
A Bayesian Perspective on Early Stage
Event Prediction in Longitudinal Data
Mahtab Jahanbani Fard, Student Member, IEEE, Ping Wang, Sanjay Chawla,

and Chandan K. Reddy, Senior Member, IEEE

Abstract—Predicting event occurrence at the early stage of a longitudinal study is an important and challenging problemwhich has high

practical value inmany real-world applications. As opposed to the standard classification and regression problemswhere a domain

expert can provide labels for the data in a reasonably short period of time, training data in such longitudinal studies must be obtained only

by waiting for the occurrence of a sufficient number of events. Survival analysis aims at directly predicting the time to an event of interest

using the data collected in the past for a certain duration. However, it cannot give an answer to the open question of “how to forecast

whether a subject will experience an event by end of a longitudinal study using event occurrence information of other subjects at the early

stage of the study?” . The goal of this work is to predict the event occurrence at a future time point using only the information about a

limited number of events that occurred at the initial stages of a longitudinal study. This problem exhibits twomajor challenges: (1) absence

of complete information about event occurrence (censoring) and (2) availability of only a partial set of events that occurred during the

initial phase of the study. We propose a novel Early Stage Prediction (ESP) framework for building event predictionmodelswhich are

trained at the early stages of longitudinal studies. First, we develop a novel approach to address the first challenge by introducing a new

method for handling censored data using Kaplan-Meier estimator.We then extend the Naive Bayes, Tree-Augmented Naive Bayes (TAN),

and Bayesian Networkmethods based on the proposed framework, and develop three algorithms, namely, ESP-NB, ESP-TAN, and ESP-

BN, to effectively predict event occurrence using training data obtained at an early stage of the study. More specifically, our approach

effectively integrates Bayesianmethodswith an Accelerated Failure Time (AFT)model by adapting the prior probability of the event

occurrence for future time points. The proposed framework is evaluated using a wide range of synthetic and real-world benchmark

datasets. Our extensive set of experiments show that the proposed ESP framework is, on an average, 20 percent more accurate

compared to existing schemeswhen using only limited event information in the training data.

Index Terms—Bayesian network, Naive Bayes, longitudinal data, survival analysis, early stage prediction, regression, event data

Ç

1 INTRODUCTION

IT has become a common practice in many application
domains to collect data over a period of time and record

the occurrence of events of interest within a given period.
These studies are usually called longitudinal studies, in
which the subjects are followed over time for monitoring
certain risks. Developing effective prediction models to esti-
mate the outcome of a particular event of interest is a critical
challenge in longitudinal studies. Such studies are ubiqui-
tous in various real-world domains, such as healthcare, reli-
ability, engineering, etc [1], [2], [3] and their primary goal is
to build models that can accurately determine the probabil-
ity of occurrence of a particular event of interest at a specific
time point [4]. One of the primary challenges in these longi-
tudinal studies is that, as opposed to the standard super-
vised learning problems where a domain expert can

provide labels within a reasonable amount of time, training
data in such tasks must be obtained only by waiting for the
occurrence of a sufficient number of events. Therefore, the
ability to leverage only a limited amount of available informa-
tion at early stages of longitudinal studies to forecast the event
occurrence at future time points is an important problem. In
addition, occurrence of the event is not necessarily
observed for all the instances in the study and hence the
outcome variable might be incomplete. This phenomenon
is also known as ‘censoring’. Building event forecasting
models in the presence of censored data is a challenging
task which has a significant practical value in longitudinal
studies. The main goal of this work is to answer the follow-
ing open question: “how to forecast whether a subject will
experience an event by the end of a longitudinal study using
event occurrence information at early stages of the study?”. This
problem exhibits two major challenges: 1) absence of com-
plete information about event occurrence (censoring) and
2) availability of only a partial set of events that occurred
during the initial phase of the study.

Let us consider the following real-world applications
which motivate the early stage time-to-event prediction.

� In the healthcare domain, when there is a new treat-
ment option (or drug) that is available, one would
like to study the effect of such a treatment on a par-
ticular group of patients in order to understand the
efficacy of the treatment. This patient group is moni-
tored over a period of time and an event here
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corresponds to the patient being hospitalized due to
treatment failure. The effectiveness of this treatment
must be estimated as early as possible when there
are only a few hospitalized patients [5].

� In education, early identification of students at the
risk of dropping out of their school at the beginning
of their study is crucial for improving the graduation
rates. The ability to build an accurate prediction
model using only the early stage data can be practi-
cally very useful [6].

� Reliability prediction focuses on developing accurate
models that can estimate how reliable a newly
released product will be. An event here corresponds
to the time taken for a device to fail. In such applica-
tions, it is desirable to be able to estimate which devi-
ces will fail and if so, when they will fail. If such
models can be learned using information from only
a few device failures, then early warnings about
future failures can be given.

� In credit score modeling applications, the goal is to
accurately estimate whether a customer will default
or not and if they default, when the default is going
to happen? If a model can accurately predict using
only a few default cases, then better precautions can
be taken against those who will most likely default
in the future.

These practical scenarios clearly emphasize the need to
build algorithms that can effectively make event predictions
using training data that contains only a few events (i.e., at
an early stage of a longitudinal study). More precisely, the
goal here is to predict the event occurrence for a time period
beyond the observation time window (when there are only
a few events that have occurred in the dataset). Thus, this
paper aims to develop a method that can use only a limited
amount of available information at the initial phase of a lon-
gitudinal study to forecast the event occurrence at future
time points.

For a better understanding of the complexities and con-
cerns related to this problem, let us consider an illustrative
example shown in Fig. 1. In this example, a longitudinal
study is conducted on six subjects and the information for
event occurrence until time tc is recorded, where only sub-
jects S2 and S5 have experienced the event. The goal of our
work is to predict the event occurrence by time tf (e.g., the
end of study). In other words, during the training phase, the
event occurrences until the observation time tc are the only
ones available and the objective is to make predictions about
the event occurrences by the end of study tf . It should be

noted that except subjects S2 and S5, all others are consid-
ered to be censored at tc (marked by ‘X’). However, an event
will occur for subjects S1 and S6 within the time period tf .

This scenario clearly motivates the need for building
algorithms that can effectively forecast events using the
training data at time tc when only a few events have
occurred. This is an important problem in the domain of
longitudinal studies since the only way to collect reliable
data here is to wait for sufficient period of time until the
complete information about event occurrence is acquired.
In this paper, we will introduce a new method for handling
censored data using Kaplan-Meier estimator. We will then
develop a novel Early Stage Prediction (ESP) framework for
building event prediction models which are trained at early
stages of longitudinal studies. More specifically, we propose
a framework based on Naive Bayes, Tree-Augmented Naive
Bayes (TAN) and Bayesian Network, and develop three
algorithms, namely, ESP-NB, ESP-TAN and ESP-BN to
effectively predict event occurrence using the training data
obtained at early stage of the study. The proposed frame-
work is evaluated using a wide range of synthetic and real-
world benchmark datasets. Our extensive set of experi-
ments show that the proposed ESP framework is able to
more accurately predict future event occurrences using only
a limited amount of training data compared to the other
alternative methods.

The recently proposed popular variants in the machine
learning field such as classification, semi-supervised learn-
ing, transfer learning, imbalance learning and multi-task
learning are not suitable for tackling this problem primarily
due to the fact that obtaining a labeled training set at the
end of the study is not feasible since the data is available
only until tc. On the other hand, existing statistical techni-
ques, especially in the field of survival analysis, do not have
the ability to handle the problem of predicting event occur-
rence in the early stage prediction problem. The main rea-
son is that the training and testing data are collected for the
same time window in survival models, and the probability
of event predictions given by any survival model is valid
only for the specific observed time. The goal of this work,
on the other hand, is to build model at the early stage of the
study, and predict the event occurrence for the new subjects
collected in the future time point. In other words, the
“future” in our early stage prediction problem is different
from that in the regular survival analysis methods. It should
be noted that this problem is completely different from the
time-series forecasting problem since the goal here is to pre-
dict the outcome of (binary) event occurrence for each sub-
ject for a time which is much beyond the observation time
(as opposed to merely predicting the next time step value
which is typically done in the standard time-series forecast-
ing models). Also, such longitudinal survival data normally
has missing information on events during the observation
time. This incompleteness in events makes it difficult for
standard machine learning methods to learn from such
data. There are two naive ways to handle this problem:
ignoring this censored data and treating censoring time as
the actual time of event occurrence. However, these meth-
ods may provide a suboptimal model because of neglecting
the available information or may provide an underestimate
of the true performance of the model.

Fig. 1. An illustration to demonstrate the problem of event forecasting at
time tf (e.g., end of study) using the information available only until time tc.
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To solve the problem discussed above, we introduce an
intuitive method to handle the censoring problem in the lon-
gitudinal survival data. We then develop a Bayesian frame-
work for early stage event prediction to tackle the problem of
insufficient amount of training data on event occurrence in
the initial phases (early stage) of longitudinal studies. More
specifically, we are combining the power of Bayesian
method(s) with the concept of parametric survival analysis
to produce a solution that can be effective when there are
only few events that have occurred. Thus, the main contribu-
tions of this paper can be summarized as follows:

� Develop a new labelling method to handle censored-
ness in longitudinal studies using the Kaplan-Meier
estimator.

� Propose an Early Stage Prediction framework which
estimates the probability of event occurrence for a
future time point using various extrapolation
techniques.

� Develop probabilistic algorithms based on Naive
Bayes, Tree-Augmented Naive Bayes and Bayes-
ian Network, (we call them ESP-NB, ESP-TAN
and ESP-BN, respectively), for early-stage event
prediction by adapting the posterior probability of
event occurrence.

� Evaluate the proposed algorithms using several syn-
thetic and real-world benchmark datasets and com-
pare the effectiveness of the proposed methods with
various classification and survival methods.

The rest of the paper is organized as follows. In Section 2,
a brief review of the related literature is provided. Section 3
introduces the notations and definitions that are necessary
to comprehend our proposed algorithms. We also propose a
new method to handle the censored data in this section. The
proposed Bayesian approach for early stage event predic-
tion on survival data is described in Section 4. Section 5
demonstrates the experimental results and shows the practi-
cal significance of our work using various real-world data-
sets. Finally, Section 6 concludes the discussion.

2 RELATED WORK

Before we discuss the early stage prediction framework in
detail, the related work in the areas of using machine learn-
ing techniques for survival analysis will be briefly presented
in this section.

Survival analysis is a subfield of statistics where a wide
range of techniques have been proposed to model time-to-
event data [7] in which the dependent variable is subject to
censoring (e.g., failure, death, admission to hospital, emer-
gence of disease, etc.) [8]. The ordinary Least-Squares, the
most common method for solving regression problems, is
based on minimizing sum of squared errors. It does not work
in the presence of censoring because it is not possible to esti-
mate the error between the true response and the predicted
response obtained from the regression model [9]. Although it
is challenging to know the relative rank of the event occur-
rences of the censored instances, the well-known likelihood
method has the ability to solve the censored regression prob-
lem [10]. Different techniques have been proposed based on
Maximum Likelihood Estimation (MLE) to overcome the dif-
ficulty of handling censored data [11], [12].

Similar to survival data which captures time to events of
interest, time series methods deal with slightly different
kind of time-centered analysis [13], [14]. Time series analy-
sis tackles the problem of studying experimental data that
have been observed at different points of time [15].
Recently, there are some efforts to address the problem of
early classification in time-series data [16], [17]. Although
time-series techniques have been used in many domains
[18], the standard time-series methods are primarily used
for discovering patterns in time-series databases or forecast-
ing the future values for existing time-series [19], [20], [21].
In our problem, the survival estimation is used to summa-
rize the survival times of a group of objects (e.g., patients)
while the response variable in time-series methods are out-
comes depending on time which is an independent variable.
Hence, although these two problems appear to be similar,
the problem being tackled in this paper is significantly dif-
ferent and cannot be solved using time-series methods. In
the presence of censoring and when the goal is to predict an
occurrence of an event (which is usually binary in nature),
time-series methods are not applicable. The only common
theme that connects our approach to time-series methods is
their ability to forecast in the future based on the events that
occurred until a given time point.

There has been an increasing interest in adapting popu-
lar machine learning techniques to survival data [22], [23].
However, longitudinal data cannot be modeled solely by
traditional classification or regression approaches since cer-
tain observations have event status (or class label as event)
and the rest have information about the outcome variable
only until a specific time point in the study. The censored
observations in survival data might look similar to unla-
beled samples in classification or unknown response in
regression problem in the sense that status or time-to-event
is not known for some of the observations. Such censored
data have to be handled with special care within any
machine learning method in order to make good predic-
tions. Also, for censored data in survival analysis, we have
information until a certain time point (before censoring
occurs) and this information should be included in the
model in order to obtain the most optimal result. Hence, the
standard semi-supervised techniques [24], [25] are not
directly applicable to this problem.

Several machine learning based approaches have been
proposed recently to address this censored data issue. Deci-
sion trees [26], [27], [28] and Artificial Neural Networks
(ANN) [29], [30], [31], [32] for censored data represent some
of the earliest works in this field. Well-known Support Vec-
tor Machine (SVM) algorithms have been adopted to accom-
modate censored data. Most of these methods treat the
problem as regression [28], [33], [34], [35], [36]. More
recently, advanced machine learning methods such active
learning and regularized learning have also been incorpo-
rated into survival models [37], [38]. Other studies aim at
modeling the problem within classification setting [39], [40].
However, comparison of the performance of these
approaches show that these methods do not yield any sig-
nificant improvements over the standard Cox model. There
are also few other studies which aim at handling censored
data as pre-processing step by giving some weights to the
censored observations [41], [42]. In this paper, we tackle the
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problem of censoring using Kaplan-Meier method [43] to
estimate the probability of event and the probability of cen-
soring for each censored instance. Such an intuitive
approach can be easily applied to survival data before any
further analysis is performed.

One of the popular choices for predictive models is the
Bayesian approaches including Naive Bayes and Bayesian
Network which have been used widely for classification
[44] and successfully applied in many domains [45]. How-
ever, there has been only few works in the literature using
Bayesian methods for survival data [22], [46], [47]. Bayesian
networks can visually represent all the relationships
between the variables which makes it interpretable for the
end users. This is in contrast to the simple Naive Bayes
method that makes the independence assumption between
all the features [44]. Despite the applicability of Bayesian
network in the survival analysis domain, only a limited
number of research efforts exist for tackling the censored
data challenges. The authors of [48] developed a Bayesian
neural network approach to model censored data. [49] gives
weight to censored instances in order to learn Bayesian net-
works from survival data. More recently, [47] adapts a
Bayesian network for survival data using an approach
called inverse probability of censored weighting for each of
the record in the dataset to handle the censoring issue.

The proposed work is significantly different from these
previous studies since none of these works perform fore-
casting of event occurrence for a time beyond the observa-
tion time. Existing methods only use the training data that
is collected for the same time period as the test data. How-
ever, in real-world problems it is beneficial to make forecast
of the events beyond the time period available in the train-
ing data. The basic idea of our approach is to take advantage
of generative component of Bayesian methods (such as
Naive Bayes, Tree-Augmented Naive Bayes and Bayesian
network) to build a probabilistic predictive model [50]
which will allow us to adapt the prior probability of event
for different time points during forecasting. Also, it is
important to note that discriminative models such as sup-
port vector machines or logistic regression are not suitable
for the forecasting framework due to the unavailability of
the prior probability component. On the other hand, for dis-
criminative models there is no need to model the distribu-
tion of the observed variables. Thus, they cannot be a good
choice when we want to express more complex relation-
ships between the dependent variable and other attributes
[51]. Fig. 2 positions our paper along with the related meth-
odologies available in the literature. It gives a complete

characterization and some relevant references for modeling
and forecasting approaches on time-series and event data.

3 PRELIMINARIES

This section introduces the preliminaries required to
comprehend the proposed framework. First, the nota-
tions used in our study and our problem formulation are
described. Next, details about the widely used Bayesian-
based approaches such as Naive Bayes, Tree-Augmented
Naive Bayes and Bayesian Network are provided. These
are the important components of the proposed method
for predicting events in survival data at early stage of
longitudinal studies. Finally, basic concepts of survival
analysis are explained and a new method to handle cen-
sored data is introduced.

3.1 Problem Formulation

We begin by presenting the basic concepts and notations for
survival analysis and Bayesian methods. Table 1 describes
the notations used in this paper.

Let us consider a longitudinal study where the data about
n independent subjects are available. Let the feature vector
for sample i be represented by xi ¼ hxi1; . . . ; ximiwhere xij is
the jth feature for subject i. For each subject i, we define Ti as
the event time, and Ci as the last follow-up time or censoring
time (the time after which the subject is not monitored). For
all the subjects i ¼ f1; . . . ; ng, Oi denotes the observed time
which is defined as minðTi; CiÞ. Then, the event status is
defined as di ¼ IfTi � Cig. Thus, a longitudinal dataset is
represented as D ¼ fxi; Ti; di; i ¼ 1; . . . ; ng where xi 2 Rm,

Ti 2 Rþ, di 2 f0; 1g.
It should be noted that we only have the information for

few events until the time tc. Our aim is to predict the event
status at time tf where tf > tc. Let us define yiðtcÞ as event
status for subject i at time tc. Suppose, among n subjects in
the study, only nðtcÞ will experience the event at time tc.
After our data transformation, given the training data
ðxi; yiðtcÞÞ, we can build a binary classifier using yiðtcÞ as the
class label. If yiðtcÞ ¼ 1, then the event has occurred for sub-
ject i and if yiðtcÞ ¼ 0, then the event has not occurred. It
should be noted that a new classifier will have to be built to
estimate the probability of event occurrence at tf based on
the training data that is available at tc.

Fig. 2. Characterization of modeling and forecasting approaches on
time-series and event data.

TABLE 1
Notations Used in This Paper

Name Description

n number of subjects
m number of features
x n�mmatrix of data
T n� 1 vector of event times
C n� 1 vector of last follow-up times
O n� 1 vector of observed times
d n� 1 binary vector for event status
tc specified time until which information is available
tf desired time at which the forecast of future events

is made
yiðtÞ event status for subject i at time t
F ðtÞ cumulative event probability at time t
SðtÞ survival probability at time t
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3.2 Bayesian Methods

We will now describe the basic idea of three popular Bayes-
ianmethods used in the context of prediction, namely, Naive
Bayes, Tree-Augmented Naive Bayes, and Bayesian Net-
work. All the three methods have certain commonalities in
terms of using the conditional and prior probabilities. The
main distinction between them is the way in which they
model the dependency between the attributes and the way
inwhich the conditional probability terms are computed.

3.2.1 Naive Bayes Classifier

Naive Bayes is a well-known probabilistic model which is
widely used in many applications. Let us say that we have a
training set similar to that in Fig. 1 where the event occur-
rence information is available until time tc. Based on the
binary classification transformation explained above, using
the Naive Bayes algorithm the event probability for subject i
can be estimated as follows:

P
�
yðtcÞ ¼ 1 j x; t � tc

�
¼ P

�
yðtcÞ ¼ 1; t � tc

�Qm
j¼1 P

�
x ¼ xj j yðtcÞ ¼ 1

�
P ðx; t � tcÞ :

(1)

The first component of the numerator is the prior probabil-
ity of the event occurrence at time tc. The second component
is a conditional probability distribution which can be esti-
mated as follows:

P
�
x ¼ xj j yðtcÞ ¼ 1

� ¼Pn
i¼1
�
yiðtcÞ ¼ 1; xij ¼ xj

�Pn
i¼1ðyiðtcÞ ¼ 1Þ : (2)

Thus, it is a natural estimate for the likelihood function in
Naive Bayes. The estimated probability that a random vari-
able takes a certain value is equal to the number of times the
value was observed divided by the total number of observa-
tions. This formula is valid for discrete attributes; However,
it can be easily adapted for continuous variables as well [52].

3.2.2 Tree-Augmented Naive Bayes Classifier

One extension of Naive Bayes is the Tree-Augmented Naive
Bayes where the independence assumption between the
attributes is relaxed [44]. The TAN algorithm imposes a tree
structure on the Naive Bayes model by restricting the inter-
action between the variables to a single level. This method
allows every attribute xj to depend upon the class as well as
one other attribute at most, xpðjÞ, called the parent of xj.

Illustration of the basic structure of the dependency in
Naive Bayes and TAN is shown in Fig. 3. Given the training
set ðx; yðtcÞÞ, first the tree for the TAN model should be con-
structed based on the conditional mutual information [44]
between two attributes as

I
�
xj; xk j yðtcÞ

�
¼

X
xj;xk ;yðtcÞ

P
�
xj; xk; yðtcÞ

�
log

P
�
xj; xk j yðtcÞ

�
P
�
xj j yðtcÞ

�
P
�
xk j yðtcÞ

�: (3)

This function measures the information that xk provides
about xj when the value of yðtcÞ is known. Then, a com-

plete undirected graph in which the vertices correspond to
the attributes and the edge weights are assigned using
Eq. (3). A maximum weighted spanning tree is built and
finally undirected tree is transformed into a directed one
by randomly choosing a root variable and setting the direc-
tion of all the edges outward from the root. After the con-
struction of the tree, the conditional probability of each
attribute on its parent and the class label is calculated and
stored. Hence, the probability of event at time tc can be
defined as follows:

P
�
yðtcÞ ¼ 1 j x; t � tc

�
¼ P

�
yðtcÞ ¼ 1; t � tc

�Qm
j¼1 P

�
xj j yðtcÞ ¼ 1; xpðjÞ

�
P ðx; t � tcÞ :

(4)

The numerator consists of two components; the prior proba-
bility of the event occurrence at time tc and the conditional
probability distributions which can be estimated using max-
imum likelihood estimation [52].

3.2.3 Bayesian Network Classifier

A Bayesian network is a graphical representation of a prob-
ability distribution over a set of variables. It can be consid-
ered as an extension of the TAN model where the features
can be related to each other at various levels (Fig. 3). It con-
sists of two parts [53]:

1) A directed network structure in the form of a
directed acyclic graph (DAG) which can be repre-
sented as G ¼ ðV;EÞ, where V denotes the set of ver-
tices which represent variables, while E is the set of
edges which show the dependency between the
variables;

2) A set of the local probability distributions, one for
each node variable, conditional upon each value
combination of its parents.

Thus, a Bayesian network can be formally defined as

BN ¼ �G;QðGjDÞ� where QðGjDÞ is the Maximum likeli-

hood estimation of the set of parameters in the probability
distributions estimated based on the given data D. The
Bayesian network structure in this paper is learnt by the
well-known search-and-score based Hill-climbing algorithm
[54]. The weight-adapted minimum description length
(MDL) [44] scoring (Eq. (5)) function is used as the criterion
function to beminimized for theHill-climbing algorithm [55]

MDLðBNjDÞ ¼ d

2
log N � LLðBNjDÞ; (5)

where d is the number of free parameters of a multinomial
local conditional probability distribution; LLðBNjDÞ is the
log-likelihood of BN given D and can be estimated using
the joint probability distributions. The second component of
a Bayesian Network is a set of local conditional probability

Fig. 3. An illustration of the basic structure of (a) Naive Bayes, (b) TAN,
and (c) Bayesian Network classifiers.
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distributions. Together with the graph structure, these dis-
tributions are sufficient to represent the joint probability
distribution of the domain. Joint probability is defined as
the probability that a series of events will happen concur-
rently and hence it can be calculated from the product of
individual probabilities of the nodes

P ðx1; . . . ; xmÞ ¼
Ym
j¼1

P ðxj jPaðxjÞÞ; (6)

where PaðxjÞ is the set of parents of xj. Hence, given a train-
ing set, the goal of the Bayesian Network is to find the best
graph structure to correctly predict the label for y given a
vector ofm attributes. It can be formulated as follows:

P
�
yðtcÞ ¼ 1 j x; t � tc

�
¼ P

�
yðtcÞ ¼ 1; t � tc

�Qm
j¼1 P

�
xj j yðtcÞ ¼ 1; PaðxjÞ

�
P ðx; t � tcÞ :

(7)

In Eq. (7), the first element in numerator is the prior proba-
bility of the class and the second element is the joint proba-
bility of the attributes based on the graph structure. A
Bayesian Network is a generative classifier with a full prob-
abilistic model of all variables which enable us to adapt the
prior probability of event for different time points (beyond
the observation time) during the forecasting.

3.3 Handling Censored Data

In general, survival analysis is a statistical methodology
which contains time of a particular event of interest as the
outcome variable which needs to be estimated. In many sur-
vival applications, it is common to see that the observation
period of interest is incomplete for some subjects and such
data is considered to be censored [56].

Definition 1 (Survival function). Considering the duration
to be a continuous random variable T , the survival function,
SðtÞ, gives the probability that the time of event occurrence is
later than a certain specified time t. It is defined as

SðtÞ ¼ PrðT > tÞ ¼
Z 1
t

fðuÞ du; (8)

where fðtÞ is a probability density function. For many real-
world applications, typically the survival function monotoni-
cally decreases with respect to t.

Definition 2 (Cumulative death distribution function).
In contrast to survival function, the cumulative death distribu-
tion function F ðtÞ represents the probability that the time to
the event of interest is no later than the certain specified time t.
It is defined as

F ðtÞ ¼ PrðT � tÞ ¼ 1� SðtÞ: (9)

Survival analysis involves the modeling of time-to-event
data. We will use one of the popular parametric methods in
survival analysis, accelerated failure time (AFT) [57] model,
to adapt the probability of event using different time-to-
event distributions.

Two naive approaches to handle censored data are: (1)
completely exclude them from the analysis which will result
in losing important information, (2) treat censored time as

an actual event time which will induce a bias in the estima-
tion of the event time. Instead of using these sub-optimal
approaches, our work handles censored data by dividing
them into two groups [41]: event and event-free. For each cen-
sored instance, we estimate the probability of event and
probability of censoring using Kaplan-Meier estimator and
give a new class label based on these probability values.
This approach assumes that the censoring time is indepen-
dent of the event time and all the attributes X. This assump-
tion is valid in many applications since many of the subjects
are censored towards the end of the study. SðtÞ is the proba-
bility that the event of interest has not occurred within the
duration t. Using Kaplan-Meier estimator [43], the survival
distribution is given by

ŜðtÞ ¼
Y

i:tðiÞ <t

1� di
ni

� �
; (10)

where di represents the number of events at time tðiÞ (time
after ascending reordering), and ni indicates the number of
subjects who still remain in the study at time tðiÞ. Thus,
using Eq. (9), the probability of event can be estimated as

F̂eðtÞ ¼ 1� ŜðtÞ: (11)

On the other hand, the probability that censoring has not
occurred within duration t can be defined as
GðtÞ ¼ P ðC > tÞ where C is the censoring time, by setting
“event” indicator d�i ¼ 1� di [58]. Thus, Kaplan-Meier esti-
mator for GðtÞ is

ĜðtÞ ¼
Y

i:tðiÞ < t

1� d�i
ni

� �
; (12)

where d�i is the number of subjects who were censored at
time tðiÞ, and ni is the number of subjects at risk of censoring

at time tðiÞ. Let F̂cðtÞ be the probability of censoring, then it

can be estimated as

F̂cðtÞ ¼ 1� ĜðtÞ: (13)

We define a new label for censored data using Eqs. (11) and
(13). For each instance, if F̂eðtÞ > F̂cðtÞ, then it is labeled as
event; otherwise, it will be labeled as event-free which indi-
cates that even if there is complete follow-up information
for that subject, there is extremely a low chance of
experiencing an event by the end of study (maybe even after
that). Unlike other methods that handle censored data, this
approach can simply solve the uncertainty with such cen-
sored data by labelling them as event or event-free based on
the consistent Kaplan-Meier estimator. Even after the label-
ing is done, the problem of forecasting, explained in the
next section, is a challenging task.

4 EARLY STAGE EVENT PREDICTION FRAMEWORK

In this section, we introduce our proposed Bayesian
approach for handling early stage event prediction. As dis-
cussed in previous section, predicting event occurrence at
an early stage in longitudinal studies is a challenging prob-
lem. It is in contrast with the standard classification and
regression problems where the labels for the data can be
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provided in a reasonably short period of time. Thus, for this
longitudinal studies training data must be obtained only by
waiting for the occurrence of a sufficient number of events.
While survival analysis techniques are appropriate in han-
dling such longitudinal data, they do not have the ability to
handle the problem of predicting event occurrence for a
time later than the observation time because the probability
of event provided by a survival model is valid only for the
specific observed time [5]. Therefore, the main objective of
this section is to propose a framework to predict if the event
will occur in the future for each subject based on informa-
tion about only a few event occurrences at the initial stages
of a longitudinal study.

In this section, we describe the proposed Early Stage
Prediction framework. First, we describe our proposed
prior probability extrapolation method on different distri-
butions and then we will introduce ESP-NB, ESP-TAN
and ESP-BN algorithms which utilize this extrapolation
method while computing the posterior probability of
event occurrence.

4.1 Prior Probability Extrapolation

In order to predict the event occurrence in longitudinal
data, we develop a technique that can estimate the ratio
of event occurrence beyond the original observation time
window (in other words, compute the extrapolation for
prior probability of event occurrence). To achieve this goal,
we extrapolate the prior probability of event occurrence
using the accelerated failure time model (AFT). We con-
sider two well-known distributions, Weibull and Log-
logistic, which are widely studied in the literature for
modeling time-to-event data [59]. The parameters of these
distributions are learned from the information available
until tc. We will integrate such extrapolated values later
with the proposed learning algorithms in order to make
future predictions.

Weibull. When Ti follows a Weibull distribution, the
cumulative probability distribution F ðtÞ with shape param-
eter a and scale parameter b can be estimated using

F̂ ðtÞ ¼ 1� e�ðt=bÞ
a
: (14)

Log-Logistic. When Ti follows a log-logistic distribution
with shape parameter a and scale parameter b, the prior
probability distribution F ðtÞ can be estimated as

F̂ ðtÞ ¼ 1

1þ ðt=bÞ�a : (15)

Having the cumulative probability distribution of event, F ðtÞ,
where the shape parameter a and scale parameter b esti-
mated at tc, it can be easily extrapolated for any time tmuch
beyond tc.

4.2 The ESP Algorithm

We will now describe the ESP Algorithm which consists of
two phases. In the first phase, the conditional probability
distribution is estimated using training data which is
obtained until time tc (see Sections 3.2.1, 3.2.2, and 3.2.3).
Since we are already extrapolating (in some sense approxi-
mating) in the prior probability component, it is not

desirable to do a similar approximation again on the likeli-
hood component. In addition, it is not feasible to extrapolate
the likelihood component due to the various complexities
involved in computing that component. We assume that the
joint probability estimation from the Bayesian methods
does not change over time since we have data only until tc
there is no plausible way to estimate the likelihood from the
data beyond tc. This is a reasonable assumption in survival
data when the covariates do not depend on the time as the
relation between the features at time tc do not significantly
change until the end of the study [60], and is very effective
in practice in the presence of limited data. On the other
hand as time passes, the prior probability for event occur-
rence needs to be updated since we do not have enough
data to get the exact value for joint probability at the given
future time tf . In the second phase, we extrapolate the prior
probability of event occurrence for time tf which is beyond
the observed time using different extrapolation techniques.

4.2.1 ESP Naive Bayes (ESP-NB)

For Naive Bayes method using Eq. (1) and extrapolation
method explained in previous section, the ESP-NB can be
written as follows:

P
�
yðtfÞ ¼ 1 j x; t � tf

� ¼ F ðtfÞ
Qm

j¼1 P
�
xj j yðtcÞ ¼ 1

�
P ðx; t � tfÞ : (16)

4.2.2 ESP Tree-Augmented Naive Bayes (ESP-TAN)

Probability of event occurrence based on TAN method for
time tf using Eq. (4) can be estimated as follows:

P
�
yðtfÞ ¼ 1 j x; t � tf

�
¼ F ðtfÞ

Qm
j¼1 P

�
xj j yðtcÞ ¼ 1; xpðjÞ

�
P ðx; t � tfÞ :

(17)

Algorithm 1 outlines the proposed ESP framework. In
the first phase (lines 1-3), for each attribute j, the algorithm
estimates the conditional probability using the data avail-
able at time tc. In the second phase, a probabilistic model is
built to predict the event occurrence at tf . In lines 4 and 5,
the prior probability for event occurrence at time tf is esti-
mated using different extrapolation techniques. Then, in
lines 6-9, for each subject i, we adapt the posterior probabil-
ity of event occurrence at time tf .

Algorithm 1. Early Stage Prediction (ESP) Framework

Require: Training dataDnðtcÞ ¼
�
x; yðtcÞ; T

�
, tf

Output: Probability of event at time tf
Phase 1: Conditional probability estimation at tc
1: for j ¼ 1; . . . ;m
2: P

�
xj j yðtcÞ ¼ 1

�
3: end
Phase 2:Predict probability of event occurrence at tf
4: fit AFT model toDnðtcÞ
5: P

�
yðtfÞ ¼ 1; t � tf

� ¼ F ðtÞ
6: for i ¼ 1; . . . ; n
7: estimate P

�
yiðtfÞ ¼ 1 j xi; t � tf

�
8: end
9: return P

�
yðtfÞ ¼ 1 j x; t � tf

�
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4.2.3 ESP Bayesian Network (ESP-BN)

For Bayesian Network, first we need to build a network
using the information until tc. We will train a Bayesian net-
work classifier using Hill-climbing structure learning
method. Once we learn the structure of the Bayesian net-
work, the subsequent step is to forecast the probability of
event occurrence at the end of the study tf . For this purpose
we can use different extrapolation techniques as described
earlier. Thus, the posterior probability estimation for event
occurrence at time tf can be defined as

P
�
yðtfÞ ¼ 1 j x; t � tf

�
¼ F ðtfÞ

Qm
j¼1 P

�
xj j yðtcÞ ¼ 1; PaðxjÞ

�
P ðx; t � tfÞ :

(18)

Algorithm 2. ESP-BN Algorithm

Require: Training dataDnðtcÞ, End of study time t.
Output: Probability of event at time tf
Phase 1: learn Bayesian Network structure at tc
1: EG  ;, estimate P

�
GjDnðtcÞ

�
2: scorefinal  1, score ¼MDL

�
BN;DnðtcÞ

�
(Eq. (5))

3: while scorefinal > score
4: scorefinal  score
5: for every add/remove/reverse EG on G
6: estimate P

�
GnewjDnðtcÞ

�
7: scorenew ¼MDL

�
BNnew;DnðtcÞ

�
8: select network structure with minimum scorenew
9: if score > scorenew
10: score scorenew, G Gnew

Phase 2: Forecasting event occurrence at tf
11: fit AFT model toDnðtcÞ
12: P

�
yðtfÞ ¼ 1; t � tf

� ¼ F ðtÞ
13: for all i inDnðtÞ
14: estimate P ðyiðtÞjxiÞ
15: Weibull using Eqs. (7), (16) and (18)
16: Log-logistic using Eqs. (7), (17) and (18)
17: end for
18: return P

�
yðtfÞ ¼ 1 j x; t � tf

�
Algorithm 2 outlines the proposed ESP-BN model. Lines

1-10 describe the first stage where a Bayesian network struc-
ture is learnt using Hill-climbing method for training data
until tc. After the initial set up to build a network (lines 1-2),
theHill-climbing algorithmwill find a networkwith themini-
mumMDL based on the score function given in Eq. (5). In the
second phase, a probabilistic model is built to forecast event
occurrence at t. In line 11, the AFT model is built on DnðtcÞ
using various distributions. Then, in lines 13-17, we adapt the
posterior probability of event occurrence at time t. This phase
has the time complexity of OðnÞ. The time complexity of the
ESP algorithm follows the time complexity of the learning
method that is chosen. It should be noted that the complexity
of the extrapolation component is a constant and does not
depend on either m or n. Hence, for ESP-NB it is OðmnÞ, for
ESP-TAN it is Oðm2nÞ, where n is total number of subjects
andm is the number of features in the data and for ESP-BN it

is OðmknÞ, where k is the maximum number of parents (in
our study we test different values of k to get the best perfor-
mance within the range of 2-5) [61]. This means that ESP
improves the prediction performance without increasing the
complexity compared to its basemodels.

5 EXPERIMENTAL RESULTS

In this section, we will show the results of our proposed ESP
method on a wide range of datasets and provide comparisons
with various baseline prediction methods. First, we explain
the synthetic as well as real-world datasets that are used in
our experiments. We also discuss the metrics that are used to
quantitatively evaluate the performance of the proposed
method. Finally, we will provide our experimental results
and the practical implications of the ESP framework in sur-
vival studieswill also be discussed.

5.1 Dataset Description

We evaluated the performance of the models using both
synthetic and real-world benchmark survival datasets
which are summarized in Table 2.

(i) Synthetic Datasets:We generated synthetic dataset in
which the feature vectors x are created using a normal dis-
tribution Nð0; 1Þ. Covariate coefficient vector, shown as b, is
generated based on a uniform distribution Unifð0; 1Þ. Given
the observed covariates xi for observation i, the failure time,
T can be generated by the procedure described in [62] as
follows:

Ti ¼ � logðUnifð0; 1ÞÞ
�expðb0xiÞ

 !n

: (19)

In our experiments, we set � ¼ 0:01, n ¼ 2 and generate
two sets of synthetic data, namely, Syn1 with five fea-
tures and 100 instances and Syn2 with 20 features and
1,000 instances, where the time to event of interest fol-
lows a Weibull distribution.

(ii) Real-world Survival Datasets: Several real-world sur-
vival benchmark datasets are used in our experiments. Pri-
mary biliary cirrhosis (PBC), breast and colon cancer which
are widely used in evaluating longitudinal studies and are
available in the survival data repository.1 We also used
Framingham heart study dataset which is also publicly
available [63].

In addition, we also used two in-house proprietary
datasets. The first one is the electronic health record
(EHR) data from heart failure patients collected at the
Henry Ford Health System in Detroit, Michigan. This
data contains patient’s clinical information such as proce-
dures, medications, lab results and demographics and the
goal here is to predict the number of days for the next
readmission after the patient is discharged from the hos-
pital [37]. The second dataset was obtained from Kick-
starter,2 a popular crowdfunding platform. Each project
was tracked for a specific period of time. If the project
reaches the desired funding goal before its goal date, then
it is considered to be a success (or the event has
occurred). On the other hand, the project is considered to
be censored if it fails to reach its goal amount within the
goal date [64]. All the datasets (except the EHR) used in
our work are made publicly available at https://github.
com/MLSurvival/ESP.

1. http://cran.rproject.org/web/packages/survival/
2. www.kickstarter.com
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5.2 Performance Evaluation

The performance of the proposed models is measured using
the following metrics:

� Accuracy is expressed as the percentage of instances
in the test set that are classified correctly.

� F-measure is defined as the harmonic mean of preci-
sion and recall. A high value of F -measure indicates
that both precision and recall are reasonably high

F �measure ¼ 2� Precision�Recall

PrecisionþRecall
:

� AUC is the area under the receiver operating charac-
teristic (ROC) curve which is generated by plotting
the true positive rate (TPR) against the false positive
rate (FPR) by varying the threshold value.

For our implementation, the joint probability for Naive
Bayes and TAN is learned using e1071 package [65] avail-
able in the R programming language. Bayesian network
structure for the proposed ESP-BN method is learned using
a hill-climbing algorithm that is available in the open-source
Weka software [66], while the proposed model is imple-
mented using the R programming language. The coxph and

survreg functions in the survival package are employed to
train the Cox and AFT models, respectively. The Breslow’s
method was used to handle tied observations and the cen-
sored handling method is also implemented in R using the
survival package. The source code of the proposed algo-
rithms in R programming environment is available at
https://github.com/MLSurvival/ESP.

5.3 Results and Discussion

Tables 3, 4, and 5 summarize the performance comparison
results for Accuracy, F-measure, and AUC, respectively. We
compared the proposed ESP-NB, ESP-TAN and ESP-BN
algorithms using the best performed distributions from
extrapolation techniques with Cox, Logistic Regression
(LR), Random Forest (RF), Naive Bayes (NB), Tree-
Augmented Naive Bayes and Bayesian Network (BN) clas-
sification methods. All the models are trained using the
data collected at the time point where only 50 percent of
events have occurred (T50) and the event forecasting is done
using the data at the end of study (T100). We used stratified
10-fold cross-validation and average values (along with the
standard deviations) of the results on all 10-folds are
reported. For the ESP based methods, we extrapolated using

TABLE 2
Statistics of the Datasets Used in Our Experiments

Dataset #Features #Instances #Events C50% C100% T50 T100

Syn1 5 100 50 20% 50% 1,014 3,808
Syn2 20 1,000 602 29% 40% 943 7,723
Breast 8 673 298 25% 56% 646 2,659
Colon 13 888 445 4% 50% 394 3,329
PBC 17 276 110 27% 60% 1,191 4,456
Framingham 16 5,209 1,990 0% 62% 1,991 5,029
EHR 72 4,417 3,479 0% 21% 50 4,172
Kickstarter 54 4,175 1,961 17% 53% 21 60

T50 and T100 correspond to the time taken (in days) for the occurrence of 50 and 100 percent of the events, respectively. C50 and
C100 percent give the percentage of censored instances at T50 and T100, respectively.

TABLE 3
Comparison of Accuracy Values for Cox, LR, RF, NB, TAN, and BN Along with the Proposed ESP-NB,

ESP-TAN, and ESP-BN Methods (and Their Standard Deviation Values)

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1
0.658 0.649 0.675 0.642 0.681 0.673 0.779 0.792 0.787
(0.022) (0.024) (0.019 (0.018) (0.021) (0.022) (0.023) (0.02) (0.019)

Syn2
0.657 0.609 0.669 0.665 0.673 0.677 0.777 0.785 0.789
(0.021) (0.026) (0.025) (0.027) (0.029) (0.024) (0.023) (0.025) (0.021)

Breast
0.632 0.557 0.622 0.613 0.657 0.628 0.738 0.805 0.754
(0.017) (0.013) (0.016) (0.023) (0.014) (0.021) (0.027) (0.022) (0.019)

Colon
0.49 0.487 0.562 0.526 0.531 0.552 0.615 0.619 0.622

(0.133) (0.167) (0.18) (0.159) (0.174) (0.15) (0.155) (0.148) (0.12)

PBC
0.657 0.578 0.658 0.599 0.638 0.633 0.719 0.731 0.748
(0.111) (0.123) (0.132) (0.125) (0.115) (0.119) (0.116) (0.118) (0.11)

Framingham
0.745 0.77 0.732 0.761 0.782 0.804 0.827 0.853 0.892
(0.085) (0.093) (0.085) (0.099) (0.107) (0.087) (0.093) (0.089) (0.096)

EHR
0.651 0.586 0.619 0.642 0.659 0.691 0.771 0.785 0.815
(0.121) (0.132) (0.173) (0.156) (0.182) (0.191) (0.126) (0.156) (0.112)

Kickstarter
0.656 0.698 0.709 0.691 0.736 0.746 0.739 0.745 0.785
(0.049) (0.039) (0.052) (0.068) (0.051) (0.046) (0.043) (0.048) (0.052)
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both Weibull and log-logistic distributions and best results
are being reported. It should be noted that in most of the
cases Weibull distribution provided better results.

For all of the datasets, our results evidently show that the
proposed ESP-based method is, on an average, 20 percent
more accurate compared to existing methods using only a
limited amount of training data. These results confirm the fact
that by incorporating the time-to-event extrapolation method
within the ESP framework, forecasting can be done more
accurately compared to the standard methods. It is important
to note that the choice of the best algorithm will depend on
the nature of the dataset. For instance, ESP-NB builds on inde-
pendence assumption between attributeswhich does not hold
in many survival applications. Thus, the introduced ESP-
TAN and ESP-BN relaxed this assumption and thus yielding

better performance in almost all of the datasets. Upon further
analysis of our results, we can observe that, in most of the
cases, ESP-BN has higher accuracy compared to its other
Bayesian counterparts. This is due to the fact that Bayesian
network can model more complex data especially in the pres-
ence of feature dependencies [67].

In Figs. 4, 5, and 6, we present the prediction perfor-
mance of different methods by varying the percentage of
event occurrence information that is available to train the
model in the real-world datasets. For example, 20 percent
on the x-axis corresponds to the training data obtained
when only 20 percent of the events have occurred and the
prediction of the event occurrences was made on the data at
the end of the study period. From these plots, we can see
that the performance of the ESP algorithm improves when

TABLE 4
Comparison of F-Measure Values for Cox, LR, RF, NB, TAN, and BN Along with the Proposed ESP-NB,

ESP-TAN, and ESP-BN Methods (and Their Standard Deviation Values)

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1
0.651 0.645 0.667 0.762 0.778 0.773 0.776 0.789 0.785
(0.021) (0.025) (0.022) (0.021) (0.023) (0.021) (0.022) (0.019) (0.017)

Syn2
0.647 0.599 0.659 0.655 0.663 0.671 0.774 0.779 0.783
(0.023) (0.025) (0.027) (0.029) (0.024) (0.023) (0.023) (0.02) (0.026)

Breast
0.648 0.573 0.642 0.623 0.672 0.638 0.749 0.796 0.761
(0.035) (0.063) (0.033) (0.053) (0.034) (0.031) (0.036) (0.032) (0.042)

Colon
0.512 0.487 0.578 0.543 0.549 0.562 0.621 0.627 0.630
(0.161) (0.170) (0.194) (0.169) (0.184) (0.190) (0.145) (0.148) (0.180)

PBC
0.61 0.529 0.613 0.541 0.562 0.575 0.712 0.719 0.725

(0.141) (0.130) (0.120) (0.121) (0.150) (0.140) (0.110) (0.099) (0.098)

Framingham
0.755 0.735 0.792 0.787 0.798 0.845 0.873 0.905 0.925
(0.078) (0.093) (0.085) (0.075) (0.073) (0.083) (0.073) (0.059) (0.066)

EHR
0.672 0.584 0.617 0.684 0.708 0.715 0.781 0.798 0.826
(0.110) (0.166) (0.188) (0.156) (0.198) (0.210) (0.126) (0.160) (0.160)

Kickstarter
0.689 0.711 0.737 0.721 0.726 0.743 0.753 0.765 0.797
(0.084) (0.048) (0.067) (0.058) (0.061) (0.054) (0.037) (0.048) (0.042)

TABLE 5
Comparison of AUC Values for Cox, LR, RF, NB, TAN, and BN Along with the Proposed ESP-NB,

ESP-TAN, and ESP-BN Methods (and Their Standard Deviation Values)

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1
0.717 0.725 0.712 0.715 0.722 0.718 0.865 0.869 0.867
(0.004) (0.005) (0.006) (0.007) (0.002) (0.005) (0.004) (0.001) (0.002)

Syn2
0.71 0.729 0.714 0.713 0.718 0.721 0.823 0.825 0.833

(0.004) (0.004) (0.002) (0.007) (0.005) (0.006) (0.002) (0.003) (0.001)

Breast
0.619 0.658 0.647 0.629 0.662 0.635 0.669 0.678 0.673
(0.01) (0.007) (0.004) (0.009) (0.004) (0.002) (0.001) (0.007) (0.001)

Colon
0.61 0.618 0.621 0.627 0.629 0.633 0.639 0.642 0.659

(0.024) (0.011) (0.014) (0.011) (0.014) (0.01) (0.013) (0.009) (0.009)

PBC
0.698 0.665 0.720 0.687 0.693 0.731 0.767 0.772 0.786
(0.009) (0.005) (0.003) (0.003) (0.01) (0.004) (0.001) (0.003) (0.003)

Framingham
0.863 0.935 0.929 0.945 0.953 0.959 0.971 0.973 0.979
(0.007) (0.002) (0.005) (0.002) (0.005) (0.004) (0.007) (0.004) (0.001)

EHR
0.612 0.637 0.650 0.633 0.638 0.651 0.654 0.649 0.667
(0.023) (0.017) (0.025) (0.019) (0.025) (0.026) (0.018) (0.011) (0.012)

Kickstarter
0.823 0.842 0.845 0.815 0.819 0.844 0.822 0.827 0.847
(0.019) (0.019) (0.027) (0.022) (0.025) (0.023) (0.024) (0.019) (0.021)
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there is more information on the event occurrence in the
training data. For all the cases, our proposed ESP-based
methods provide more accurate predictions compared to
other techniques and the improvements are consistent
across all the benchmark datasets. It should be noted that
the improvements of the proposed methods are more signif-
icant over the baseline methods when there is only a limited
amount (20 percent or 40 percent) of training data.

When 100 percent of the training data is available, the per-
formance of the proposed ESP methods will converge to that
of the original baseline methods since the prior probabilities
in both scenarios will be the same and fitting a distribution
(and extrapolating it) will not have any impact when evalu-
ated at the end of the study since there is effectively no
extrapolation that is done. We should also mention that in
our experiments the percentage of censoring in each dataset

Fig. 4. Accuracy values of different methods obtained by varying the percentage of event occurrence information for various datasets.

Fig. 5. F-measure values of different methods obtained by varying the percentage of event occurrence information for various datasets.
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is different. Therefore, it is hard to measure how the amount
of censored data affects the results. However, since the
amount of censored and event data are closely related, one
can measure the effect of censored data using the number of
events which is shown in Figs. 4, 5, and 6. In general, we
observe that the less censored data we have, the higher the
accuracywe could achieve. In order to measure the improve-
ments made by handing censored data, we compared the
results in Tables 3, 4, and, 5 with those provided in [5].

The results support our claim that the proposed Bayesian
models can provide an accurate forecasting for event occur-
rence beyond the observation time. From our experiments,
we can conclude that our model obtains useful practical
results at the initial phase of a longitudinal study and can
provide good predictions about the event occurrence at the
end of the study using only a limited information. The pro-
posed prediction model is an extremely useful tool for
domains where one has to wait for a significant period of
time to collect sufficient amount of training data.

5.4 Scalability Experiments

As mentioned earlier (Section 4.2), the time complexity of
the extrapolation component of the model is constant
(OðnÞ) and does not depend on the number of features or
instances. Therefore, time complexity of the ESP-based
algorithms follows that of the corresponding base learning
method that is chosen. In other words, the ESP-NB, ESP-
TAN and ESP-BN have the same time complexity as NB,
TAN and BN, respectively. This means that ESP frame-
work improves the prediction performance without
increasing the time complexity. In this section, we study
the scalability of our proposed ESP-based algorithms when
the number of instances or features in the dataset are var-
ied by random selection. We randomly sampled different

number of features or instances from the original dataset
and estimated the average running time of each of the pro-
posed ESP based algorithms (average of 100 runs).

In Fig. 7, we provide the scalability plots for ESP-NB,
ESP-TAN and ESP-BN. To obtain these plots we sampled
different set of instances and features in an increasing
order and obtained the time required to build our pro-
posed ESP-based algorithms. The x-axis represents the
selected number of instances (in Fig. 7a) and features (in
Fig. 7b) and the y-axis represents the time taken in millisec-
onds. These plots indicate that ESP-NB is relatively faster
even when the number of instances and features is large.
This is because the complexity of ESP-NB is linear with
respect to instances and features. As number of instances
increase, the time taken for ESP-TAN and ESP-BN is also
increased. However, ESP-TAN has quadratic and ESP-BN
has trinomial runtime complexity (if k, the number of
parents for each features, is 3), but it tends to build more
effective models. Hence, there is a trade-off between com-
plexity and performance. It is clear that, in the presence of
high-dimensional data, ESP-NB will be the optimal choice.
However, if there are many dependencies between features

Fig. 6. AUC values of different methods obtained by varying the percentage of event occurrence information for various datasets.

Fig. 7. Assessing the scalability of ESP-NB, ESP-TAN, and ESP-BN with
different number of instances and features.

FARD ETAL.: A BAYESIAN PERSPECTIVE ON EARLYSTAGE EVENT PREDICTION IN LONGITUDINAL DATA 3137



or data has a high dimension, ESP-TAN is a better choice.
ESP-BN would be recommended to use only when the
data consists of lots of complex dependencies and at the
same time has only a reasonable dimensionality. For high-
dimensional data, it is recommended to use unsupervised
dimensionality reduction methods before applying our
proposed early stage prediction algorithms.

6 CONCLUSION

In many real-world application domains, it is important to
forecast the occurrence of future events by only using the
data collected at early stages of longitudinal studies. In this
paper, we developed new early stage event prediction
framework through fitting a statistical distribution to time-
to-event data with fewer available events at the early stages.
One of the common characteristic of longitudinal data is the
presence of censored instances where the outcome is not
known after a certain time period during the study. Instead
of excluding such censored data, we developed a new
mechanism to handle this data by estimating the probability
of event and the probability of being censored using the
Kaplan-Meier estimator. One of the main objectives of this
paper is to demonstrate that more accurate predictions can
be made when the prior probability at end of study time is
estimated using the current (limited) information of event
occurrence. This is extremely important in longitudinal sur-
vival studies since accumulating enough training data about
the event occurrence is a time-consuming process. The pro-
posed ESP-based model adapts prior probability of event
occurrence by fitting time-to-event information using
Weibull and Log-logistic distributions. Using this approach,
we developed three new Bayesian algorithms to effectively
predict the event occurrence for future time points using
the training data obtained at early stage of the study. Our
extensive experiments using both synthetic and real data-
sets demonstrate that the proposed ESP-based algorithms
are more effective in forecasting events at future time points
compared to the widely used Cox model and other popular
classification methods.
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