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Abstract—Survival analysis aims at predicting the time to event of interest along with its probability on longitudinal data. It is commonly
used to make predictions for a single specific event of interest at a given time point. However, predicting the occurrence of multiple
events of interest simultaneously and dynamically is needed in many real-world applications. An intuitive way to solve this problem is to
simply apply the standard survival analysis method independently to each prediction task at each time point. However, it often leads to
a sub-optimal solution since the underlying dependencies between these tasks are ignored. This motivates us to analyze these
prediction tasks jointly in order to select the common features shared across all the tasks. In this paper, we formulate a temporal
(Multiple Time points) Multi-Task learning framework (MTMT) for survival analysis problems using tensor representation. More
specifically, given a survival dataset and a sequence of time points, which are considered as the monitored time points for the events of
interest, we reformulate the survival analysis problem to jointly handle each task at each time point and optimize them simultaneously.
We demonstrate the performance of the proposed MTMT model on important real-world datasets, including employee attrition and
medical records. We show the superior performance of the MTMT model compared to several state-of-the-art models using standard
metrics. We also provide the list of important features selected by our MTMT model thus demonstrating the interpretability of the
proposed model.

Index Terms—Multi-task learning; survival analysis; temporal models; regularization; regression analysis.
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1 INTRODUCTION

THE primary goal of survival analysis is to predict time
to the event of interest on longitudinal data obtained

during a particular observation period [1]. Survival analysis
methods have been successfully applied in many real-world
applications, such as healthcare [2], social networks [3],
reliability [4] and customer lifetime value [5]. One unique
phenomenon, known as censoring, in the longitudinal data is
the occurrence of the event may not always be observed for
all instances during the observation due to non-occurrence
of the event by the end of the observation or losing follow-
up during the observation. Then in the longitudinal data,
the event occurrence time of the instances which experi-
enced the event of interest and the censoring time of the
censored instances will be recorded as the observation time,
respectively. This implies that people need to wait for a
long time to collect the training data with sufficient event
occurrences in longitudinal studies.

Most of these existing survival analysis methods are de-
veloped to solve the survival problem with a single specific
event of interest at a given time point. In addition, the
effect of the number of events in the dataset on the model
performance is not considered in the standard survival
analysis methods, even if the percentage of censoring is
very high [6]. However, in the real-world applications, it
is known that the data about several related longitudinal
studies is available and can be modeled simultaneously.
For example, in the human resource management domain,
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the information of employees before leaving, such as years
stayed in the company and years worked with the man-
ager, can be easily extracted. In other words, predicting the
occurrence of multiple events of interest simultaneously is
needed in the real-world applications. In addition, it is also
important if we can dynamically follow up the survival
status of the instances in each longitudinal study.

A naive way to solve this problem is to simply apply the
standard survival analysis method independently to each
task at each specific time point. However, it often leads to
a sub-optimal solution since the underlying dependencies
between these tasks and the correlations of each single
task over time are ignored. On one hand, the dependencies
between tasks (called inter-task correlations) is a good way to
handle the insufficiency of event occurrences in each single
task to perform the time to event prediction. On the other
hand, the survival status of instances at the adjacent time
points should be similar. Thus, for each single task, the
problems at different time points should also have some cor-
relations (called intra-task temporal smoothness). Thus, both
types of correlations will need to be incorporated into a
model that can jointly analyze multiple tasks by leveraging
the limited number of events available for each single task.

In this paper, we will formalize a temporal (Multiple
Time points) Multi-Task learning (MTMT) framework using
tensor representation for survival analysis to overcome the
weakness of the standard survival analysis methods and
incorporate the two types of correlations (mentioned above)
in the training process. Multi-task learning method is used
in the literature to learn common feature subsets across
all tasks [1], [7]. More specifically, in our paper, multi-
task learning will be dynamically applied to several related
survival tasks and the common feature subset will be the
unified feature representation across all the tasks and all



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, DECEMBER 2019 2

Fig. 1: An illustration of various components in the proposed MTMT framework using Employee Attrition dataset.

time points. Since there are multiple tasks and multiple time
points in our problem, a 3-way tensor will also be intro-
duced in this paper for effective representation. Therefore,
we extend the standard `2,1 norm which is usually used on a
matrix to the `F,1 norm (which is appropriate for the tensor
representation) to incorporate the inter-task correlations in
the proposed MTMT model. Another contribution of the
MTMT algorithm is that it performs the multi-task learning
dynamically. In this case, the survival status of the instances
about multiple events of interest can be monitored over time
and then the survival function for the problem in each task
can also be obtained. If the standard multi-task learning for-
mulation is used, it will not be able to handle the censored
data in survival problems. For solving the survival analysis
problems, we will formulate a multi-way indicator tensor
which can incorporate the censored instances depending on
their survival status over time for each task. In this case,
at each time point, one given instance will be involved in
the training process as long as it is not censored in at least
one task. Figure 1 illustrates the main components of the
proposed MTMT method on the Employee Attrition dataset
in more detail.

In MTMT, we incorporate both the censoring constraint
and two types of correlations by applying regularizations
in the loss function of multi-task learning formulation and
the Alternating Direction Methods of Multipliers (ADMM)
algorithm [8]. In addition, the proximal gradient decent
algorithm [9] with backtracking linear search is extended
to optimize the `F,1 regularized problems. The proposed
MTMT method will be evaluated on both the employee
attrition dataset provided by IBM Watson Analytics and
the Medical Information Mart for Intensive Care III (MIMIC
III) dataset [10], [11] and compared with the state-of-the-art
survival analysis and multi-task learning methods.

The main contributions of this work are summarized as
follows:
• Propose a multiple time points multi-task learning

(MTMT) model for survival analysis which has the ability
to analyze several survival problems jointly and dynami-
cally predict the survival probability at each time point.

• Develop an ADMM based algorithm to optimize the pro-
posed MTMT problem.

• Evaluate the performance of the proposed temporal multi-
task learning method using multiple real-world datasets

and compare with several state-of-the-art methods.
The rest of this paper is organized as follows: In Sec-

tion 2, the background and related work about survival
analysis and multi-task learning is briefly reviewed. Sec-
tion 3 introduces the details about the proposed temporal
multi-task learning algorithm along with the optimization
method used to solve the model. The prediction perfor-
mance of the proposed MTMT algorithm is evaluated us-
ing the real-world datasets in Section 4. Finally, Section 5
concludes the discussion of our work.

2 RELATED WORK

In this section, we discuss the related works on survival
analysis, multi-task learning and temporal modeling. We
will also distinguish our contribution in this paper from
other existing algorithms in the literature.

2.1 Survival Analysis

Survival analysis is a branch of statistics which aims to
handle censored data and then predict the time to the event
of interest [12]. Typically, survival analysis methods can
be grouped into three categories: non-parametric methods,
Cox-based methods and parametric methods.

Kaplan-Meier (KM) method [13] is the most commonly
used non-parametric survival analysis method due to its
reasonable ability to estimate the survival function, which
is one of the most important functions in survival problems.
Generally, the KM method estimates the survival probability
at a given time point during the observation period as the
product of the survival rate at this time point and the same
estimate at the previous time.

The Cox proportional hazards model [14] is well studied
in both statistics and data mining fields due to its flexibility
in choosing the baseline hazard function and its ability to
provide a more consistent estimation. Cox model is built
on a proportional hazard assumption and it estimates the
parameters using the partial likelihood function. In order
to adapt Cox model to the survival problem with high-
dimensional features, the regularized Cox models [15], [16],
[17] are proposed to perform the feature selection and iden-
tify the most significant features to the outcome variable.

Different from the non-parametric and Cox-based meth-
ods, parametric methods assume that the survival time (or
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its logarithm) of all instances follow a certain theoretical
distribution [18]. The commonly used distributions include
exponential, weibull, logistic, log-logistic and log-normal
distribution. The accelerated failure time (AFT) model [19] is
one of the widely used parametric methods since it assumes
that the logarithm of the survival times follows one theoret-
ical distribution. In addition, several linear models, includ-
ing the Buckley-James (BJ) [20] and Tobit regression [21] are
proposed based on the standard linear regression to handle
the survival analysis problems.

In order to further tackle the non-linear relationships be-
tween covariates and survival time, other researchers have
proposed deep survival analysis methods [22], [23], [24],
[25]. DeepSurv is proposed as a treatment recommender
system that combines the power of both Cox proportional
hazards model and deep neural networks and modelling
the interactions between covariates and the effect of treat-
ment [22]. The hierarchical generative deep survival anal-
ysis approach in [23] is proposed to handle the sparsity
and heterogeneity in EHR data using a sequence of multi-
layer probability models. It is worth to note that all the
survival analysis methods mentioned above are suitable
for the problems with only one event of interest or at a
single time point. Moreover, the number of event occur-
rences will affect the performance of the standard survival
analysis methods, especially when the number of events is
insufficient at the early stage of the observation period. An
alternative way to compensate for this insufficiency is to
make effective use of the event information that is available
in other survival problems about a related event of interest.
The goal of this paper is to solve the survival analysis
problem with multiple events of interest jointly and improve
the prediction performance of each single problem. For the
survival problem with more than one event of interest,
an intuitive way is to simply apply the standard survival
algorithm independently on each of the events of interest.
However, the correlations between these multiple tasks will
be ignored. In this paper, we dynamically consider the
survival problem with multiple correlated events of interest
by using the multi-task learning method.

2.2 Multi-task Learning
Multi-task learning (MTL) method aims at improving the
prediction performance of each task by analyzing multiple
tasks jointly and learning shared features across all tasks.
Compared to the methods which learn each task indepen-
dently, it has been shown both theoretically [26], [27] and
empirically [1], [7], [28], [29] that multi-task learning simul-
taneously improves the performance of each task. Multi-
task learning has been widely used in many real-world
applications, including biomedical informatics [1], [7] and
computer vision [28], [29]. However, there is not much work
on multi-task learning in the field of survival analysis. The
authors in [1] developed a linear regression based multi-task
learning formulation (MTLSA) to predict the survival status
at each time point. In their method, the survival problem at
each time point is considered as one single task and the `2,1
norm penalty is applied in order to learn a shared feature
subset across different tasks. However, only one event of
interest is considered in MTLSA and each of the multiple
tasks is formulated at each time point, which cannot solve

the problems with multiple events of interest as described
in our paper. In addition, deep multi-task Gaussian pro-
cesses are applied in a non-parametric Bayesian model to
solve survival problems with competing risks [24]. A neural
multi-task logistic regression model is proposed in [25] to
offset the linearity problem in traditional survival models.
These multi-task learning based methods are able to analyze
different survival analysis problems jointly, however, they
do not consider the correlations between the problems at
different time points.

In our work, we develop a new multi-task learning
method to jointly analyze several related survival analysis
problems and dynamically perform such multi-task learning
to monitor the survival status of instances in each indi-
vidual task. In other words, our proposed method pro-
vides the ability to generate the survival function for each
event of interest by predicting the survival probability for
each instance over time. To optimize the proposed MTMT
method, several types of constraints, including censoring,
inter-task correlations and intra-task temporal smoothness,
are considered in the objective function to incorporate the
unique properties of our survival problem. To the best of our
knowledge, this paper is the first work about dynamically
applying the multi-task learning in the field of survival
analysis and also the first work to solve the survival analysis
problem using tensor representation.

3 PROPOSED MODEL

In this section, we will first describe the problem formula-
tion in the form of a joint multi-task learning and survival
analysis framework by considering multi-task problems dy-
namically. Then, an ADMM based optimization algorithm
will be proposed to solve the joint optimization problem.
The convergence and complexity analysis of the proposed
algorithm will also be discussed at the end of this section.

3.1 The MTMT Framework
Survival analysis methods are well known for their ability
to handle the censored instances in the data in order to
predict the time to event of interest. Generally, the standard
survival analysis algorithm is proposed to estimate the time
to a single event of interest. More specifically, it solves the
single task (single event of interest) problem (eg. task k),
in which the instance i in survival data is recorded by a
triplet (Xk

i , T
k
i , Y

k
i ) [1], whereXk

i ∈ R1×P is a vector which
represents the feature vector; Y ki is a binary variable which
indicates the event status, i.e., Y ki = 1 if an event is observed
on instance i and the corresponding time (Oki ) for the event
is recorded as T ki , and Y ki = 0 if instance i is censored
during the observation time period and then its censored
time (Cki ) will be recorded as T ki [1]. In other words, for
each instance in survival data, only the survival time or the
censored time can be observed during the observation time
period, i.e.,

T ki =

{
Oki if Y ki = 1

Cki if Y ki = 0
(1)

It should be noted that the event time Oki for the censored
instance is a latent value since there is no information about
the event status after the censored time Cki . One of the
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main goals of survival analysis is to measure the survival
probability at each time point and estimate the time to the
event of interest for each instance.

However, there are certain disadvantages for the stan-
dard survival analysis methods. A sufficient number of
event occurrences in the training data must be collected
by waiting for a long period of time, otherwise having a
fewer event occurrences may affect the prediction perfor-
mance of the survival analysis algorithm, especially in the
early stage of the observation [30]. It will be challenging
but beneficial for the prediction of each single problem
if we can make the best use of the event information in
multiple correlated regular survival analysis problems and
analyze these individual survival analysis problems in a
joint manner. More specifically, the event information in
other correlated tasks can be used to compensate for the
insufficiency of the event occurrence in a single task and
improve the prediction performance. On the other hand,
due to the new occurrence of censoring or events on some
instances, the values of the event label for these instances
will be updated at the corresponding event time or censored
time. It will be vital to monitor the survival status of
each instance dynamically, which cannot be solved by the
existing survival analysis algorithms. These disadvantages
motivate the need for developing an algorithm which can
analyze multi-task survival analysis problems dynamically.

In this paper, the temporal multi-task learning frame-
work is proposed to estimate the survival probabilities of
the instances in K tasks over J time points. Specifically,
each event of interest is considered as a single task, and we
simultaneously analyze all the tasks by considering both the
inter-task correlations and the intra-task time smoothness.
Figure 1 shows various components used in the proposed
MTMT framework. In the input data, the data record for
instance i (i = 1, · · · , Nk) in task k (k = 1, · · · ,K) at each
time point tj (j = 1, · · · , J) can be obtained as a triplet
(Xi:k,Tijk,Yijk) using the following three procedures:

1) Xi:k ∈ R1×P represents the feature vector for instance i
in task k. Due to the difficulty and limitation to collect
the feature values over time, the static feature values are
commonly used in the survival analysis literature.

2) Yijk is the binary variable indicating the survival status
of instance i at time point tj in task k. It is obtained as
follows:

Yijk =

{
0 if Y ki = 1 and tj ≥ Oki
1 Otherwise

(2)

where Yijk = 1 indicates that there is no event observed
for instance i at tj in task k and Yijk = 0 indicates
that instance i did not survive after tj in task k. Eq. (2)
indicates that, for an instance having an event during
the observation time in task k, it will survive until the
event time Oki , which is the event time of this instance
in the task. After the event time Oki , it will be labeled
as 0 in the data collected at each time point which is the
unique property of the non-recurrent event survival anal-
ysis problem. The instances without an event occurrence
during the observation time will be labeled as 1 over all
time points. It should be noted that these instances have
definitely survived at each time point until the censored

time, however, the survival status after the censoring
time is unknown even if we label it as 1. These unknown
records will be carefully handled by an indicator formu-
lation (to be introduced in Subsection 3.2.1).

3) Tijk is obtained according to the value of Yi as follows:

Tijk =


Oki if Yijk = 0

min(tj , C
k
i ) if Yijk = 1 and Y ki = 0

min(tj , O
k
i ) if Yijk = 1 and Y ki = 1

(3)

It should be noted that each instance is not required to be
observed for all tasks. If instance i is not observed in task
k, then all values in the triplet (Xi:k,Tijk,Yijk) at each time
point tj will be set to 0. This representation leads to equal
number of instances in each of the tasks. Based on the data
transformation procedures, the entire data for task k at all
the time points can be represented as (X::k,T::k,Y::k), where
X::k ∈ RNk×P , T::k ∈ RNk×J and Y::k ∈ RNk×J represent
matrices of the features, survival status and event time,
respectively. Following the three procedures, the survival
problem in each task can be transformed into a sequence
of similar problems ordered by time. Our goal is to analyze
the J × K problems jointly in order to completely utilize
the event information available in each task, the inter-
task correlations and the intra-task temporal smoothness.
It can be observed that this proposed temporal (multi-time
points) multi-task problem (MTMT) can be considered as
a generalized framework for solving the survival analysis
problems. Other existing problems in the literature can be
considered as the special cases of MTMT as described below:

1) The standard survival analysis problem is a special case
of MTMT with single task at single time point (STST), in
which J = 1 and K = 1.

2) The MTLSA method proposed in [1] can be considered
as a special case of MTMT with single task at multi-time
points (MTST), in which K = 1.

3) Besides STST and MTST problems, MTMT can also incor-
porate the method in [31] as a multiple tasks at a single
time point (STMT), in which J = 1.

All the three problems can be derived from our general-
ized MTMT framework. Therefore, it is important to find a
way to solve the MTMT algorithm efficiently. A commonly
used approach to solve the formulated temporal multi-task
learning problems is to optimize J × K linear regression
problems as follows:

min
B

J∑
j=1

K∑
k=1

1

2
||Y:jk − X::kB:jk||22 +R(B) (4)

where X::k ∈ RNk×P is the feature matrix of the kth task,
and Y:jk ∈ RNk×1 and B:jk ∈ RP×1 represent the response
vector and the estimated coefficient vector in the kth task at
time point tj , respectively. It should be noted that the esti-
mated coefficients across all the tasks and all the time points
can also be represented as a 3-way tensor B ∈ RP×J×K
since we assume that the features in different tasks are
homogeneous in this work. The termR(B) in Eq. (4) denotes
the regularization which is used to avoid the over-fitting
of the model and to incorporate other constraints for the
parameters.
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3.2 Constraints and Regularization Function

There are mainly two challenges in the proposed MTMT
algorithm. (i) As defined in Eq. (2), we only know that the
censored instances survive until the censoring time, while
the survival status after the censoring time is not available.
Either treating them as survival or non-survival may intro-
duce some bias into the model. (ii) The goal of the MTMT
algorithm is to incorporate the inter-task correlations and intra-
task temporal smoothness into the algorithm in order to estimate
the survival probabilities over time and increase the prediction
performance of each single task. It is critically important
to find a reasonable way to incorporate both properties
into the algorithm. In this subsection, we will discuss and
determine suitable regularization terms to incorporate these
characteristics into the proposed model.

3.2.1 Censoring
Censoring is one of the main characteristics of survival
data, i.e., the components for the censored instances in the
survival status vector Y:jk for task k at time point tj is
latent since we do not know the exact time until which the
instances survive beyond the censoring time [2]. The censor-
ing problem in the temporal multi-task learning algorithm
is more complex due to the dynamically changing behavior
of the survival status in each task. More specifically, the
censoring time or event time, for one instance, in different
tasks may be different, which also leads to the difference
in survival status at different time points in different tasks.
Thus it is important to handle this censored information in
order to jointly utilize the data in each task and improve
the prediction in each single task. We formulate a 3-way
indicator tensor to handle these censored instances in the
training process.

For the task k at time point tj , each component indicator
Sijk defined in Eq. (5) is used to indicate the extent of
contribution of the survival information about instance i in
the model.

Sijk =

{
0 if Yijk = 1 and tj > Cki
1 Otherwise

(5)

Then the objective function in Eq. (4) can be updated to
handle the censoring information as:

min
B

J∑
j=1

K∑
k=1

1

2
||S:jk � (Y:jk − X::kB:jk)||22 +R(B) (6)

where the symbol � which represents the component-wise
multiplication of two vectors is defined as a � b =

∑
i aibi.

By applying the indicator tensor S, one instance will con-
tribute to the training process only if it is not censored in at
least one of the tasks, no matter if it is survived or not in
these tasks.

3.2.2 Overfitting
In order to avoid the overfitting of the problem, a `F
regularization [32] on the coefficient tensor B defined in
Eq. (7) will be used.

||B||2F =
K∑
k=1

||B::k||2F (7)

3.2.3 Inter-task correlations

One of the goals of multi-task learning is to compensate for
the insufficiency of the event occurrences in each task and to
learn shared features among all the tasks by jointly learning
the models. In other words, multi-task learning aims at
identifying the most important and common features that
contribute to the survival of the instances across all the tasks.
The `2,1 norm on a matrix is commonly used to learn the
shared features since it tends to result in similar sparsity
patterns for the parameters in all tasks [1]. Here, we extend
the `2,1 norm on the matrix to the `F,1 norm, defined in
Eq. (8), on the tensor B, which will lead to shared features
across all tasks at all time points.

||B||F,1 =
P∑
p=1

√
||Bp::||2F (8)

where ||Bp::||2F =
∑K
k=1

∑J
j=1 B2

pjk.

3.2.4 Intra-task temporal smoothness

One of the main objectives of the MTMT algorithm is
to dynamically perform the multi-task learning since the
survival status of each instance in each task keeps changing
over time. By dynamically learning the multi-task problem,
we can monitor the survival status for each instance over
time, incorporate the updated survival status in the training
process and track the most significant features across all the
tasks. According to the definition of the indicator tensor S in
Eq. (5), there exits a high temporal dependency between the
problems at different time points. In this paper, an intra-task
temporal smoothness regularization term defined in Eq. (9)
is introduced to reduce the parameter deviations estimated
at adjacent time points [7].

||B||ts =
K∑
k=1

J−1∑
j=1

‖B:(j+1)k − B:jk‖22 (9)

It should be noted that similar to fused lasso [33],
Eq. (7) and Eq. (9) are designed to prevent overfitting
and encourage intra-task temporal smoothness, respectively.
However, fused lasso introduces sparsity to parameters and
differences of parameters for adjacent time points, which is
not required in our problem. Therefore, we only consider
regularizers with Euclidean norm to decay weights (i.e.,
model parameters) and parameter differences, instead of
introducing sparsity.

After incorporating all the constraints into Eq. (4), we can
solve the proposed temporal multi-task learning framework
by minimizing the following objective function:

min
B

K∑
k=1

J∑
j=1

(
1

2
‖S:jk � (Y:jk − X::kB:jk)‖22

)
+

1

2
α‖B‖2F

+ β||B||F,1 +
1

2
γ||B||ts

(10)
where α, β and γ are the positive parameters controlling
the importance of the overfitting term, inter-task correlation
terms and intra-task time smoothness term, respectively.
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3.3 Optimization
The optimization problem in Eq. (10) incorporates four
unique constraints into our problem. In this section, we ap-
ply the alternating direction method of multipliers (ADMM)
method [8] and the proximal methods to optimize it since
the solution to this problem is not trivial. First, we intro-
duce a sequence of new constraints M:jk = X::kB:jk for
(k = 1, · · · ,K, j = 1, · · · , J) and update the problem in
Eq. (10) as follows:

min
B

K∑
k=1

J∑
j=1

(
1

2
‖S:jk � (Y:jk −M:jk)‖22

)
+

1

2
α‖B‖2F + β||B||F,1 +

1

2
γ||B||ts

s.t. M:jk = X::kB:jk, (k = 1, · · · ,K, j = 1, · · · , J)

(11)

By combining the linear and quadratic terms in the aug-
mented Lagrangian and scaling the dual variable, the objec-
tive function can be written as:

min
B

K∑
k=1

J∑
j=1

(
1

2
‖S:jk � (Y:jk −M:jk)‖22

)
+

1

2
α‖B‖2F

+
K∑
k=1

J∑
j=1

(
1

2
σ‖M:jk − X::kB:jk + u:jk‖22 −

1

2
σ‖u:jk‖22

)
+β||B||F,1 +

1

2
γ||B||ts

(12)
where u is the scaled variable tensor and σ > 0 is the
penalty parameter. Then we can have the scaled form of
ADMM as follows:

Mn+1 := arg min
M

K∑
k=1

J∑
j=1

(
1

2
‖S:jk � (Y:jk −M:jk)‖22

+
1

2
σ‖M:jk − X::kBn:jk + un:jk‖22

) (13)

Bn+1 := arg min
B

K∑
k=1

J∑
j=1

(
1

2
σ‖Mn+1

:jk − X::kB:jk + un:jk‖22

+
1

2
α‖B:jk‖22 +

1

2
γ(1− δ(j = J))||B:(j+1)k − B:jk||22

)
+ β||B||F,1

(14)
un+1
::k := un::k + Mn+1

::k − X::kBn+1
::k (15)

Thus, next we need to optimize the two problems given in
Eq. (13) and Eq. (14) in order to solve the problem in Eq. (11).
Here, the symbol n in the superscript represent the number
of iterations.
Step 1: Update Mn+1 given Bn and un (solve Eq. (13)).

The first order and second order derivative of the prob-
lem in Eq. (13) with respect to Mijk calculated in Eq. (16)
and Eq. (17) indicates that the objective function in Eq. (13)
is strictly convex.

∂L

∂Mijk
= −Sijk(Yijk −Mijk) + σ(Mijk − Xi:kBn:jk + unijk)

(16)
∂2L

(∂Mijk)2
= Sijk + σ > 0 (17)

Algorithm 1: FISTA for `F,1 Constrained Optimiza-
tion.

Input: Predictor tensor (X);
Proximal survival status tensor (M);
Scaled variable tensor (u);

Output: Regression coefficient tensor (B̄)

1 Initialize: B0 random real numbers, B−1 = B0;
2 m = 1, ξ0 = 1, µ−1 = 0, µ0 = 1;
3 repeat
4 Am = Bm−1 + µm−2−1

µm−1 (Bm−1 − Bm−2);
5 repeat
6 Calculate Bm = πZ(Am − 1

ξm g
′
(Am));

7 Calculate ∆Bm = Bm −Am;
8 Calculate h(Am,Bm) =

g(Am)+
∑
k,j

(
∂g(B)
∂B:jk

)T
∆Bm:jk+ ξm

2 ||∆Bm||2F ;

9 if g(Bm) ≤ h(Am,Bm) then
10 break ;
11 end
12 Set ξm = 2ξm−1;
13 until Convergence;

14 µm =
1+
√

1+4µ2
m−1

2 ;
15 m = m+ 1;
16 until Convergence;
17 B̄ = Bm.

Thus, M::k can be updated by Eq. (18) in each iteration for
each task k.

Mn+1
::k ←

S::k � Y::k + σ(X::kBn::k − un::k)

S::k + σ
(18)

Step 2: Update Bn+1 given Mn+1 and un (solve Eq. (14)).
The objective function in Eq. (14) can be separated into

two terms, a smooth term and a non-smooth term, as shown
in Eq. (19).

L(B) = g(B) + β‖B‖F,1 (19)

where g(B) is a smooth convex function defined as:

g(B) :=
K∑
k=1

J∑
j=1

(
1

2
σ‖M:jk − X::kB:jk + u:jk‖22

+
1

2
α‖B:jk‖22 +

1

2
γ(1− δ(j = J))||B:(j+1)k − B:jk||22

)
(20)

and the first order derivative of g(B) can be obtained as:

∂g(B)

∂B:jk
: = σXT::k(M:jk − X::kB:jk + u:jk)

+ αB:jk + γ(1− δ(j = J))(B:jk − B:(j+1)k)

+ γ(1− δ(j = 1))(B:jk − B:(j−1)k)

(21)

Then, the optimization problem for Eq. (14) is equivalent
to the following `F,1-ball constrained smooth convex opti-
mization problem.

min
B∈Z

g(B) (22)

where Z = {B ∈ RP×J×K |z ≥ ‖B‖F,1} and z ∈ Z+ is the
radius of the `F,1-ball. The minimization problem in Eq. (22)
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can be solved by a proximal gradient decent algorithm with
backtracking linear search [9], which is based on the fast iter-
ative shrinkage-thresholding algorithm (FISTA) framework
provided in Algorithm 1. Within the iteration m, we set the
initial searching point as Am = Bm−1 + ηm(Bm−1−Bm−2),
where ηm is an non-negative parameter. Then, the approxi-
mated solution Bm can be obtained as:

Bm = πZ(f(Am)) (23)

where f(Am) = Am − 1
ξ g
′(Am) with parameter ξ, and

g′ denotes the derivative (See line 6 of Algorithm 1). The
Euclidean projection operator [34] πZ is defined as:

πZ(f(A)) =arg min
B
||B− f(A)||2F

s.t. ‖B‖F,1 ≤ z
(24)

To solve this `F,1 constrained optimization problem, we
adopt the method introduced in [34], which is originally
proposed for `2,1 constrained optimization problem. In this
paper, we extend this method to the higher dimension
where B is a tensor.

Theorem 1. For a given β, the primal optimal point B is given
by

Bp:: =


||f(Ap::)||F−β
||f(Ap::)||F f(Ap::) β > 0, ||f(Ap::)||F > β

0 β > 0, ||f(Ap::)||F ≤ β
f(Ap::) β = 0

(25)

Proof. To prove this theorem, we first convert B to a giant
matrix B ∈ RP×Q+ , where Q = JK . Each element of B is
given by Bpq = Bpjk, where q = k×J + j. In the same way,
we can create the giant matrices M,u and A for M,u and
A, respectively. It is easy to prove that the value of g(B) will
remain the same by using the giant matrix representation,
and there is a giant matrix ∂g

∂B:q
corresponding to ∂g(B)

∂B:jk
,

since they are both vectors. Therefore, the problem can be
solved by the following Euclidean projection

B =arg min
B
||B − (A− 1

ξ

∂g

∂B
)||2F

s.t. ‖B‖2,1 ≤ z
(26)

where ‖B‖2,1 =
∑P
p=1 ‖B‖2. It is obvious that ‖B‖2,1 =

‖B‖F,1. Finally, comparing Eq. (24) with Eq. (26), we can
conclude that Theorem 1 based on the giant matrix repre-
sentation is equivalent to Theorem 5 in [34].

The details of the proposed model is shown in Algo-
rithm 2. In the algorithm, M is initialized to be the survival
status tensor Y and B is randomly initialized. Within each
iteration, M and u are updated in line 3-5 and line 7-
9, respectively. B is updated in line 6 using Algorithm 1.
Algorithm 1 is based on the framework of FISTA algorithm,
where the Euclidean projection is conducted in line 6.

3.4 Complexity Analysis
For the ADMM algorithm, the time complexity in each
iteration is determined by updating M and B. Firstly, it
takes O(NPJ) float point operations to calculate M using
Eq. (18), where N = maxk(Nk). When updating B, within
each iteration, the time complexity for evaluating the values

Algorithm 2: MTMT Algorithm

Input: Predictor tensor (X); Survival status tensor (Y);
Indicator tensor (S); regularization parameters
(α, β, γ, σ);

Output: Regression coefficient tensor (B̂);

1 Initialize n = 0,M0 = Y,u0 = 0, and randomly
initialize B0;

2 repeat
3 for k = 1,K do
4 Compute Mn+1

::k using Eq. (18);
5 end
6 Compute B using Algorithm 1;
7 for k = 1,K do
8 Compute un+1

::k = un::k + Mn+1
::k − X::kBn+1

::k ;
9 end

10 n = n+ 1;
11 until Convergence;
12 B̂ = Bn.

of g(B) and its derivative is O(NPJK), and we need to
perform O(PJK) operations on the Euclidean projections,
i.e., Eq. (25). Thus, the time complexity for updating B is
O( 1√

ε
(NPJK + PJK)) = O( 1√

ε
NPJK), where ε is the

desired accuracy. Therefore, the overall time complexity is
O( 1√

ε
NPJK). Since our proposed model trains all the tasks

in a single run, it is more convincing to evaluate the average
time complexity for each task, which is O( 1√

ε
NPJ).

4 EXPERIMENTAL RESULTS

In this section, we first introduce the two real-world
datasets, Medical Information Mart for Intensive Care III
(MIMIC III) [10], [11] and Employee attrition dataset ob-
tained from IBM Waston Analytics, used for the model
evaluation and then conduct various experiments on the
datasets. We will compare the performance of the proposed
MTMT model with the state-of-the-art baseline methods. In
addition, we also analyze the shared features selected by the
proposed method and provide the parameter sensitivities.

4.1 Datasets Description

Two real-world datasets will be used in our paper.
• MIMIC III Dataset: The Medical Information Mart for

Intensive Care III (MIMIC III) dataset used in this paper
is a public dataset provided by PhysioNet1. It includes
de-identified health-related dataset with more than 40,000
ICU patients from the Beth Isreal Deaconess Medical Cen-
ter between 2001 and 2012. The information available in
this dataset includes: demographics, diagnosis, laboratory
test results, procedures and medications, etc. In addition,
the dataset shows a good temporal resolution, which is a
helpful property for researchers to find the latent relation-
ships of various diseases. In the experiments, we analyze
the readmission problems for three diseases, including
Heart Failure (HF), Hypertensive (HY) and Kidney Fail-
ure (KD). A correlated pattern between the three tasks

1. https://mimic.physionet.org/
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(a) MIMIC III (b) Employee Attrition

Fig. 2: Distribution of events over time on both datasets.

can be observed in Figure 2(a) through the distribution
of patient readmission (shown as the logarithm of the
number of patients) over time provided.

• Employee attrition dataset: The employee attrition
dataset provided by IBM Waston Analytics2 is also used to
evaluate the performance of the proposed algorithm. The
dataset spans 40 years and consists of 1470 employees
attrition information. The features provided in the dataset
can be categorized into four types: demographical, educa-
tion related, job related and salary related information.
Based on the attrition status and the time information
provided, we formulate four related problems and gen-
erate four longitudinal datasets. (i) Years At Company
(YAC): How many years have the employee stayed at the
company before leaving? (ii) Years With Current Manager
(YWCM): How many years have the employee worked
with the current manager before leaving? (iii) Years in
Current Role (YCR): How many years have the employee
worked in the current role? (iv) Years Since Last Promotion
(YSLP): How many years have the employee stayed in
the company since the last promotion? The distribution of
employee attrition (shown as the logarithm of the number
of employees) over time provided in Figure 2(b) indicates
a correlated pattern between the four tasks, especially in
the first 15 years.

There are mainly three steps in data preparation for the
two survival problems. (i) We extracted features from the
original dataset after generating dummy variables for the
categorical features and removing the features with zero-
variance. (ii) The longitudinal dataset for each survival task
was obtained as the triplet (X,T, Y ) by collecting the fea-
tures, event status and the corresponding event time for all
subjects. (iii) The entire dataset of each problem represented
by a tensor is obtained by combining the data in individual
tasks.

More details about the datasets are provided in Table 1.
In the table, “# instances”, “# features” and “# censoring”
indicate the number of instances, features, and censored
instances, respectively. For the Employee Attrition problem,
the event of interest in the formulated survival problem is
employee attrition. Therefore, the censored instances cor-
respond to the employees who are still working in the
company at the observation time, while the uncensoring
indicates that the employee has left the company during
the observation time period. For the MIMIC III dataset, the

2. https://www.ibm.com/communities/analytics/watson-
analytics-blog/hr-employee-attrition/

TABLE 1: Details of the dataset used in our experiments.

Dataset # instances # features # censored

MIMIC
III

HF 1811 118 1333
HY 731 118 657
KD 1209 118 1143

Employee
Attrition

YWCM 1207 46 1055
YCR 1226 46 1062
YAC 1426 46 1205
YSLP 889 46 762

event of interest is the patient readmission and the censored
instances are the patients who are not readmitted to the
hospital during the observation period. We implemented the
proposed MTMT algorithm in Python on the two datasets
using 5-fold cross validation. Our codes are publicly avail-
able at https://github.com/wangpinggl/MTMT.

4.2 Comparison Methods
To evaluate the performance of the proposed algorithm,
we compare it with the following commonly used survival
analysis methods.
• Cox-based methods: The Cox-based models [14] assume

that all the instances share the same baseline hazard
function. The Lasso-Cox and the EN-Cox method are
developed for the high-dimensional survival problems.
DeepSurv [22] is a Cox proportional hazards deep neural
network method for modelling the dependencies between
covariates and events. In our experiments, Cox model and
the regularized Cox models are trained using the survival
[35] and fastcox [36] package in R, respectively. DeepSurv
is implemented with Keras3. The batch size and epoch are
set to be 100 and 30, respectively. The RMSprop optimizer
with hyper-parameter ρ = 0.9, ε = 10−8 and learning rate
of 10−5 is adopted to train the model parameters. The
dimension of the hidden states is set to be 32.

• Parametric survival methods: The survival time or the
logarithm of the survival time is assumed to follow a
theoretical distribution in parametric methods. In the
experiments, the parametric survival methods learned
through survival package with Exponential and Weibull
distributions are compared with the proposed method.

• Linear methods: We also compare the proposed method
with the standard linear regression optimized using or-
dinary least square (OLS) method since the multi-task

3. https://github.com/KITMILTU/DeepSurv-Keras
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TABLE 2: Performance evaluation using time-dependent AUC (along with their standard deviations) on Employee Attrition
dataset.

Methods YWCM YCR YAC YSLP Average

Cox-based
methods

Cox 0.8473 (0.0022) 0.8371 (0.0020) 0.8741 (0.0013) 0.7820 (0.0031) 0.8351 (0.0015)

Lasso-Cox 0.8478 (0.0011) 0.8418 (0.0004) 0.8696 (0.0015) 0.7841 (0.0065) 0.8358 (0.0013)

EN-Cox 0.8474 (0.0018) 0.8441 (0.0003) 0.8691 (0.0008) 0.7961 (0.0067) 0.8392 (0.0009)

DeepSurv 0.5335(0.0597) 0.4964 (0.0546) 0.5591 (0.0522) 0.5508 (0.0513) 0.5350(0.0278)

Parametric
methods

Exponential 0.8325 (0.0026) 0.8275 (0.0021) 0.8616 (0.0012) 0.7753 (0.0039) 0.8242 (0.0013)

Weibull 0.8543 (0.0020) 0.8411 (0.0021) 0.8698 (0.0011) 0.7799 (0.0038) 0.8363 (0.0016)

Linear models

OLS 0.7329 (0.0007) 0.7584 (0.0016) 0.8202 (0.0010) 0.6623 (0.0006) 0.7435 (0.0043)

Tobit 0.8463 (0.0022) 0.8410 (0.0022) 0.8727 (0.0010) 0.7722 (0.0034) 0.8331 (0.0018)

BJ 0.8494 (0.0000) 0.8312 (0.0006) 0.8636 (0.0033) 0.7760 (0.0045) 0.8301 (0.0015)

Multi-task
linear models

Multi-Lasso 0.7061 (0.0011) 0.7557 (0.0010) 0.7900 (0.0017) 0.6894 (0.0052) 0.7353 (0.0021)

Multi-`2,1 0.7941 (0.0025) 0.8128 (0.0003) 0.8326 (0.0012) 0.7751 (0.0107) 0.8037 (0.0006)

MTLSA 0.8176 (0.0007) 0.8315 (0.0003) 0.8524 (0.0019) 0.7923 (0.0037) 0.8235 (0.0007)

MTLSA.V2 0.8327 (0.0011) 0.8432 (0.0006) 0.8649 (0.0022) 0.7972 (0.0042) 0.8345 (0.0008)

MTMT 0.8628 (0.0045) 0.8455 (0.0009) 0.8750 (0.0009) 0.8151 (0.0010) 0.8496 (0.0005)

framework in this paper is based on linear regression
method. It should be noted that the standard linear re-
gression method is trained only using the subjects who
experienced events since it cannot handle the censored
data in longitudinal studies. Tobit model and Buckley-
James (BJ) regression method are two linear regression
methods adapted to solve survival problems and trained
in survival and bujar package in R, respectively.

• Multi-task learning methods: We also compare with the
standard multi-task learning method regularized with
lasso and `2,1 implemented in the MALSAR package
[37] written in MATLAB. The multi-task learning model
for survival analysis (MTLSA) in [1] and its variant
MTLSA.V2 which formulate a sequence of standard sur-
vival analysis problems over time for the original problem
with single event of interest are implemented using the
MTLSA package4.

4.3 Performance Evaluation
A common approach to evaluate survival analysis methods
is to consider the relative risk between two comparable
instances instead of the absolute survival times for each
instance using the time-dependent AUC [38], which is also
known as concordance index (C-index) for survival analysis
problems. Two instances are considered as comparable if
their survival times fall in one of the following: (i) both of
them are uncensored; (ii) the observed event time of the
uncensored instance is smaller than the censoring time of
the censored instance [39]. Two comparable instances are
considered to be concordant if the predicted probability of
event for the instance which has event earlier is higher than
that of the other instance.

Consider two instances i and j, we can use an indicator
function to represent the comparability of this pair of in-
stances asCij = I(Yi = 1 and Ti < Tj), which indicates that

4. https://github.com/MLSurvival/MTLSA

Cij = 1, if the two instances are comparable and Cij = 0,
otherwise. Thus, the total number of comparable pairs can
be obtained as

NC =
N−1∑
i=1

N∑
j=i+1

Cij (27)

where N represents the number of instances in the testing
dataset. We can also represent the concordance of the two
instances i and j similarly using the indicator function as
cij = I(si < sj and Cij = 1), where si and sj represent
the estimated survival probabilities for instances i and j,
respectively. This indicates that cij = 1, if instances i and
j are concordant and cij = 0, otherwise. Thus, the total
number of concordant pairs can be calculated as

Nc =
N−1∑
i=1

N∑
j=i+1

cij (28)

Therefore, the time-dependent AUC can be calculated as:

AUCt = Nc/NC (29)

Table 2 and Table 3 show the performance results of
different algorithms using time-dependent AUC on the Em-
ployee Attrition and MIMIC III datasets, respectively. The
results in bold represent the best performance. It can be
observed that the proposed MTMT algorithm outperforms
other state-of-the-art methods for all tasks on Employee
Attrition dataset and two tasks on MIMIC III dataset. For
other tasks, MTMT also achieves similar time-dependent
AUC value compared to the best performance. The last col-
umn in Table 2 and Table 3 is the averaged time-dependent
AUC across all the tasks for each algorithm. The results
show that the MTMT algorithm outperforms other baseline
methods on average for each task on the two problems.
These promising results indicate that the proposed multi-
task framework can increase the prediction performance of
each task on average.
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TABLE 3: Performance evaluation using time-dependent AUC (along with their standard deviations) on MIMIC III dataset.

Methods HF HY KD Average

Cox-based
methods

Cox 0.5499 (0.0010) 0.6809 (0.0127) 0.5112 (0.0052) 0.5807 (0.0079)

Lasso-Cox 0.5534 (0.0004) 0.6764 (0.0110) 0.5395 (0.0081) 0.5898 (0.0057)

EN-Cox 0.5552 (0.0007) 0.6783 (0.0127) 0.4897 (0.0048) 0.5744 (0.0092)

DeepSurv 0.5102 (0.0240) 0.5209 (0.0311) 0.6018 (0.1317) 0.5464 (0.0537)

Parametric
methods

Exponential 0.5567 (0.0011) 0.6166 (0.0191) 0.5688 (0.0079) 0.5807 (0.0010)

Weibull 0.5479 (0.0008) 0.5703 (0.0177) 0.5419 (0.0351) 0.5534 (0.0002)

Linear models

OLS 0.5354 (0.0007) 0.4671 (0.0286) 0.3181 (0.0366) 0.4402 (0.0123)

Tobit 0.5578 (0.0011) 0.5946 (0.0029) 0.5531 (0.0198) 0.5685 (0.0005)

BJ 0.5571 (0.0006) 0.6862 (0.0115) 0.2452 (0.0237) 0.4962 (0.0514)

Multi-task
models

Multi-Lasso 0.5220 (0.0015) 0.6803 (0.0126) 0.5268 (0.0186) 0.5764 (0.0081)

Multi-`2,1 0.5412 (0.0012) 0.6859 (0.0098) 0.5342 (0.0146) 0.5871 (0.0073)

MTLSA 0.5348 (0.0010) 0.6528 (0.0096) 0.5587 (0.0097) 0.5821 (0.0039)

MTLSA.V2 0.5404 (0.0010) 0.6630 (0.0116) 0.5633 (0.1228) 0.5889 (0.0042)

MTMT 0.5657 (0.0166) 0.6868 (0.0007) 0.5674 (0.0178) 0.6066 (0.0048)

TABLE 4: The top-10 common features selected across four
tasks on the Employee Attrition dataset.

Feature Name Score
Total Working Years 2.2011
Job Level 0.8613
Performance Rating 0.7617
Job Involvement 0.4067
Number of Companies Worked 0.4012
Over Time 0.3537
Work Life Balance 0.3077
Job Role: Sales Executive 0.2938
Environment Satisfaction 0.2591
Job Role: Sales Representative 0.2508

4.4 Feature Selection

One of the main goals of multi-task learning methods is to
learn the shared features across all the tasks. In this section,
we evaluate the effect of the `F,1 norm on the tensor, which
is mainly used to perform the common feature selection
across all tasks over time. The bar plots in Figure 3(a) and
Figure 3(b) show the effect of the `F,1 norm on the prediction
performance using time-dependent AUC. We can observe
that the MTMT model regularized by `F,1 norm (in green)
outperforms the model without `F,1 norm (in yellow) on all
the tasks. This indicates that the new proposed `F,1 norm
can perform effectively for feature selection.

Table 4 and Table 5 provide the top-10 common features
selected across different tasks on the Employee Attrition
dataset and MIMIC III dataset, respectively, based on the
averaged `F,1 norm over 5-fold of the tensor slices Bi:: (as
given in Section 3) for each feature. The higher score indi-
cates the greater impact on the final prediction. According
to the results provided in Table 4, we can observe that the
feature Total Working Years has the highest impact on the

TABLE 5: The top-10 common features selected across three
tasks on MIMIC III dataset.

Feature Name Score
Support Systems 11.1720
Non Invasive Blood Pressure Systolic 11.0395
Braden Mobility 11.0392
Urine Appearance 10.9794
Position 10.9227
Creatinine 10.8996
Dorsal PedPulse R 10.8814
Marital status 10.8604
Pain Present 10.8504
Blood Urea Nitrogen 10.8452

employee attrition. In addition, all these selected features
are job related features, which means that these features
mainly dominate the employee attrition. It is worth noting
that two dummy features about “Job Role” among the
selected features belong to the sales department. It indicates
that the turnover rate in the sales department is relatively
high compared to other departments. The selected common
features among all the problems can provide an important
guideline to reduce the attrition in a company. Based on the
results in Table 5 on MIMIC III dataset, we can observe that
the feature Support Systems affects the patient readmission
most. It can also be observed that the variance of the scores
for the top-10 features on MIMIC III dataset is relatively
small, which indicates that these features affect the three
tasks at the same level.

4.5 Parameter Sensitivity and Convergence Analysis
There are mainly four parameters in the proposed MTMT
method, including (i) σ, which is used in the ADMM al-
gorithm, (ii) the weight for the `F norm α, (iii) the weight



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, DECEMBER 2019 11

(a) Employee Attrition (b) MIMIC III (c) Convergence

Fig. 3: Effect of `F,1 norm on feature selection for both (a) employee attrition and (b) MIMIC III. (c) Convergence of MTMT
model on both datasets.

(a) σ (b) α

(c) β (d) γ

Fig. 4: Parameter sensitivity of the four parameters used in the proposed method on Employee Attrition dataset.

of the inter-task correlation β and (iv) the weight for the
intra-task time smoothness γ. In this section, we provide
the parameter sensitivity for each of these parameters in
order to show the robustness of the proposed MTMT algo-
rithm. Figure 4 shows the parameter sensitivity of the four
parameters in their best performance range based on our
experiments on the Employee Attrition dataset. It can be
observed that each of the prediction performances are stable
across all the four tasks when varying each parameter. The
parameters used in our experiments are σ = 0.5, α = 0.5,
β = 25 and γ = 2. Figure 3(c) shows the convergence of
MTMT model on both datasets. The convergence threshold
is set to 0.01. It took around 300 seconds for MTMT model
to converge on both datasets.

5 CONCLUSIONS

Standard event prediction models are commonly used to
make predictions for a single specific event at a given time
point instead of predicting the occurrence of multiple events
of interest simultaneously in a dynamic setting. To avoid
sub-optimal solutions that are obtained by simply applying

the standard survival analysis method independently to
each task at specific time points, we formulated a temporal
multi-task learning framework MTMT for survival analysis
and optimized the problem using ADMM method. Our
MTMT method demonstrates a superior performance on
two real-world datasets compared to other state-of-the-art
models. The qualitative results show that the common fea-
tures selected by MTMT method can provide an important
guideline for the real-world applications.
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