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RODS: Rarity based Outlier Detection
in a Sparse Coding Framework

Jayanta K. Dutta, Bonny Banerjee, Member, IEEE, and Chandan K. Reddy, Senior Member, IEEE

Abstract—Oultlier detection has been an active area of research for a few decades. We propose a new definition of outlier that is useful
for high-dimensional data. According to this definition, given a dictionary of atoms learned using the sparse coding objective, the
outlierness of a data point depends jointly on two factors: the frequency of each atom in reconstructing all data points (or its negative log
activity ratio, NLAR) and the strength by which it is used in reconstructing the current point. A Rarity based Outlier Detection algorithm
in a Sparse coding framework (RODS) that consists of two components, NLAR learning and outlier scoring, is developed. This
algorithm is unsupervised; both the offline and online variants are presented. It is governed by very few manually-tunable parameters
and operates in linear time. We demonstrate the superior performance of the RODS in comparison with various state-of-the-art outlier
detection algorithms on several benchmark datasets. We also demonstrate its effectiveness using three real-world case studies:
saliency detection in images, abnormal event detection in videos, and change detection in data streams. Our evaluations shows that
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RODS outperforms competing algorithms reported in the outlier detection, saliency detection, video event detection, and change

detection literature.

Index Terms—Anomaly detection, saliency detection, abnormal event detection, change detection, data streams

1 INTRODUCTION

THE era of Big Data has ushered in an unprecedented
interest in efficient detection of abnormal data in multi-
ple scientific disciplines. Outlier detection algorithms play a
crucial role in detecting the abnormal patterns that signifi-
cantly deviate from the norm. Over the last few decades, the
problem of outlier detection has continued to garner interest
from both academic researchers and practitioners working
on real-world applications. Outlier detection is fundamental
to many real-world applications, such as fraud detection [1],
network intrusion [2], clinical diagnosis [3], customer rela-
tions management [4] and biological data analysis [5], [6].

In spite of the rich literature addressing this problem,
there has been relatively less effort in transforming the fea-
ture space and extracting outliers through sparse represen-
tation of the data. In this paper, we present a fast
unsupervised algorithm for outlier detection using a sparse
coding based reconstruction framework. A linear model for
the data is assumed whereby each data point # € R" is rep-
resented as the linear combination of a dictionary
D= [Jl, e Jk] € R™* of non-orthogonal bases (or atoms).
That is, ¥ = Zj ijj where y;ER is the coefficient corre-

sponding to J] The absolute value of y; signifies the
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strength of d; in representing #. Informally, we define a data
point as an outlier if it consists of one or more atoms with
significant strength that rarely occur in the other observed
data points.

The intuition behind our definition of outlier is as follows.
Alinear generative model assumes that a data point or obser-
vation is the effect of a linear combination of multiple causes,
some of which play a stronger role than others in generating
that point. Each cause, represented as a dictionary atom, has
the same dimension as a data point. If a cause rarely plays a
strong role in generating the observed data points, as cap-
tured by its rarity, its strong involvement in generating a par-
ticular point renders that point an outlier. Our definition of
outlier, which leads to the Rarity based Outlier Detection in
a Sparse coding framework (RODS) algorithm, is illustrated
in Fig. 1 using data points in 2D space.

In Fig. 1a, data points are shown with red dots. There are
four clusters. Six dictionary atoms learned using a sparse
coding objective are shown with black circles and labeled as

Jl, JZ, ce Jﬁ. The space is partitioned based on the absolute
cosine similarity between the data points and the atoms.
Each partition belonging to an atom is marked with its cor-
responding label. The number of data points in the parti-
tions belonging to an atom determines the atom’s rarity
using negative log activity ratio (or NLAR). More the num-
ber of points in the partition of an atom, lower is its NLAR,
as shown in Fig. 1b. An outlier score of a point is the
weighted sum of the NLARs of the atoms where the weights
are absolute coefficients required to reconstruct the point
using these atoms. To illustrate the difference between our
notion of “outlier” and traditional definitions using cluster-
ing with Euclidean norm, two data points, #; and 75, are
considered in Fig. 1a. Z; is reconstructed using c?l, Eﬁ and Jg,
in decreasing order of their strength. Since none of these
three atoms is very rare (as shown in Fig. 1b), #; is not an
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Negative log activity ratio (NLAR)

(b)
Fig. 1. Geometric interpretation of the proposed RODS algorithm.

outlier by our definition. # is reconstructed using d,. Since

JQ is rarely used (as shown in Fig. 1b), Z is an outlier by our
definition. In contrast, Z; would be judged as an outlier and
Z» not an outlier if a clustering based approach for outlier
detection with Euclidean norm was used.

The key contributions of this paper are as follows:

1) A new definition of outlier by which a data point is
deemed an outlier if it is strongly constituted of non-
orthogonal bases (or dictionary atoms) that rarely
constitute other data points. This definition is partic-
ularly useful for high-dimensional data. An outlier
scoring function, based on the Shannon information
content for the activity of the atoms that assigns
higher scores to data points strongly constituted of
rarer atoms, is introduced.

2)  An outlier detection algorithm, RODS, consisting of two
components—rarity learning (as NLAR) and outlier
scoring. The learning algorithm is unsupervised;
both offline and online variants are presented. The
algorithm has very few parameters, and operates in
time linear in size of the dataset for the offline case
and constant time per input for the online case appli-
cable to streaming data.

3)  Superior performance of the proposed RODS algorithm in
comparison with various state-of-the-art outlier detection
algorithms on a number of benchmark datasets.

4)  Effectiveness of the proposed RODS algorithm in real-
world problems, such as saliency detection in images,
abnormal event detection in videos and change detection
in data streams. Performance evaluations show that
the proposed algorithm outperforms various com-
peting methods.

The rest of this paper is organized as follows. In Section 2, a
brief review of the related literature is provided. Section 3 intro-
duces the notations and definitions that are necessary to com-
prehend our proposed algorithm. The proposed algorithms are
described in Section 4 and are evaluated on various benchmark
datasets including image collections and video streams in
Section 5. Finally, our discussion concludes in Section 6.

2 RELATED WORK

Comprehensive survey articles describing outlier detec-
tion algorithms for different kinds of data and applica-
tions are available in the literature (see [7], [8] for
example). Here we briefly review prior works related to

basic outlier detection methods, methods for high-dimen-
sional data and data streams.

2.1 Outlier Detection Methods

Traditionally, approaches relied on robust statistics for out-
lier detection [9]. Subsequently a number of methods were
developed for detecting outliers using the notion of proxim-
ity (distance) of a given data point with reference to the
other points [10]. One of the earliest approaches [11], using
proximity information, estimates the outlierness of each
sample based on the average distance to the k-nearest
neighbors. The proximity-based methods can be broadly
classified into density-based and clustering-based methods.
Instead of relying on the neighborhood information, the
density-based methods aim at estimating the density sur-
rounding each data point; the outliers are assumed to occur
in extremely low density regions. One of the representative
methods in this category is the Local Outlier Factor (LOF)
method [12]. In clustering-based methods, such as [13], the
distance of a point from its closest cluster centroid is usually
chosen as the metric for the outlierness of the point. One of
the major limitations of such clustering-based methods is
their assumption regarding the shape and form of the clus-
ters. Other machine learning algorithms, such as active
learning [14] and ensemble methods [15], [16], can some-
times be more efficient and produce robust outlier detection
results. They are mostly based on different notions of prox-
imity (or distance). Such distance-based assumptions might
yield suboptimal results in high-dimensional feature spaces
and cause a dilemma on the choice of metrics and threshold
values to use.

2.2 High-Dimensional Outlier Detection

Spectral methods specifically address outlier analysis in
high-dimensional data by projecting them to lower-dimen-
sional spaces [17]. They operate on the assumption that a
lower dimensional manifold exists in which, if the data is
embedded, the normal and anomalous instances will
appear significantly different [7]. Thus, spectral methods
are useful only when such manifolds truly exist. Also, they
suffer from high computational complexity. Nevertheless,
this topic has received a lot of attention lately; see [18] for
an extensive survey on various subspace methods related to
outlier detection. The LOCI method [19] is based on the
idea of estimating the local behavior of the sample space
using correlation integrals. One of the simplest and intuitive
approaches for high-dimensional data uses the idea of prin-
cipal components to estimate the outlierness of the data
[20]. Such projection based methods, where the original
space is transformed into a lower-dimensional feature space
using certain linear transformation, are not suitable for
detecting outliers in complex feature spaces. Non-linear
projection methods would be more suitable for identifying
outliers. However, such non-linear transformations are
often difficult to learn in real-world scenarios. Also, some of
these methods aim at identifying outliers in a low-dimen-
sional subspace which correspond to certain subsets of the
original feature space. Such feature subset based outlier
detection methods are not applicable for images and videos.
In contrast to the above methods, our proposed method
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projects the data to a higher dimensional manifold using a
linear transformation such that the data representation
becomes sparse.

2.3 Feature Space Transformation Methods

There has been relatively less work in transforming the fea-
ture space and detecting outliers based on the rarity of the
transformed indices used for representing the data. The
only work closely related to the proposed method is in the
context of unusual event detection in videos [21], [22]. A
framework for simultaneous sparse coding and anomaly
detection by adding an extra term to the sparse coding
objective function is presented in [21]. Outliers have non-
zero columns in this extra term which signifies a deviation
from the model. The approach is offline, all the data vectors
are needed to determine the outliers, and the maximum
number of outliers to be captured is a parameter that is diffi-
cult to estimate. In [22], anomalous events in videos are
detected from the error in reconstructing each 3D event
(first two dimensions represent space while the third
dimension represents time); the reconstruction utilizes a
sparse coding approach. While the proposed method also
represents the data using sparse coding, the outlierness of a
data point is a function of the rarity of the dictionary atoms
and not the reconstruction error.

In sparse coding, each data point is represented as a lin-
ear combination of dictionary atoms where the coefficient
vector is allowed a sparse number of nonzero entries. Thus,
sparse coding can be viewed as a generalization of the vec-
tor quantization (VQ) or clustering objective where each sig-
nal is typically represented by a single atom. Sparse coding
enables a more accurate representation of the input signal
with same memory requirements as VQ/clustering but
slightly higher computational cost. Sparse coding has been
a better performer in many real-world applications includ-
ing image denoising [23], [24], [25], texture synthesis [26],
edge detection [27], image super-resolution [28], audio proc-
essing [29], [30], image classification [31]. It has been exten-
sively used for handling high-dimensional data effectively
[23], [24]. The idea of dictionary learning has produced
promising results in the context of classification [32]. How-
ever, it has seldom been investigated for the problem of out-
lier detection, especially for datasets other than images and
videos. A number of methods for efficient learning of sparse
dictionaries have been reported, such as K-SVD [23] and
ODL [24] (also see [33] for recent work on reducing the com-
plexity of the sparse coding problem). Due to its effective-
ness and simplicity, we chose the K-SVD algorithm for
dictionary learning.

2.4 Outlier Detection for Data Streams

Very few algorithms have been reported in the literature
that produce state-of-the-art outlier detection results in both
static and streaming data which is one of the goals of the
proposed RODS algorithm. Making static outlier detection
algorithms applicable to the streaming data context requires
non-trivial enhancements. See [34], [35], [36], [37] for exam-
ples of work along this line. The goal of some of these meth-
ods is to efficiently calculate the local outlier factors for
streaming data through an element of sliding window-

TABLE 1

Notations Used in This Paper
Notation Description
X Dataset
N Number of data points in X
m Dimension of each data point or atom
D Dictionary of atoms
k Number of atoms in D
r Coefficient matrix for representation of X
K Maximum of ¢, norm for sparse I'
i) Activity ratio of atoms
q Summary activity ratio of atoms
6 Negative log activity ratio of atoms
s Outlier score of dataset
e Outlier scoring function
® Outlier decision threshold
1 Index vector

based approach and making proximity-based assumptions
regarding the outliers. Such methods suffer from the draw-
backs of the proximity-based methods mentioned earlier in
this section. In this paper, an online variant of the static
RODS algorithm is proposed for streaming data where the
NLARs are updated as each new data point arrives.

3 PRELIMINARIES

In this section, we describe the notations and definitions
needed to understand our proposed algorithm.

3.1 Notations Used

The notations used in this paper are provided in Table 1.
Matrices are denoted by bold uppercase letters (e.g., Z),
while lowercase letters with vector sign denote column vec-
tors (e.g., Z). The columns of a matrix are represented by cor-
responding lowercase letters (e.g., Z =[Z,...,%]). The
elements of a vector are denoted by letters without vector
sign (e.g., Z = (21, ..., 2n))- 0 denotes a zero vector with size
depending on the context. The elements of a matrix are
denoted using subscript where row and column indices are
separated by a comma (e.g., Z; ; denotes the element corre-
sponds to the ith row and jth column). Iteration numbers in
a loop are indicated by superscripts (e.g., Z°). Time indices
are denoted in a parenthesis after the variable (e.g., Z(t)).

3.2 Problem Statement
Given a set of data points X = [71, ...
lier data point &, is defined as:

,Zn] € R™, an out-

Z.eX, (ZJ]X)> o, 1)
where #; € R™, m is the dimension of each data point,
¢:x — R7 is a scoring function, R™ is the set of non-nega-
tive real numbers and w is a threshold. ¢ assigns an outlier
score to each data in X based on its frequency of occurrence
in comparison to that of the other observed data. Rarer data
points are assigned higher scores. A data could be a pixel,
region, object or event, depending on the nature of the data
and the goal. For example, if the data is a video sequence, X
is a set of events #; defined at each point (z;,v;,t;) in the
video where (x;,y;) refers to the spatial location in a frame
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and ¢; is the index of the frame. The crux of the problem is to
discover the function ¢ such that unusual or rare data in a
dataset can be detected.

Our goal is to build a fast and accurate outlier detection
algorithm for practical real-world applications. It is desir-
able that the proposed method quickly builds a model of
normality and detects outliers while incrementally updating
itself in an unsupervised manner as new normal patterns
are observed.

3.3 Definitions
We now define the terms and concepts relevant to our
algorithm.

Definition 1 (Sparse representation). Let & € R be a data
point. It admits a sparse representation y € R¥ over a dictio-
nary of k atoms, D € R™** if & can be represented as a linear
combination of k atoms in D and k < k.

Definition 2 (Dictionary learning). The dictionary learning
task is to compute a dictionary such that it is well adapted for
reconstructing a set of data points. Given a dataset of size N,
X = [#,...,Zn]|, a dictionary of k atoms with a sparsity con-
straint can be learned by solving the following optimization
problem:

1
IR%;H@—D@M subject to  ||7]l, <« Vi,  (2)

where I' = [y}, ..., ¥x] € R¥" is a sparse representation
matrix, ||.||, denotes the ¢, pseudo-norm, the number of
non-zero elements. « is the maximum number of non-zero
elements allowed in each ¥; and « < k. Each element c_l; eD
(j=1,...,k)is constrained to have a unit ¢, norm.

Since ¢y minimization is NP-hard, the ¢; norm is widely
used. Minimizations of both norms are equivalent if the
solution is sufficiently sparse [38]. The dictionary learning
objective is not jointly convex, but convex with respect to
each of the two variables D and I'. Hence it is minimized by
alternating between the two variables, minimizing over one
while keeping the other fixed until the dictionary reaches a
stable state [23], [24]. A series of alternate minimization
steps reduce the mean square error of the overall objective
function, and therefore, convergence to a local minimum is
guaranteed under necessary conditions. The proofs and nec-
essary conditions for convergence of different dictionary
learning algorithms can be found in the literature (e.g., K-
SVD [23], ODL [24]).

Definition 3 (Sparse coding). Given a fixed dictionary
D € R™** and a data point i € R™, the sparse linear repre-
sentation y € R¥ can be obtained by solving the following
sparse approximation problem:

ming |17 - D7)

subject to  ||Y||, < «. 3)

This sparse approximation problem can be efficiently
solved using Orthogonal Matching Pursuit (OMP) [33]
which is a greedy forward selection algorithm that starts
with an empty list and includes at each iteration the atom
most correlated with the current residual. The residual starts

ur
EENJNNIRCSTMEANE A RMOERS
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Fig. 2. Dictionary atoms learned using sparse coding. Atoms of size
8 x 8 pixels learned from natural images in the Toronto dataset.

with the input and the coefficients of the selected atoms are
updated by computing the orthogonal projection of the input
onto the linear subspace spanned by the atoms selected so
far. Then the residual is recomputed. This procedure contin-
ues until « atoms have been used or the ¢5 norm of the resid-
ual becomes smaller than a small predefined constant e. The
batch version of OMP [33] is used for the offline case, which
speeds up the process by a considerable amount.

Definition 4 (Dictionary update). Given the sparse representa-
tions y; of the data points Z;, the optimal dictionary D is the
solution of the following optimization problem:

1N (1
D= arggunNZ(i I|Z;

i=1

DRE). @

This optimization problem can be solved using K-S5VD
[23]. However, the exact solution can become computation-
ally difficult as the size of the data increases. So we use the
approximate version of K-SVD [33] for learning the dictio-
nary where a single iteration of the alternate minimization
between sparse representation and dictionary update is
generally sufficient to provide very close results to the full
computation. Dictionary of small image patches learned
using the dictionary learning algorithm is shown in Fig. 2.

4 THE PROPOSED RODS ALGORITHM

In this section, we describe the batch and online versions of
the proposed RODS algorithm.

4.1 Batch-RODS Algorithm

Given the dataset X = [7},...,Zx] € R™Y, first the dictio-
nary D € R™** is learned and the sparse linear coefficient
vectors I' = [y, ..., 7] € R¥*Y are computed using Egs. (2)
and (3) respectively (using the Batch-OMP and approximate
K-SVD). This is a very well-established procedure for matrix
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factorization and has been adopted in this paper. However,
rest of the proposed RODS algorithm may be suitable for
other kinds of dictionary learning and encoding procedures,
such as using principal/independent components, cluster-
ing, etc. as well. Also, it is important to note that the encod-
ing technique is much more important than the quality of
the learned dictionary [39], hence it is acceptable to start the
RODS algorithm with a given or randomly-chosen dictio-
nary provided the encoding scheme to be used is known.
The data points admit sparse representations when the dic-
tionary is overcomplete [23], [24].

Next, the activity ratio, p;, for jth atom (j = 1,...,k) over
the dataset which corresponds to the probability of using
the jth atom based on the dataset is computed as follows:

_ Z;y:l |FJT’| (5)
— N :
Zi:l Zn:l |Fi7n

bj

The activity ratio will be lower for rarely used atoms and
higher for frequently used ones. Rarity of the atoms is
inversely proportional to their corresponding activity ratio.
The rarity of dictionary atoms is computed using NLAR.
The NLAR of the jth atom, denoted 6, is defined as:

9]‘ = *lOQz(pj). (6)

NLAR of a dictionary atom is the Shannon information con-
tent for the activity of that atom. Information content repre-
sents the “surprise” of the activity, hence also referred to as
surprisal. Use of a rarely-used atom in reconstructing a data
point is improbable and evokes surprise when it is actually
used. Thus, information is a function of the probability of
the atom’s activity; the smaller its probability of use, larger
its information content. It is noteworthy that information
content is a proper scoring of the activity of atoms, i.e. its
objective is to track the true probability distribution of the
atoms’ activities. It is the one out of many possible scoring
functions that has been widely studied in different fields
and produced state-of-the-art results in our experiments
with different kinds of benchmark datasets.

After calculating NLAR score vector 5, it is normalized to
convert to a probability distribution function by dividing
the NLAR of each element by the sum of NLARs of all ele-
ments in the vector.

Finally, given the data X, the data point #; and its coeffi-
cient vector y; with respect to a learned dictionary D, the
outlier score s; is defined as:

((&[X) = s = |6 (M

Thus, a data point is an outlier if it consists of one or more
dictionary atoms with significant strength that rarely occur
in all the observed data points. This score assigns a probabi-
listic degree of being an outlier to each data point. The
overall algorithm is presented in Algorithm 1. The time
complexity of this algorithm is dominated by that of
Batch-OMP which is O(N(2mk + «%k + 3kk + &%) + mk?)
[33] where m, k and « are constants with respect to the size
of the dataset (V). Thus, the algorithm runs in time linear in
the size of the dataset.

4.2 Online-RODS Algorithm

For the online case, at each time t, a data vector Z(¢) is
drawn from the stream X and its outlier score is computed.
First, the activity ratio at ¢ is computed as:

pi(t) = ly; (@)

LA — (8)
S ()]

Algorithm 1. Batch RODS

: Inputs: X € R™N, k, «
Output: 5 € RY: outlier score
: Compute D by solving Eq. (2)
: Compute I" by solving Eq. (3)
: forj=1tokdo
e Il

Zf:l 23:1 [Tl

0 — —log(p;)

end for
D0 — 0/ 0,V =1,.. k
: fori =1to N do
11: s < |76
12: end for
13: Return §

bj

C PN O UA N

—_
o

Theorem 1. Let the summary activity ratio at any time t be incre-
mentally updated as follows:

q(t) = (1 —a(t)q(t — 1) + «(t)B(t). )

Then, there exists a function o : N™ — (0, 1], where N is the set
of positive integers, such that § converges to a stable solution.

Let « be a function of time, and 0 < «(t) < 1, Vt. Thus, in
order to determine the new estimate g(t), the prior estimate
g(t — 1) is weighted by 1 — «(t), while the new outcome j(t)
is weighted by «(t). If a(t) =1/t, §(t) is the mean of the
activity ratio since the beginning of time. If «(t) =1/
where ¢; is a constant, a positive integer, ¢ is a soft moving
average of the activity ratio for the last ¢; time instants. It
does not discard everything before the last ¢; instants but
assigns them much less weight in the estimation process.
The latter case is particularly useful if the data distribution
changes over time. However, choosing a small ¢, may not
allow ¢ to converge to a stable value any time even if the
underlying data distribution is stationary. Eq. (9) can be
expressed in differential form as:

G =a(—p) (10)

g reaches a stable value when § = 0. Since the value of 7 is
dependent on the instantaneous input, 7 is a stochastic vari-
able and in general p # ¢. Hence, the condition for stability
is &« — 0 which is satisfied eventually if «(t) = 1/t or for a
large constant ¢; if «(¢) = 1/t;. The summary activity ratio
of each dictionary atom is initialized to 1/k. It is obvious
because at the beginning, all the dictionary atoms are
equally likely to be used for reconstruction.

Given the summary activity ratio at any time ¢, the NLAR
at ¢t is computed as 6;(t) = —log(q;(t)). Hence the outlier
score at t is s(t) = |§(t)|"6(t). The online version of the

RODS algorithm is presented in Algorithm 2. The time com-
plexity of this algorithm is dominated by that of the OMP
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algorithm which is O(2mkk + 2«*m + 2«(k +m) + «*) [33]
per data point. Thus, the algorithm runs in constant time
per input dominated by the maximum of ¢, norm, «.

Algorithm 2. Online-RODS

1: Inputs: Streaming data, k, «, « : learning rate

: Output: s(¢): outlier score at each time instant ¢

: Compute D by solving Eq. (2) using a subset from the data
stream

W N

4: Initialization: ¢;(0) = 1/k Vj
5: fort =1to oo do
6:  Draw Z(t) from X
7:  Compute y(t) by solving Eq. (3)
8: forj=1tokdo
. ) v ()]
% pilt) = S )
10:  end for

11 G(t) — (1 —a)g(t — 1) + ap(t)
12: forj=1tokdo

13: gj(t) — —logz(q].(t))

14:  end for

15: 0.7*_9;‘/2?:1972,Vj: 1,...,k
16 s(t) — [p(t)[" ()

17:  Output s(t)

18: end for

5 EXPERIMENTAL RESULTS

In this section, we provide quantitative and qualitative eval-
uations of the proposed batch and online versions of the
RODS algorithm using several benchmark datasets and
compare the performance with various state-of-the-art out-
lier detection algorithms. We also discuss three real-world
case studies: i. saliency detection in images, ii. abnormal
event detection in videos iii. change detection in data
streams. We demonstrate the superior performance of the
batch RODS algorithm on image datasets and that of the
online RODS algorithm on streaming datasets.

5.1 Scalability Experiments on Synthetic Data
Synthetic datasets of different sizes and dimensions were
generated for the scalability experiments. As discussed in
Section 3.3, a data point Z admits a sparse representation y
over an overcomplete dictionary D. y is the projection of &
in the space spanned by the atoms in D.

1

2»
/—/J\/-A/_/——Z‘F:C/)Dsmz

Runtime (secs, log scale)
w

Runtime (secs, log scale)
: U -
Runtime (secs, log scale)
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100

U A
o%\ 100 50 40 me“5‘°“5

Fig. 3. Parameter sensitivity of the RODS algorithm.

In the proposed framework, a dictionary atom used
infrequently to generate the data points has a high NLAR
score; a data point generated by such an atom is an outlier.
The synthetic dataset is generated from an arbitrary combi-
nation of randomly generated dictionary atoms. The set of
outliers is generated in the same way, except that it is much
smaller in size than the rest of the dataset. We learn k dictio-
nary atoms from this entire data, calculate their NLARs,
and compute the outlier score for each data point.

How to select k, the size of the dictionary, and «, the max-
imum admissible ¢, norm in the sparse representation, is an
open problem. There is no well-defined rule for selecting
these parameters and are usually selected via cross-valida-
tion. In general, overcomplete dictionary works better in
case of sparse coding [23], [24]. We investigated the perfor-
mance of the RODS algorithm with increasing dictionary
size and data dimension. For this experiment, the data
dimensions chosen are {5, 50, 100, 150, 200, 250, 300} and
dataset size is 10,200 including 200 outliers. The AUC score
is calculated with respect to the dictionary size in the range
(3, 800). In all the cases, « is selected as 10 percent of the dic-
tionary size. Fig. 3 shows that the performance of our algo-
rithm improves as the data dimension increases. For each
dimension, the performance is optimal for a certain over-
complete range of dictionary size; the overcompleteness is
with respect to the data dimension.

Fig. 4 illustrates the scalability of the RODS algorithm in
comparison to the state-of-the-art algorithms with respect to

—RODS
——k-means——

1F ——k-means—— r -
— Active-Outlier _ot — Active-Outlier
0 —LOF —LOF —RODS
— Feature Bagging 4 —Feature Bagging -2 ——k-means—
710 160 260 300 400 560 ) 0.5 1 1.5 2 25 3 0 5 10 15 20
Dimension of data Size of the dataset x10* Size of the dataset x10*

(a) Scalability in data dimensionality m

(b) Scalability in dataset size N

(c) Scalability in dataset size N

Fig. 4. Scalability of the RODS algorithm in comparison to other algorithms. (a) Comparison of runtimes of the algorithms with respect to the data
dimension. As the dimension increases, RODS emerges as the winner. (b) Comparison of runtimes of the algorithms with respect to the dataset
size. RODS is significantly better than all competing algorithms except k-means—, to which it is very close. (c) Runtime comparison of RODS with
k-means— over extended dataset size. As size increases, RODS emerges as the winner.



DUTTA ET AL.: RODS: RARITY BASED OUTLIER DETECTION IN A SPARSE CODING FRAMEWORK 489

TABLE 2

Characteristics of the Benchmark Datasets Used for Performance Evaluation
Datasets Normal class Outlier class # Dimensions # Samples # Outliers
Shuttle 1,4,5 2,3,6,7 9 43,500 186
Ann-thyroid 3 6 3,581 93
WBC 2 9 464 20
Pendigits all digits except 4 50% of digit 4 16 7,104 390
Glass 1,2,3,4 56,7 9 214 51
Ionosphere g 34 351 126
Arythmia 1,2,6,10,16 3,4,5,7,8,9,14,15 279 452 66
KDD-CUP 1999 normal, neptune, smarf others 38 494,021 8,752

increasing data dimension and dataset size. The algorithms
used for comparison include k-means-[13], Local Outlier
Factor [12], Active-Outlier [14] and Feature Bagging [15].
Fig. 4a shows the running time required with respect to
increasing data dimension for all the algorithms. As the
dimension increases, RODS emerges as the winner.
k-means— and Active-Outlier perform better than LOF and
Feature Bagging. Figs. 4b and 4c show the running time
required with respect to increasing dataset size for all the
algorithms. The runtime increases exponentially for all algo-
rithms; however, it increases much faster for LOF and Fea-
ture Bagging than the others. RODS and k-means— seem
close enough to be joint winners, but as the dataset size is
increased further, as shown in (c), RODS performs better.

5.2 Experiments on Benchmark Data Sets

We performed our experiments using seven datasets from
UCI machine learning repository [40] and the 1999 KDD-
CUP dataset.'

5.2.1 Experimental Setup

We used seven UCI benchmark datasets: Shuttle, Ann-thy-
roid, Breast Cancer Wisconsin Diagnostic (WBC), Pendigits,
Glass, Ionosphere and Arythmia. In each dataset, the data
belonging to the smallest class was considered as the outlier
set and the remaining data as the normal set. Details of the
normal and outlier sets are presented in Table 2. The normal
and outlier definitions are only used during the evaluation
of the algorithms and not during the scoring phase since
our algorithm is unsupervised.

The KDD-CUP 1999 dataset [40] is a large-scale data con-
taining a total of 494,021 instances describing the connec-
tions of sequences of TCP packets. The goal is to distinguish
between normal and bad connections. We considered all of
the 38 numerical attributes and discarded the categorical
attributes in our experiments. Out of the 23 classes in the
dataset, the three classes which contain 98.3 percent of the
entire data are considered to be normal and the data from
the other twenty classes will be the outliers. For all the data-
sets, we normalized each dimension of the data by subtract-
ing the mean and dividing by the standard deviation for
each data point so that each dimension has zero mean and
unit variance.

We compared the RODS algorithm with several state-
of-the-art outlier detection algorithms including k-means—

1. kdd.ics.uci.edu/databases /kddcup99/kddcup99.html

[13], Local Outlier Factor [12], Active-Outlier [14] and
Feature Bagging [15]. In terms of the implementation, the
code for k-means— algorithm was obtained from the
authors of [13] and the outlier detection toolbox® was
used to obtain the results for the remaining algorithms.
Among these algorithms, our algorithm, k-means—-, LOF
and Feature Bagging are unsupervised. Active-Outlier
converts the outlier detection to a classification problem
and hence supervision is required.

The ranges for the parameter values used for the UCI
datasets are as follows. The number of dictionary atoms
was set between 10 and 100 and maximum number of ¢,
norm was set between 5 and 20. Number of cluster centers
was between 10 and 100 for k-means—, number of classifiers
was set between 10 and 30 for Active Outlier, size of neigh-
borhood was set between 3 and 25 for LOF and Feature Bag-
ging algorithms. The general guideline is to assign higher
values in the range for all parameters for a larger dataset
and a lower values for a smaller dataset. The number of
selected outliers was always set to the exact number for the
k-means— algorithm. For KDD-CUP 1999 dataset, the dictio-
nary size and maximum number of ¢/, norm were set to 200
and 20, respectively, for the RODS algorithm. Number of
cluster centers were set to 200 for k-means— and number of
classifiers was set to 30 for Active Outlier algorithm. It
should be noted that most of these algorithms are not
extremely sensitive to the particular parameter value that is
being set and will produce a reasonable result when the
parameters are chosen in the appropriate range depending
on the size of each dataset.

5.2.2 Comparison Results

Performance of the algorithms was measured using the
Area under the ROC curve (AUC) which is a standard met-
ric used for evaluating the outlier detection algorithms. The
ROC curve is a two-dimensional representation drawn as
true positive rate (TPR) versus false positive rate (FPR). A
perfect model will have a AUC score of 1 and random
guessing will have score around 0.5. The AUC values (along
with the standard deviations) of the algorithms are shown
in Table 3.

The average AUC values for 50 different runs are being
reported along with the standard deviations. In the case of
LOF, there will not be any standard deviation because it
produces the same result for every run and does not depend

2. https:/ /bitbucket.org/gokererdogan/outlier-detection-toolbox /
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TABLE 3
Comparison of the AUC Scores on the Benchmark Datasets Using Various Outlier Detection Algorithms
Datasets RODS k-means- [13] Active-Outlier [14] LOF [12] Feature Bagging [15]
Shuttle 0.979 (£0.062) 0.942 (£0.007) 0.949 (£0.081) 0.882 0.833 (£0.058)
Ann-thyroid 0.976 (£0.007) 0.977 (£0.002) 0.979 (£0.003) 0.869 0.873 (£0.036)
WBC 0.978 (£0.002) 0.973 (£0.002) 0.872 (£0.095) 0.811 0.850 (£0.052)
Pendigits 0.661 (0.160) 0.556 (£0.065) 0.617 (£0.105) 0.492 0.507 (£0.027)
Glass 0.899 (£0.024) 0.888 (£0.022) 0.790 (£0.029) 0.799 0.858 (£0.048)
Ionosphere 0.881 (£0.026) 0.819 (£0.021) 0.834 (£0.018) 0.838 0.848 (40.083)
Arythmia 0.783 (£0.019) 0.765 (£0.002) 0.553 (+0.017) 0.768 0.769 (+0.013)
KDD-CUP 1999 0.979 (0.007) 0.966 (£0.009) 0.552 (£0.055) - -
TABLE 4

Comparison of the Time Taken (in Seconds) for Various Outlier Detection Algorithms to Obtain the
Results on the Benchmark Datasets

Datasets RODS k-means-—[13] Active-Outlier [14] LOF [12] Feature Bagging [15]
Shuttle 2.43 9.25 9.07 775.55 4,369.94
Ann-thyroid 0.59 0.62 1.53 20.31 104.23

WBC 0.04 0.29 0.55 418 29.57
Pendigits 0.54 1.13 5.14 55.41 201.55

Glass 0.02 0.15 0.48 1.06 4.09
Ionosphere 0.03 0.31 0.93 1.89 7.44
Arythmia 1.51 1.53 1.76 4.89 5.10
KDD-CUP 1999 359.55 2,669.92 485.05 - -

on the initialization unlike other algorithms. It can be clearly
seen that the RODS outperforms other algorithms in almost
all of the datasets (except in the Ann-thyroid dataset where
RODS gives a competitive result).

In addition, the RODS also outperforms all other algo-
rithms with respect to the computation time taken. Table 4
shows the average time taken by the algorithms on different
datasets. All the experiments were performed using Matlab
version R2013a on an Intel Core i7-2600 3.40 GHz CPU with
32GB RAM. Due to the quadratic complexity of the LOF
and Feature Bagging algorithms, the memory requirements
in the specified system were not sufficient for the KDD-
CUP 1999 dataset. It can be observed that the proposed
RODS algorithm is much faster and efficient compared to
the other competing algorithms.

5.3 Saliency Detection in Images

To demonstrate the effectiveness of the proposed algorithm
on high-dimensional data, we evaluate the performance on
a real-world problem of saliency detection in image data.

5.3.1 Saliency Detection

An important goal of saliency detection in images is to under-
stand the attentional mechanism of human visual system. In
images, a salient region (or object) is one that stands out due
to some property that occurs infrequently among the regions
(or objects) in its neighboring spatial locations [41], [42]. Thus,
saliency detection can be formulated using a reconstruction
process and interpreted as an outlier detection problem [43].
We used Toronto dataset,®> which is one of the most widely
used datasets for performance evaluation in saliency detec-
tion algorithms for image data [44]. This dataset consists of

3. http:/ /www-sop.inria.fr/members /Neil.Bruce/

120 color images with a resolution of 511 x 681 pixels. It has
both indoor and outdoor environments. The images were pre-
sented in a random order to 20 subjects for four seconds each,
with a mask between each pair of images.

5.3.2 Performance Evaluation

Using the Toronto dataset, the saliency maps generated
from the RODS algorithm are compared with those from
k-means—, LOF, Feature Bagging and two other well known
saliency detection algorithms including Itti* [45] and GBVS®
[46]. It should be noted that the Active-Outlier algorithm
cannot be used for this problem since it is supervised and
hence was excluded from the comparison.

As part of data preprocessing, each image was down-
sampled to 60 x 80. Then each image was divided into 8 x 8
overlapping square patches at each pixel and converted to a
column vector of size 192 (being a color image, it has three
channels: R, G, B). These vectors collected from one image
creates a dataset (X € R192%3869) for the RODS, k-means—,
LOF and Feature Bagging. Then the task is to assign an out-
lier score to each patch in the image with respect to all other
patches in that image. The patches with high outlier score
will be more salient than the others. These outlier scores are
finally arranged in a 2D grid for getting the saliency map.
Saliency map is a gray scale representation where bright
regions represent salient regions and dark regions represent
non-salient regions. Also, the level of brightness indicates
the level of saliency.

Fig. 5 shows some of the saliency maps generated from
the models in comparison to human eye-tracking results.
We can see that the saliency maps produced by the RODS

4. ilab.usc.edu/toolkit/
5. www.vision.caltech.edu/~harel /
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Fig. 5. Sample images from the Toronto dataset, the corresponding human fixation, and the saliency maps generated using RODS and various other

state-of-the art algorithms.

algorithm are more accurate and less noisy compared to
other algorithms which either produce imprecise and inac-
curate results or contain a lot of noise. The AUC scores have
also been used to evaluate the performance. Table 5 com-
pares the mean AUC scores (averaged over all the images in
the Toronto dataset) along with the average time taken to
obtain the results for each algorithm. It can be seen that
RODS not only produces the best AUC scores but also
achieves it much faster than the competing algorithms.

5.4 Abnormal Event Detection in Video Streams

Here we demonstrate the performance of the online version
of the RODS algorithm in the context of video streams. We
used the popular UCSD dataset [47]. For our experiments,
we used one of the datasets, namely, Ped1, which contains 34
training and 36 testing video clips, each with pixel resolution
of 158 x 238. The training sets have all normal events and
contain only pedestrians on the pedestrian walkway. Each
testing video clip contains at least one abnormal event with
the presence of bicyclists, skaters, small cars, and people in
wheelchairs. These are considered to be outliers based on the

TABLE 5
Comparison of Different Algorithms on the Toronto (Image)
Dataset Using Mean AUC Values and Time Taken

Algorithm Mean AUC Average time
taken (seconds)

RODS 0.653 0.73
k-means— [13] 0.624 47.09

LOF [12] 0.534 43.51
Feature bagging [15] 0.557 125.73

Itti [45] 0.635 0.78
GBVS [46] 0.634 3.65

context of the scene because they are rare events on the
pedestrian walkway. The goal here is to detect these events
in the testing dataset in an unsupervised setting.

5.4.1 Evaluation Metrics

The following two evaluation metrics which are widely
used for measuring the accuracy of abnormal event detec-
tion in video streams are used for our comparisons [48].

e  Frame-level evaluation. An algorithm determines the
frames that contain abnormal events. The result is
compared to the frame-level ground truth annotation
of each frame and the number of true and false posi-
tive frames are calculated.

e  Pixel-level evaluation. An algorithm determines the
pixels that are related to abnormal events. If at least
40 percent of the truly anomalous pixels are detected
for an abnormal frame, it is considered as an accurate
detection.

For both the cases, true positive rate and false positive

rate are calculated as follows:

number of true positive frames

TPR =

number of positive frames

11
number of false positive frames (1)

FPR =

number of negative frames

TPR and FPR is calculated for different threshold val-
ues. Then, ROC curve is drawn as the TPR versus FPR.
Finally, the performance is summarized using the equal
error rate (EER) which is the ratio of misclassified frames
at which FPR is equal to 1-TPR in the ROC curve, for
both frame-level and pixel-level criteria. A low EER
value indicates a better performance.
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Fig. 6. Abnormal frames from UCSD Ped1 (first row) and the detection result from the RODS algorithm (second row). The bikers, skater, and car
were detected as anomalous patterns (highlighted in red, best viewed in color).

Fig. 7. Examples of video frames with relatively minor changes from the chosen dataset. (From left to right) Top row shows frames 48, 49, 50, 51,
while middle row shows frames 78, 79, 80, 81. Minor changes occur at frames 51 and 81. Bottom row shows frames 64, 65, 66, 67 where green color

occurs due to camera artifact.

5.4.2 Performance Evaluation

The performance of RODS was compared with that of a
number of state-of-the art abnormal event detection algo-
rithms. Since most of the previously mentioned outlier
detection algorithms are offline (only batch versions), it was

TABLE 6
Performance of Outlier Detection on the USCD Ped1 Datasets

Algorithm Frame-level EER Pixel-level EER
RODS 19.2 31.7
Sparse [48] 19 54
MPPCA [49] 35.6 76.8
Social force [50] 36.5 59.1
LMH [51] 38.9 67.4

not appropriate to compare with them, as the dataset
becomes very large and high-dimensional for streaming
videos. Hence, for comparison of performance evaluation,
the following algorithms which are widely used for anom-
aly detection in streaming videos have been used: Sparse
[48], MPPCA [49], Social force [50] and LMH [51].

The proposed framework uses local spatiotemporal
volumes around the detected interest points in each clip
as an input representation. Here, we adopt a spatiotem-
poral interest point detector [52] to extract cuboids
which contain the spatiotemporally windowed pixels.
Before learning the dictionary, each cuboid is converted
to a vector and normalized to have a unit ¢, norm. The
inputs were cuboids of size 13 x 13 x 10 pixels and 400
dictionary atoms were used.
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Fig. 8. (a) Result of applying online RODS algorithm on video sequences
from test movie. (b) Result of applying incremental (blue asterisks) and
static periodic (red x) LOF algorithm (k=10) on video sequences from
test movie. For the static LOF algorithm, LOF values that are shown for
each frame t are computed when the latest data record is inserted. (b) is
reproduced from [34] with permission.

The RODS algorithm could detect bikers, skaters, small
cars as outliers or abnormal events. Some of the snapshots®
of the results are shown in Fig. 6. Table 6 shows the quanti-
tative performance comparison of the RODS model with
other existing models. It can be clearly seen that RODS out-
performs other algorithms.

5.5 Change Detection in Streaming Data

We have selected a dataset composed of 100 video frames’ for
the experiments on change detection. As in [34], the goal is to
detect sudden changes in the video frames. Major changes
occur in frames 21, 31, 41, 61, 71 and 91, while relatively
minor changes occur in frames 51 and 81. The causes of the
major changes include appearance of a new object (in frame
21), camera zooms into the objects (frame 31), and completely
new content (frames 41, 61, 71, 91) [34]. Minor changes are
caused by faster movement of the camera (see Fig. 7). We
have used GIST features [53] to represent each video frame.
As shown in Fig. 8, the proposed Online-RODS algorithm

6. A video demo of the results is made available at sites.google.com/
site/jayantadutta05/tkdedemo
7. www.cis.temple.edu/~latecki/TestData/SimTest.zip
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Fig. 9. Outlier score for each trajectory using Online-RODS algorithm.

can detect all the major changes similar to Incremental LOF
[34]. While Incremental LOF is completely oblivious to these
minor changes, the RODS algorithm produces small increase
in anomaly scores for these frames. Thus, RODS is more sen-
sitive to changes than the Incremental LOF and produces a
response proportional to the degree of change. However, due
to the use of GIST features which represents global informa-
tion, RODS is not susceptible to local noise as evident from its
performance in frame 66 where it did not elicit a response but
the Incremental LOF did (see Fig. 7).

The performance of our Online-RODS algorithm in detec-
tion of abnormal events is tested on a dataset of video motion
trajectories.® The dataset consisted of 239 trajectories with
only two trajectories (225, 237) identified as abnormal. Each
trajectory is of 15 dimensions. The outlier score of each trajec-
tory using Online-RODS algorithm is shown in Fig. 9. It can
be seen that both the trajectories 225 and 237 have signifi-
cantly higher outlier score than other trajectories which is
very similar to the results produced by Incremental LOF [34].

6 CONCLUSIONS

We proposed a new definition of outlier whereby, given a
dictionary of atoms learned using the sparse coding objec-
tive, the outlierness of a data point is a function of the fre-
quency of each atom in reconstructing all data points (a.k.a.
NLAR) and the strength by which it is used in reconstruct-
ing the current point. The RODS algorithm was developed
which operates in time linear in size of the dataset. We also
presented an efficient online extension of the algorithm
which updates the NLARs of the atoms and computes the
outlier scores for the data points in the streaming context.
Compared to several state-of-the-art outlier detection meth-
ods, the RODS algorithm performs better on various bench-
mark datasets and real-world problems using standard
evaluation metrics.
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