOGITBOOST,

and the best local LOGITBOOST classifier (denoted by

LOCALLOGIT).

The experiments for ADABOOST were performed using a
single computing node. For ADABOOST.PL and MULT-

BOOST, the experiments were parallelly distributed on a
cluster setup with 5, 10, 15, and 20 computing nodes.
During each fold of computation, the training set is
distributed equally among the working nodes (using
stratification so that the ratio of the number of class samples
remain the same across the workers) and the induced model
is evaluated on the test set. The final result is the average of
the error rates for all the 10 folds. For the LOCALADA

classifier, each individual model is induced separately
using the training data from each of the working node
and the performance of each model on the test data is
calculated and the best result is reported. For ADABOOST,
the error rates are calculated in a similar manner except
that, on a single node, there is no need for distributing the
training set. For all the algorithms, the number of boosting
iterations is set to 100. In the exact same setting,
LOGITBOOST.PL is compared with standard LOGITBOOST

and the LOCALLOGIT classifier.
From Table 2, we observe that ADABOOST.PL (with a

single exception) always performs better than MULTBOOST

and LOCALADA algorithms. Furthermore, in some cases
(marked bold in ADABOOST.PL columns), our algorithm
outperforms even the standard ADABOOST. In all other
cases, our results are competitive to that of the standard
ADABOOST. Similarly, the prediction accuracy results for
LOGITBOOST.PL (Table 3) are also competitive to original
LOGITBOOST (sometimes even better) and are consistently
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TABLE 2
Comparison of the 10-Fold Cross-Validation Error Rates (Standard Deviations) for the Standard ADABOOST, Best Local ADABOOST

(LOCALADA), MULTBOOST, and ADABOOST.PL Algorithms Using 10 and 20 Workers

TABLE 3
Comparison of the 10-Fold Cross-Validation Error Rates (Standard Deviations) for the Standard LOGITBOOST, Best Local

LOGITBOOST (LocalLogit) and LOGITBOOST.PL Algorithms on 5, 10, 15, and 20 workers



better than LOCALLOGIT classifier. Small compromise in
the prediction performance is tolerable when the speedup
in computation is significant which is really the case for our
proposed algorithms (shown in the next section). Inherent
parallelizable capability and insignificant difference in the
prediction performance (of our algorithms compared to the
respective baselines) suggests the efficacy of the proposed
work in handling large-scale applications.

6.3 Results on Speedup

Speedup [33] is defined as the ratio of the execution time on
a single processor to the execution time for an identical data
set on p processors. In a distributed setup, we study the
speedup behavior by taking the ratio of baseline (ADA-

BOOST or LOGITBOOST) execution time (Ts) on a single
worker to the execution time of the algorithms (Tp) on p

workers for the same data set distributed equally. The
Speedup ¼ Ts=Tp. In our experiments, the values of p are 5,
10, 15, and 20. For our algorithms,

Speedup ¼ �
dn lognþ Tdn
dn
M log n

M þ Tdn
M

 !
¼ � M

lognþ T
log n

M þ T

� �
:

For the number of workers, M > 1, the inner fraction will be
greater than 1. Hence, we can expect speedup > M for our
algorithms.

All the algorithms were run 10 times for each data set. We
took the ratios of the mean execution times for calculating the
speedup. The number of boosting iterations was set to 100.
Fig. 3 shows the speedup gained by the algorithms on
different data sets. From these plots, we observe that the
larger the data set is, the better the speedups will be for both
of our proposed algorithms. This is primarily due to the fact
that the communication cost of the algorithms on smaller
data sets tends to dominate the learning cost. For higher

number of workers, the data size per workers decreases and
so does the computation costs for the workers. This fact can
be observed from Fig. 2. For the smaller data set musk, the
communication costs are significantly larger compared to
the computation cost, resulting in a diminishing effect on the
speedup. But, for a large-scale swsequence data set, the
computation cost is so dominant that the effect of commu-
nication cost on speedup is almost invisible. ADABOOST.PL
invariably gains much better speedup than MULTBOOST for
all the data sets.

6.4 Results on Scaleup

Scaleup [33] is defined as the ratio of the time taken on a
single processor by the problem to the time taken on p
processors when the problem size is scaled by p. For a fixed
data set, speedup captures the decrease in runtime when
we increase the number of available cores. Scaleup is
designed to capture the scalability performance of the
parallel algorithm to handle large data sets when more
cores are available. We study scaleup behavior by keeping
the problem size per processor fixed while increasing the
number of available processors. For our experiments, we
divided each data set into 20 equal splits. A single worker is
given one data split and the execution time of baseline
(ADABOOST or LOGITBOOST) for that worker is measured
as Ts. Then, we distribute p data splits among p workers and
the execution time of the parallel algorithm on p workers is
measured as Tp. Finally, we calculate scaleup using this
equation: Scaleup ¼ Ts=Tp. In our experiments, the values of
p are 5, 10, 15, and 20. The execution times were measured
by averaging 10 individual runs. The number of boosting
iterations for all the algorithms was 100.

Fig. 4 shows the scaleup of the algorithms for three
synthetic and three real-world data sets. Ideally, as we
increase the problem size, we must be able to increase the
number of workers in order to maintain the same runtime.
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Fig. 2. The computational and communication costs of the algorithms for musk and swsequence data sets.
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Fig. 3. The speedup comparisons for ADABOOST.PL, LOGITBOOST.PL, and MULTBOOST.

Fig. 4. The scaleup comparisons for the ADABOOST.PL, LOGITBOOSTPL, and MULTBOOST.



The high and consistent scaleup values for ADABOOST.PL
and LOGITBOOST.PL provide a strong evidence of their
scalability. Regardless of the increase in the problem size, all
that is needed is to increase the available resources and the
algorithms will continue to effectively utilize all the work-
ers. Nevertheless, the scaleup behavior of MULTBOOST is
invariably lower compared to the proposed algorithms.

7 CONCLUSION AND FUTURE WORK

We proposed two Parallel boosting algorithms that have
good generalization performance. Due to the algorithms’
parallel structure, the boosted models can be induced much
faster and hence are much more scalable compared to the
original sequential versions. We compared the performance
of the proposed algorithms in a parallel distributed
MapReduce framework. Our experimental results demon-
strated that the prediction accuracy of the proposed
algorithms is competitive to the original versions and is
even better in some cases. We gain significant speedup
while building accurate models in a parallel environment.
The scaleup performance of our algorithms shows that they
can efficiently utilize additional resources when the
problem size is scaled up. In the future, we plan to explore
other data partitioning strategies (beyond random stratifi-
cation) that can improve the classification performance even
further. We also plan to investigate the applicability of the
recent work on multiresolution boosting models [34] to
reduce the number of boosting iterations in order to
improve the scalability of the proposed work.
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